

Probability, Distributions, Variance

6.100 LECTURE 6

SPRING 2026

Announcements

- **Exam 1** next Wednesday, Feb 25
 - during class time
 - in **Walker 50-340**
 - will send logistics announcement tomorrow
- Last term's Midterm 1 released after class for practice
 - website top bar > **Course Info** > **Exam Practice**
 - some questions have been modified to better match course content this semester so far
 - TAs will review in recitation this Friday
 - solutions will be posted after recitations conclude

Exam studying tips

- **Python mechanics**

- be completely clear how environment diagrams work
 - try to avoid mental shortcuts

- **Problem-solving, organizing code**

- why should the code be designed that way?
 - is there another valid way?
 - see finger exercise solutions
 - reflect on Pset 1 checkoff

- **Be fluent enough with object operations**

- need to engage more than just reading code
 - run your own experiments on the REPL

Exam grading expectations

- Before the exam, we will decide rough ranges for **middle-A/B/C**
- After grading, we may adjust these ranges, but never up, only down
- We will announce the **final ranges** when releasing scores
- If your performance is not what you had hoped, please reach out to 6.100-instructors@mit.edu to meet with me

Python modules

matplotlib library

- A third-party module
 - installation instructions in Pset 2
- Python modules are “namespaces”
 - look like frames: map names to
 - but they are objects on the heap
 - module name is a variable in global frame, pointing to modul object on heap
- dot-notation
 - ***module.name*** → any object on the heap
- **import matplotlib.pyplot**
- **import matplotlib.pyplot as plt**

Probability and Distributions

What is a probability distribution

- When you run a simulation, **any outcome has a certain probability of occurring**
 - if outcome space is continuous, any outcome has a probability **density**
- The **probabilities over all possible outcomes** is the distribution
 - all probabilities must sum (or integrate) to 1
- A **random variable** represents sampling a single outcome from a distribution
 - uppercase is random variable X
 - lowercase is outcome x , like a normal math variable

Properties of sampling

- **Fundamental property**
 - after sampling enough outcomes from a distribution, the samples themselves begin to reflect the shape of the distribution
- **→ Law of Large Numbers**
 - the mean of the samples converges to the mean of the distribution
- **Monte Carlo** simulation
 - simply repeat an experiment many times
 - compute an aggregate of the results (such as a mean)
 - (name is a reference to casino in Monaco)

Measuring spread in a distribution

- For LLN, how fast does the sample mean converge?
 - i.e., how many samples are needed to get a good estimate?
- Need to measure how “spread out” a distribution is
- Given samples x_1, \dots, x_n , consider all differences relative to mean μ_x
- Simply summing them results in 0, not useful

Variance and standard deviation

- Idea: sum their magnitudes
 - **absolute deviation:** $(\sum_{i=1}^n |x_i - \mu_x|) / n$
 - intuitive, but awkward to analyze mathematically
- Idea 2: sum their differences squared
 - **variance σ^2 :** $(\sum_{i=1}^n (x_i - \mu_x)^2) / n$
 - penalizes more for outliers
- Variance's units are squared, take square root to get comparable units
 - **standard deviation σ**

Some common ideal distributions

- Uniform

- [https://en.wikipedia.org/wiki/Continuous uniform distribution](https://en.wikipedia.org/wiki/Continuous_uniform_distribution)
 - [https://en.wikipedia.org/wiki/Discrete uniform distribution](https://en.wikipedia.org/wiki/Discrete_uniform_distribution)

- Normal / Gaussian

- [https://en.wikipedia.org/wiki/Normal distribution](https://en.wikipedia.org/wiki/Normal_distribution)

- Exponential

- [https://en.wikipedia.org/wiki/Exponential distribution](https://en.wikipedia.org/wiki/Exponential_distribution)

Distributions of Means

Evaluating accuracy of sample mean

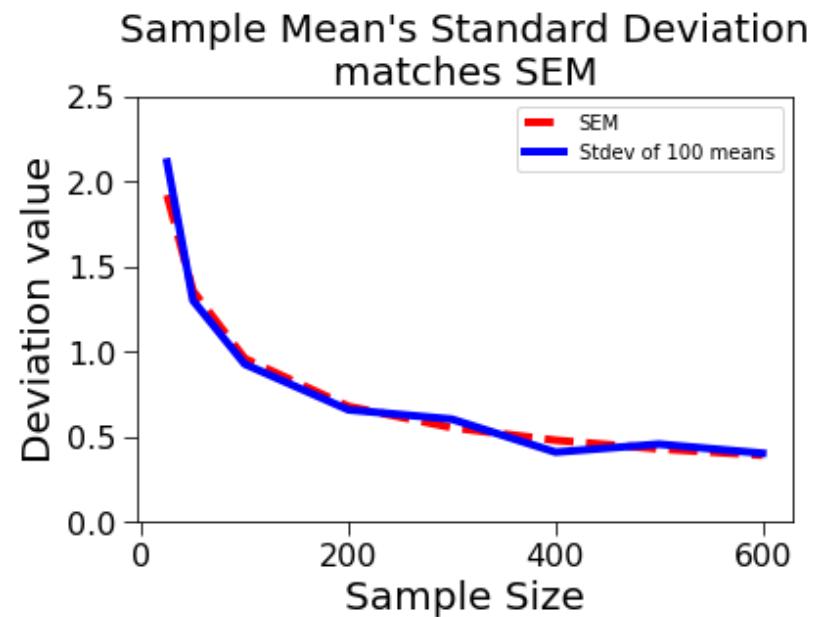
- As we collect more sample, get a better sense of the underlying distribution
 - know its mean and stdev better
- But can't just look at the variance of the sample
- Consider mean as a random variable
 - $M = (X_1 + X_2 + \dots + X_n) / n$
- M has its own distribution
 - we're interested in the shape/variance of that distribution
 - would like it to be narrow and tall

Estimating distribution of sample mean

- Sample M many times
 - which means running n trials of sampling X
 - for a total of k times
- Want to see how accuracy improves with more samples of X
 - keep k fixed, increase n
- Terminology
 - sometimes, n trials of X is called a single sample with a sample size of n
 - as if taking a group of size n out of an infinite population for X
 - and k samples of M is called k trials of our experiment

Central Limit Theorem

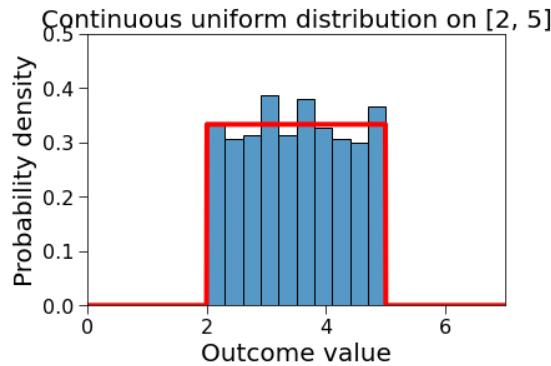
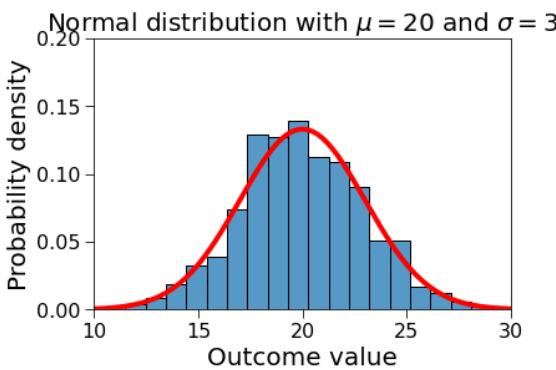
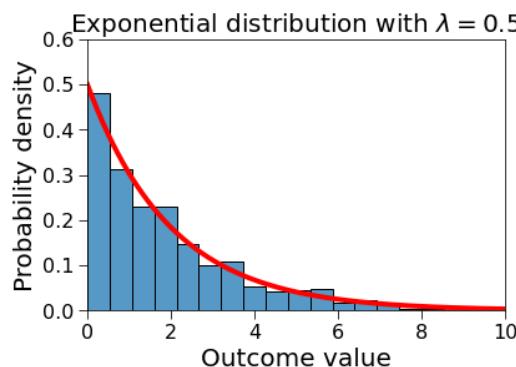
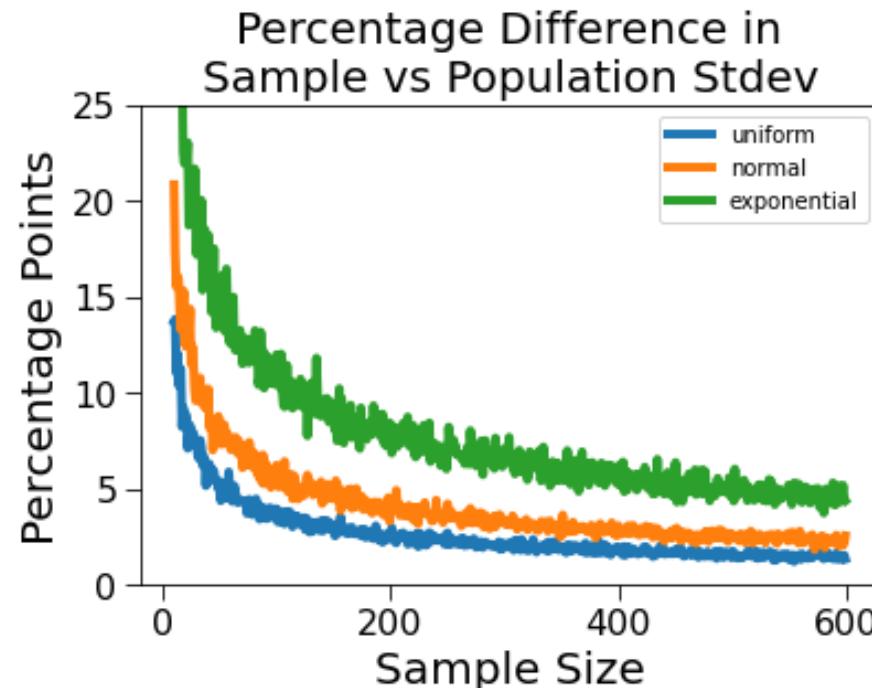
- The distribution for M approaches a normal distribution as the sample size n increases
- The mean of that distribution is the same as the mean of X
 - $\mu_M = \mu_X$
- The variance of that distribution is the variance of X divided by the sample size
 - $\sigma_M^2 = \sigma_X^2 / n$
- Hence, M 's standard deviation scales inversely with the square root of the sample size
 - $\sigma_M = \sigma_X / \sqrt{n}$
- M 's standard deviation is called the **standard error of the mean (SEM or SE)**



Estimating standard error

- Expensive to sample M multiple times
 - k trials of n trials
 - would prefer to know σ_M from a single sample of M
- Just need to know σ_X and sample size n
 - but we don't know X 's underlying distribution
- But we have n samples of X
 - if n is large enough, we have some approximation of X 's distribution
- Is the variance of the samples σ_x a good enough replacement for the true distribution variance σ_X ?

Sample stdev vs distribution stdev



- Convergence depends on **skew**
 - a measure of the asymmetry in a distribution
- **More skewed distributions require more samples for sample stdev to converge**

Next time

- **Next few lectures have been rearranged**
 - start with optimization and curve-fitting
 - after Exam 1, resume curve-fitting discussion
 - then discuss statistical significance
 - better matches flow of Pset 3
 - Pset 3 release pushed back Feb 25, after Exam 1