

Random walks, Plotting

6.100 LECTURE 5

SPRING 2026

Announcements

- Pset 2 due next Monday 2/23
 - use as metric whether you'd feel more comfortable in 6.100 or 6.100A
- Pset 1 checkoff due Friday 2/20
- No pre-lecture code for tomorrow's lecture
- Exam 1 next Wednesday 2/25 during class, in Walker (50-340)
 - more details to be announced tomorrow

Review functions as arguments

Function call mechanics: review

1. Retrieve function object
2. Evaluate arguments in order
3. **Set up frame** for function call
4. Assign parameter names in frame
5. Run body wrt frame until **return**
6. **Remove frame**, and substitute the returned object for the function call

Random walks

Last time

- Write stochastic programs
 - uncertainty in modeling processes
 - rolling dice
 - people's birthdays
 - use random module to sample outcomes
- Stochastic processes can provide insight on deterministic quantities
 - e.g., estimating pi
- Basic plotting
 - histogram of samples

Random walk model

- A **process** of random steps
 - start at a location
 - go in a random direction
 - repeat forever
- Applications
 - robot path-planning
 - web-crawling by search engines
 - ray-tracing for graphics
 - physics simulations of fluids

Plotting

matplotlib library

- A third-party module
 - installation instructions in Pset 2
- Python modules are “namespaces”
 - look like frames: map names to
 - but they are objects on the heap
 - module name is a variable in global frame, pointing to modul object on heap
- dot-notation
 - *module.name* → any object on the heap
- `import matplotlib.pyplot`
- `import matplotlib.pyplot as plt`

matplotlib documentation

- <https://matplotlib.org/>
 - Start with links in top bar
 - Plot types, User guide, Tutorials, Examples
- Reference pages
 - pyplot interface
 - make a figure window
 - `figure()`
 - plot data in a figure
 - `plot()` `scatter()` `hist()` `errorbar()`
 - label and format the plot
 - `title()` `xlabel()` `ylabel()` `xlim()` `ylim()`
`grid()` `legend()`

Next time

- **So far**

- get samples from random distributions or processes
- average the results to form an estimate
- plot the results to view the distribution

- **Tomorrow**

- be more rigorous about characterizing the results
- how good is our estimate?
- how much uncertainty in the distribution?