

Wrap-up functions, Stochastic programs, Simulation

6.100 LECTURE 4
SPRING 2026

Announcements

- Pset 2 released after class
- Pset 1 due Friday 2/13
- Pset 1 checkoff due next Friday 2/20
 - try to do it early next week
- Office hours moved to **36-153 starting today**, same times
- **Next Monday is holiday**
 - no office hours
 - office hours next Tuesday moved to **36-156**
 - Tuesday is a Monday schedule
 - pre-lecture code will still be released Sunday around noon
- **Next Friday 2/20 is last day to switch to 6.100A**
 - look at 6.100A website to see course structure
 - discuss with me at instructor office hours tomorrow or by appointment
- Submit **muddy cards** if you'd like something reviewed at start of next lecture!

More on Functions and Mutation

Function call mechanics: review

1. Retrieve function object
2. Evaluate arguments in order
3. **Set up frame** for function call
4. Assign parameter names in frame
5. Run body wrt frame until **return**
6. **Remove frame**, and substitute the returned object for the function call

Behavior of return

- Recall: **return** statement stops function execution
 - return **expression**
- What if leave out expression?
 - returns **None**
- What if no return at all?
 - returns **None** at end of function
- What if return a mutating expression?
 - returns whatever that expression evaluates to
 - could possibly be **None**

Python functions that return `None`

- Functions with no explicit return actually return `None`
 - a `NoneType` object
 - singleton object: only one instance ever exists in memory
 - comparison with `is` or `is not`
 - examines object identity
 - in contrast, `==` compares object value
- Typically, mutating operations return `None`
 - `some_list.append()`
 - `some_list.extend()`
 - `some_list.pop() → value`
 - `some_list.insert(index, value)`
 - `some_list.remove(value)`
 - `some_list.clear()`
 - `some_list.reverse()` vs `reversed()` vs `some_list[::-1]`
 - `some_list.sort()` vs `sorted()`
- Be careful about “returning” these calls, often not your intention

When default arguments are mutable

- When a **default argument** is specified for a parameter in a function definition:
 - it is **evaluated when Python creates the function object**
 - the header part of the function object stores a reference to the **default argument object**
- When the function is called without an argument for that parameter:
 - the parameter in the frame gets assigned to that default argument object
 - if that object gets mutated during function execution, it **does not get reset when the function returns**
 - hence, a subsequent call that uses the default argument will start with that mutated object

Stochastic Programs

Why stochastic programs?

- So far, all the operations we've shown are **deterministic**
 - so given a certain input, a program always produces the same output
- Real life is full of uncertainty!
 - **Predictive nondeterminism:** could perform a deterministic calculation in theory, but lacking input information
 - weather forecasting
 - polling data
 - **Causal nondeterminism:** some events truly random
 - AI text generation
 - outcome of the Super Bowl (before last weekend)
- Value of **simulation**
 - model a process, with uncertainty baked in
 - perform multiple runs/trials of the process to see an ensemble/distribution of possible results

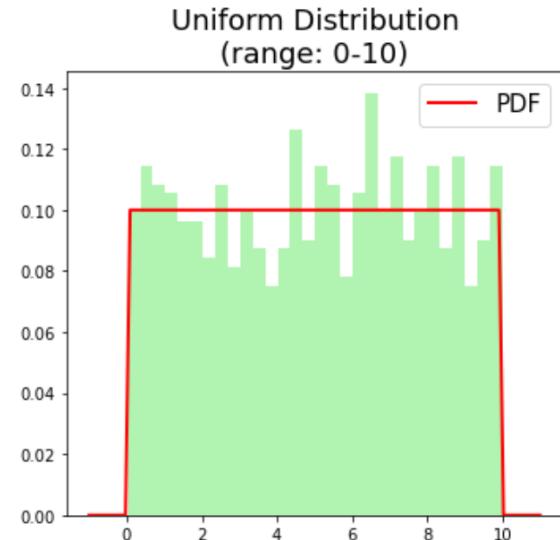
Python's random module

- Library of functions for generating random numbers/data
 - <https://docs.python.org/3/library/random.html>
 - docs.python.org > Library reference > Numerical and Mathematical Modules > random
 - use `import random` at top of file
- Basic functionality
 - `random.randint(low, high)`
 - `random.random()` → `float` between 0 and 1
 - `random.choice(sequence)`

Sampling from known distributions

- **random.uniform(*low, high*)**

- [https://en.wikipedia.org/wiki/Continuous uniform distribution](https://en.wikipedia.org/wiki/Continuous_uniform_distribution)

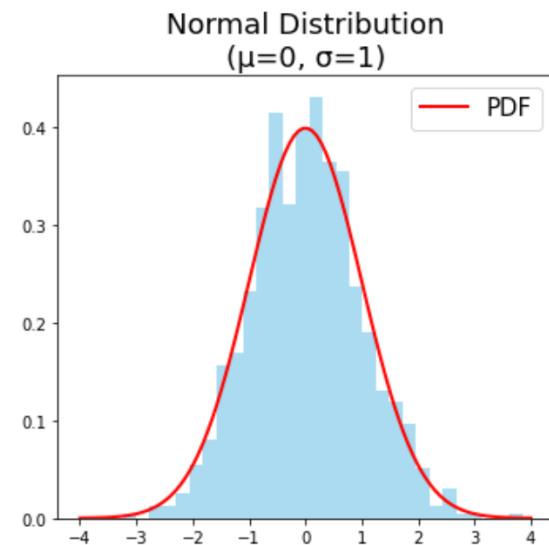


- **random.gauss(*mu, sigma*)**

- [https://en.wikipedia.org/wiki/Normal distribution](https://en.wikipedia.org/wiki/Normal_distribution)

- ***mu*** is mean

- ***sigma*** is standard deviation



Estimating outcome probabilities

- Scenario: **rolling dice**
 - **single die** has $\frac{1}{6}$ chance of landing on side 1
 - **two dice**, if rolled independently, have a $\frac{1}{6} \times \frac{1}{6}$ chance of both landing on side 1
 - **five dice**: $\frac{1}{6^5}$ chance of all landing on side 1
- ~~Lazy Computational way~~: roll n dice many times and see how many times they come up all 1's
- **Program decomposition**
 - model rolling a single die
 - model rolling a collection of dice
 - run many trials of rolling a collection

Estimation through random sampling

Estimating pi (π)

- Imagine it's 350 BC in Ancient Greece, and you want to characterize the **area of a circle**
 - https://en.wikipedia.org/wiki/Area_of_a_circle#History
 - **Indiana Jones** falls out of the sky and hands you a ThinkPad X1 Carbon Gen 13 Aura Edition (14" Intel) with Python installed
- A circle is fundamentally characterized by its **radius**
 - thus, you reason the area must be proportional to its **radius squared**
 - but what is the **proportionality constant?**
 - **Pennywise** falls out of the sky and offers you a pie
 - you politely decline, but it inspires you to name the constant pi (π)

Estimating pi (π)

- Draw a **unit circle** (with radius 1) centered at the origin
- Then circumscribe it with a **bounding square**
 - side length is 2
- Throw a bunch of darts to land in the square
 - `random.uniform(-1, 1)` in each dimension
 - record how many land in the circle
 - distance from origin must not exceed 1
- Multiply **proportion of darts in circle** by **area of square**
 - Congratulations, you've estimated pi (π)!

Estimating integrals

- Example: integrate $y = (x - 3)^2 + 1$
 - on the interval $x \in [1, 5]$
- Similar “dart-throwing” process
 - identify the bounding box
 - determine which darts land under the curve
 - multiply proportion by area of box
- Additional considerations
 - handling “negative” area
 - allocating darts more efficiently
 - how “good” is the estimate

Birthday overlap problem

- What is the probability of at least two people in a group having the same birthday?
- If there are 30 people in a room, should you be surprised if two share a birthday?
 - **extreme case:** what if there are 367 people?
- Can be solved analytically
 - but not easily amenable to extensions, e.g.:
 - are all birthdays **equally likely?**
 - how likely that there are **three people** who share a birthday?
 - **stochastic simulation** to the rescue!

Next time

- Recitation this Friday: more practice with functions
 - **environment diagrams**
 - **program decomposition**
- Next Tuesday: simulate a type of process known as a **random walk**