
Wrap-up functions,
Stochastic programs,
Simulation
6.100 LECTURE 4

SPRING 2026

16.100 LECTURE 4

Announcements

▪ Pset 2 released after class

▪ Pset 1 due Friday 2/13

▪ Pset 1 checkoff due next Friday 2/20
◦ try to do it early next week

▪ Office hours moved to 36-153 starting today, same times

▪ Next Monday is holiday
◦ no office hours
◦ office hours next Tuesday moved to 36-156
◦ Tuesday is a Monday schedule
◦ pre-lecture code will still be released Sunday around noon

▪ Next Friday 2/20 is last day to switch to 6.100A
◦ look at 6.100A website to see course structure
◦ discuss with me at instructor office hours tomorrow or by appointment

▪ Submit muddy cards if you’d like something reviewed at start of next
lecture!

6.100 LECTURE 4 2

6.1000 LECTURE 1 4

Funtion call mechanics: review

1. Retrieve function object

2. Evaluate arguments in order

3. Set up frame for function call

4. Assign parameter names in frame

5. Run body wrt frame until return

6. Remove frame, and substitute the returned object for the
function call

6.100 LECTURE 4 5

Behavior of return

▪ Recall: return statement stops function execution
◦ return expression

▪ What if leave out expression?
◦ returns None

▪ What if no return at all?
◦ returns None at end of function

▪ What if return a mutating expression?
◦ returns whatever that expression evaluates to

◦ could possibly be None

6.1000 LECTURE 2 6

Python functions that return None

▪ Functions with no explicit return actually return None
◦ a NoneType object
◦ singleton object: only one instance ever exists in memory
◦ comparison with is or is not

◦ examines object identity
◦ in contrast, == compares object value

▪ Typically, mutating operations return None
◦ some_list.append()
◦ some_list.extend()
◦ some_list.pop() → value
◦ some_list.insert(index, value)
◦ some_list.remove(value)
◦ some_list.clear()
◦ some_list.reverse() vs reversed() vs some_list[::-1]
◦ some_list.sort() vs sorted()

▪ Be careful about “returning” these calls, often not your intention

6.100 LECTURE 4 7

When default arguments are mutable

▪ When a default argument is specified for a parameter in a
function definition:
◦ it is evaluated when Python creates the function object
◦ the header part of the function object stores a reference to

the default argument object

▪ When the function is called without an argument for that
parameter:
◦ the parameter in the frame gets assigned to that default

argument object
◦ if that object gets mutated during function execution, it

does not get reset when the function returns
◦ hence, a subsequent call that uses the default argument will

start with that mutated object

6.100 LECTURE 4 8

6.1000 LECTURE 1 9

Why stochastic programs?

▪ So far, all the operations we’ve shown are deterministic
◦ so given a certain input, a program always produces the same

output

▪ Real life is full of uncertainty!
◦ Predictive nondeterminism: could perform a deterministic

calculation in theory, but lacking input information
◦ weather forecasting

◦ polling data

◦ Causal nondeterminism: some events truly random
◦ AI text generation

◦ outcome of the Super Bowl (before last weekend)

▪ Value of simulation
◦ model a process, with uncertainty baked in
◦ perform multiple runs/trials of the process to see an

ensemble/distribution of possible results

6.100 LECTURE 4 10

Python’s randommodule

▪ Library of functions for generating random numbers/data
◦ https://docs.python.org/3/library/random.html

◦ docs.python.org > Library reference > Numerical and
Mathemtical Modules > random

◦ use import random at top of file

▪ Basic functionality

◦ random.randint(low, high)

◦ random.random() → float between 0 and 1

◦ random.choice(sequence)

6.100 LECTURE 4 11

https://docs.python.org/3/library/random.html

Sampling from known distributions

▪ random.uniform(low, high)
◦ https://en.wikipedia.org/wiki/

Continuous_uniform_distribution

▪ random.gauss(mu, sigma)
◦ https://en.wikipedia.org/wiki/

Normal_distribution

◦ mu is mean

◦ sigma is standard deviation

6.100 LECTURE 4 12

https://en.wikipedia.org/wiki/Continuous_uniform_distribution
https://en.wikipedia.org/wiki/Normal_distribution

Estimating outcome probabilities

▪ Scenario: rolling dice

◦ single die has
𝟏

𝟔
chance of landing on side 1

◦ two dice, if rolled independently, have a
𝟏

𝟔
×

𝟏

𝟔
chance of

both landing on side 1

◦ five dice:
𝟏

𝟔𝟓
chance of all landing on side 1

▪ Lazy Computational way: roll 𝒏 dice many times and see how
many times they come up all 1’s

▪ Program decomposition
◦ model rolling a single die

◦ model rolling a collection of dice

◦ run many trials of rolling a collection

6.100 LECTURE 4 13

6.1000 LECTURE 1 14

Estimating pi (𝝅)

▪ Imagine it’s 350 BC in Ancient Greece, and you want to
characterize the area of a circle
◦ https://en.wikipedia.org/wiki/Area_of_a_circle#History

◦ Indiana Jones falls out of the sky and hands you a ThinkPad
X1 Carbon Gen 13 Aura Edition (14” Intel) with Python
installed

▪ A circle is fundamentally characterized by its radius
◦ thus, you reason the area must be proportional to its radius

squared

◦ but what is the proportionality constant?

◦ Pennywise falls out of the sky and offers you a pie

◦ you politely decline, but it inspires you to name the constant
pi (𝜋)

6.100 LECTURE 4 15

https://en.wikipedia.org/wiki/Area_of_a_circle#History

Estimating pi (𝝅)

▪ Draw a unit circle (with radius 1) centered at the origin

▪ Then circumscribe it with a bounding square
◦ side length is 2

▪ Thrown a bunch of darts to land in the square
◦ random.uniform(-1, 1) in each dimension

◦ record how many land in the circle

◦ distance from origin must not exceed 1

▪ Multiply proportion of darts in circle by area of square
◦ Congratulations, you’ve estimated pi (𝜋)!

6.100 LECTURE 4 16

Estimating integrals

▪ Example: integrate 𝒚 = 𝒙 − 𝟑 𝟐 + 𝟏
◦ on the interval 𝒙 ∈ [𝟏, 𝟓]

▪ Similar “dart-throwing” process
◦ identify the bounding box

◦ determine which darts land under the curve

◦ multiply proportion by area of box

▪ Additional considerations
◦ handling “negative” area

◦ allocating darts more efficiently

◦ how “good” is the estimate

6.100 LECTURE 4 17

Birthday overlap problem

▪ What is the probability of at least two people in a group
having the same birthday?

▪ If there are 30 people in a room, should you be surprised if
two share a birthday?
◦ extreme case: what if there are 367 people?

▪ Can be solved analytically
◦ but not easily amenable to extensions, e.g.:

◦ are all birthdays equally likely?

◦ how likely that there are three people who share a birthday?

◦ stochastic simulation to the rescue!

6.100 LECTURE 4 18

Next time

▪ Recitation this Friday: more practice with functions
◦ environment diagrams

◦ program decomposition

▪ Next Tuesday: simulate a type of process known as a random
walk

6.100 LECTURE 4 19

