
Lists, Mutation,
Function scope
6.100 LECTURE 3

SPRING 2026

16.100 LECTURE 3

Announcements

▪ Pset 1 due this Friday 2/13
◦ “warm-up” pset, not that long

◦ use extra time to practice Python features on your own

▪ Showed f-strings during recitation last Friday
◦ will use them extensively, but won’t be tested

◦ reference https://fstring.help/ for syntax

▪ Expect you to have Python reliably installed by now
◦ showed REPL during recitation

◦ we gave instructions on setting up VS Code

◦ but feel free to use any editor

6.100 LECTURE 3 2

https://fstring.help/

6.1000 LECTURE 1 4

list objects

▪ Lists are just sequences of references to objects
◦ each reference box is like a variable, but without the name

◦ instead, retrieve or assign by some_list[index]

▪ lists follow many str-like operations
◦ indexing, slicing

◦ concatenation, repetition

◦ iteration, len()

◦ comparisons == <

◦ plus implications for <= >= >

6.1000 LECTURE 2 5

listmembership

▪ Unlike strs, list membership test in is by element, not by
substr/subsequence
◦ relies on == comparison
◦ min() and max() also accept lists, rely on < comparison

▪ Don't confuse elt in iterable with
for x in iterable:

▪ not elt in iterable can be written as
elt not in iterable
◦ no parens needed because not has lower priority than in

and not in is its own operator
◦ https://docs.python.org/3/reference/expressions.html#oper

ator-precedence
◦ docs.python.org > Language Reference > Expressions > Operator

precedence

6.1000 LECTURE 2 6

https://docs.python.org/3/reference/expressions.html#operator-precedence

listmutation

▪ Update: index assignment

▪ Grow: .append(), .extend()

▪ Shrink: del operator

▪ Common pattern to build a list
◦ sequence = []
for x in other_list:

sequence.append(something with x)

▪ Alternate method
◦ sequence = [0] * limit
for i in range(limit):

sequence[i] = something with other_list[i]

▪ Additional operations
◦ https://docs.python.org/3/library/stdtypes.html#sequence-types-

list-tuple-range
◦ docs.python.org > Library Reference > Built-in Types > Sequence Types

6.1000 LECTURE 2 7

https://docs.python.org/3/library/stdtypes.html#sequence-types-list-tuple-range

Essential list operations that use indices

▪ Assignment at index
◦ some_list[index] = value

▪ Grow/shrink at end
◦ some_list.append(value)
◦ some_list.extend(other_list)

◦ equivalently: some_list += other_list
◦ some_list.pop()

▪ Grow/shrink in the middle
◦ some_list.insert(index, value)
◦ some_list.pop(index)

▪ Note syntax: object.operation(arg, arg, ...)
◦ similar syntax for str operations
◦ https://docs.python.org/3/library/stdtypes.html#text-sequence-type-str

◦ docs.python.org > Library Reference > Built-in Types > Text Sequence Type
◦ look and behave like functions, but specialized on provided object
◦ technically called methods, will revisit near end of term

6.100 LECTURE 3 8

https://docs.python.org/3/library/stdtypes.html#text-sequence-type-str

Additional list operations for convenience

▪ Looking up by value
◦ some_list.count(value)
◦ some_list.index(value)

◦ compare to some_str.index(substr)

◦ compare to some_str.find(substr)

◦ some_list.remove(value)

▪ Mutating entire list
◦ some_list.clear()
◦ some_list.reverse()
◦ some_list.sort()

▪ Copying lists
◦ some_list.copy()  most explicit
◦ list(some_list)  most versatile, works on any iterable
◦ some_list[:]

6.100 LECTURE 3 9

str operations involving lists

▪ some_str.split(separator)
◦ list of substrs surrounding separator occurences

▪ some_str.split()
◦ list of substrs surrounding consecutive spaces

▪ separator.join([str1, str2, ...])
◦ str with separator interpolated between str elts in list

▪ https://docs.python.org/3/library/stdtypes.html#text-and-
binary-sequence-type-methods-summary
◦ docs.python.org > Library Reference > Built-in Types > Text ...

Sequence Type Methods Summary

6.100 LECTURE 3 10

https://docs.python.org/3/library/stdtypes.html#text-and-binary-sequence-type-methods-summary

6.1000 LECTURE 1 11

Last time: functions are contained programs

▪ Defining a function
◦ accept input through parameter variables

◦ produce output through a return statement

◦ body code is indented

◦ hence need pass if empty

▪ Calling a function
◦ syntax: function name followed by ()

◦ argument objects go inside parentheses

◦ function body runs with parameters bound to arguments

◦ function call evaluates to object returned by body code

6.100 LECTURE 3 12

Funtion definition mechanics

▪ Function definition is straightforward

◦ def func(param1, param2, ...):
statement
statement

◦ equivalent effect as variable = expression

◦ create function object in heap memory

◦ labeled with function type

◦ stores parameter names in header

◦ stores body code in body

◦ create func variable on stack, pointing to object

6.100 LECTURE 3 13

Funtion call mechanics

▪ Function call is more involved

◦ func(arg1, arg2, ...)

◦ need to run a small program

◦ we've seen now that programs are all about:

◦ creating objects (and manipulating them with lists)

◦ managing variable references to them

◦ so need a safe "sandbox" to manage variable names

◦ equivalent terminology: environment, frame, scope

6.100 LECTURE 3 14

Funtion call mechanics: overview

1. Retrieve function object

2. Evaluate arguments in order

3. Set up frame for function call

4. Assign parameter names in frame

5. Run body wrt frame until return

6. Substitute the returned object for the function call

6.100 LECTURE 3 15

Funtion call mechanics: global frame

▪ Need to separate function code's environment from where
"top-level code" runs
◦ Also need to separate from execution of other functions'

code

▪ Top-level code runs in global frame

▪ All code outside functions we've seen has been in global
frame
◦ e.g., all functions are defined in global

6.100 LECTURE 3 16

Funtion call mechanics: running body code

▪ Follow usual rules of execution plus some extra rules

▪ When encounter a return statement:
◦ evaluate expression into an object
◦ tell Python here's what this call evaluates to
◦ stop executing body code, remove the frame
◦ resume execution in previous frame with object substituted

▪ If looking up a variable that doesn't exist in current frame, look in
global frame
◦ that's most likely what programmer intended

▪ If encounter a function call, apply the same rules
◦ pause execution in current frame
◦ evaluate function call, set up new frame on stack, get an object

back
◦ substitute in object and proceed

6.100 LECTURE 3 17

Mutation and functions

▪ When a function is called with a list variable
◦ calling frame has a variable pointing to the list

◦ function’s frame has a parameter/variable pointing to same
list

◦ function body has potential to mutate that list

◦ after function returns, calling frame sees mutated list

▪ Mutation doesn’t have to be bad, can be part of design
◦ but need to be clear about expected behavior

▪ Generally not encouraged to use global variables
◦ examples in code only do so to reduce number of frames

◦ often, global-level code can be put inside functions

6.100 LECTURE 3 18

Functions returning None

▪ Functions with no explicit return actually return None
◦ a NoneType object
◦ singleton object: only one instance ever exists in memory
◦ comparison with is or is not

◦ examines object identity
◦ in contrast, == compares object value

▪ Typically, mutating operations return None
◦ some_list.append()
◦ some_list.extend()
◦ some_list.pop() → value
◦ some_list.insert(index, value)
◦ some_list.remove(value)
◦ some_list.clear()
◦ some_list.reverse() vs reversed() vs some_list[::-1]
◦ some_list.sort() vs sorted()

▪ Be careful about “returning” these calls, often not your intention

6.100 LECTURE 3 19

Next time

▪ Pre-lecture code will always be released the day before
lecture around noon

▪ One exception: next Tuesday 2/17 classes run on a Monday
schedule
◦ to space things out, pre-lecture code will still be released

Sunday 2/15 around noon

▪ This Wednesday’s pre-lecture code: continuation of function
features
◦ docstrings

◦ keyword arguments

◦ default argument values

6.100 LECTURE 3 22

