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Announcements

▪ Pset 2 released after class

▪ Pset 1 due Friday 2/13

▪ Pset 1 checkoff due next Friday 2/20
◦ try to do it early next week

▪ Office hours moved to 36-153 starting today, same times

▪ Next Monday is holiday
◦ no office hours
◦ office hours next Tuesday moved to 36-156
◦ Tuesday is a Monday schedule
◦ pre-lecture code will still be released Sunday around noon

▪ Next Friday 2/20 is last day to switch to 6.100A
◦ look at 6.100A website to see course structure
◦ discuss with me at instructor office hours tomorrow or by appointment

▪ Submit muddy cards if you’d like something reviewed at start of next 
lecture!
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Funtion call mechanics: review

1. Retrieve function object

2. Evaluate arguments in order

3. Set up frame for function call

4. Assign parameter names in frame

5. Run body wrt frame until return

6. Remove frame, and substitute the returned object for the 
function call
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Behavior of return

▪ Recall: return statement stops function execution
◦ return expression

▪ What if leave out expression?
◦ returns None

▪ What if no return at all?
◦ returns None at end of function

▪ What if return a mutating expression?
◦ returns whatever that expression evaluates to

◦ could possibly be None
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Python functions that return None

▪ Functions with no explicit return actually return None
◦ a NoneType object
◦ singleton object: only one instance ever exists in memory
◦ comparison with is or is not

◦ examines object identity
◦ in contrast, == compares object value

▪ Typically, mutating operations return None
◦ some_list.append()
◦ some_list.extend()
◦ some_list.pop() → value
◦ some_list.insert(index, value)
◦ some_list.remove(value)
◦ some_list.clear()
◦ some_list.reverse() vs  reversed() vs  some_list[::-1]
◦ some_list.sort() vs  sorted()

▪ Be careful about “returning” these calls, often not your intention
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When default arguments are mutable

▪ When a default argument is specified for a parameter in a 
function definition:
◦ it is evaluated when Python creates the function object
◦ the header part of the function object stores a reference to 

the default argument object

▪ When the function is called without an argument for that 
parameter:
◦ the parameter in the frame gets assigned to that default 

argument object
◦ if that object gets mutated during function execution, it 

does not get reset when the function returns
◦ hence, a subsequent call that uses the default argument will 

start with that mutated object
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Why stochastic programs?

▪ So far, all the operations we’ve shown are deterministic
◦ so given a certain input, a program always produces the same 

output

▪ Real life is full of uncertainty!
◦ Predictive nondeterminism: could perform a deterministic 

calculation in theory, but lacking input information
◦ weather forecasting

◦ polling data

◦ Causal nondeterminism: some events truly random
◦ AI text generation

◦ outcome of the Super Bowl (before last weekend)

▪ Value of simulation
◦ model a process, with uncertainty baked in
◦ perform multiple runs/trials of the process to see an 

ensemble/distribution of possible results
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Python’s randommodule

▪ Library of functions for generating random numbers/data
◦ https://docs.python.org/3/library/random.html

◦ docs.python.org > Library reference > Numerical and 
Mathemtical Modules > random

◦ use import random at top of file

▪ Basic functionality

◦ random.randint(low, high)

◦ random.random() → float between 0 and 1

◦ random.choice(sequence)
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Sampling from known distributions

▪ random.uniform(low, high)
◦ https://en.wikipedia.org/wiki/

Continuous_uniform_distribution

▪ random.gauss(mu, sigma)
◦ https://en.wikipedia.org/wiki/

Normal_distribution

◦ mu is mean

◦ sigma is standard deviation
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Estimating outcome probabilities

▪ Scenario: rolling dice

◦ single die has
𝟏

𝟔
chance of landing on side 1

◦ two dice, if rolled independently, have a 
𝟏

𝟔
×

𝟏

𝟔
chance of 

both landing on side 1

◦ five dice:
𝟏

𝟔𝟓
chance of all landing on side 1

▪ Lazy Computational way: roll 𝒏 dice many times and see how 
many times they come up all 1’s

▪ Program decomposition
◦ model rolling a single die

◦ model rolling a collection of dice

◦ run many trials of rolling a collection
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Estimating pi (𝝅)

▪ Imagine it’s 350 BC in Ancient Greece, and you want to 
characterize the area of a circle
◦ https://en.wikipedia.org/wiki/Area_of_a_circle#History

◦ Indiana Jones falls out of the sky and hands you a ThinkPad 
X1 Carbon Gen 13 Aura Edition (14” Intel) with Python 
installed

▪ A circle is fundamentally characterized by its radius
◦ thus, you reason the area must be proportional to its radius 

squared

◦ but what is the proportionality constant?

◦ Pennywise falls out of the sky and offers you a pie

◦ you politely decline, but it inspires you to name the constant 
pi (𝜋)
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Estimating pi (𝝅)

▪ Draw a unit circle (with radius 1) centered at the origin

▪ Then circumscribe it with a bounding square
◦ side length is 2

▪ Thrown a bunch of darts to land in the square
◦ random.uniform(-1, 1) in each dimension

◦ record how many land in the circle

◦ distance from origin must not exceed 1

▪ Multiply proportion of darts in circle by area of square
◦ Congratulations, you’ve estimated pi (𝜋)!
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Estimating integrals

▪ Example: integrate 𝒚 = 𝒙 − 𝟑 𝟐 + 𝟏
◦ on the interval 𝒙 ∈ [𝟏, 𝟓]

▪ Similar “dart-throwing” process 
◦ identify the bounding box

◦ determine which darts land under the curve

◦ multiply proportion by area of box

▪ Additional considerations
◦ handling “negative” area

◦ allocating darts more efficiently

◦ how “good” is the estimate
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Birthday overlap problem

▪ What is the probability of at least two people in a group 
having the same birthday?

▪ If there are 30 people in a room, should you be surprised if 
two share a birthday?
◦ extreme case: what if there are 367 people?

▪ Can be solved analytically
◦ but not easily amenable to extensions, e.g.:

◦ are all birthdays equally likely?

◦ how likely that there are three people who share a birthday?

◦ stochastic simulation to the rescue!
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Next time

▪ Recitation this Friday: more practice with functions
◦ environment diagrams

◦ program decomposition

▪ Next Tuesday: simulate a type of process known as a random 
walk
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