
Looping, 
Enumeration, 
Functions
6.100 LECTURE 3

SPRING 2026

16.100 LECTURE 3



Announcements

▪ Remember to install Python and VS Code!
◦ help available during office hours 5–9 pm MTWRF

◦ Room 38-370

▪ Instructor office hours
◦ Thursdays 2:30–3:30 pm

◦ Room 38-648

▪ Recitation starts Friday
◦ check your schedule

◦ https://registrar.mit.edu/registration-academics/registration-
information/understanding-your-schedule

◦ if need to switch or get assigned a section, email
6.100-staff@mit.edu

6.100 LECTURE 3 2

https://registrar.mit.edu/registration-academics/registration-information/understanding-your-schedule
mailto:6.100-staff@mit.edu


Muddy cards

6.100 LECTURE 3 3



6.1000 LECTURE 1 5



Looping with while

▪ General mechanism in Python

◦ while condition:
body code of loop
...

▪ Loop exits only once condition is False
◦ condition is an unchanging expression in code

◦ but its evaluation depends on what variables it references

◦ so body code needs to update relevant variables

6.1000 LECTURE 2 6



Looping with for

▪ Python syntax

◦ for var in iterable:
loop body code
...

▪ A Python iterable is a certain type of object
◦ produces one value at a time specifically when “queried” by 

the for mechanism

◦ so far, we’ve encountered str and range types

◦ https://docs.python.org/3/library/stdtypes.html#range

▪ Loop automatically exits when iterable is exhausted
◦ for makes repeated assignments to variable var until then

6.1000 LECTURE 2 7

https://docs.python.org/3/library/stdtypes.html#range


Interrupting loop execution

▪ break
◦ immediately jumps out of loop

▪ continue
◦ stops current loop iteration

◦ jumps back to the loop condition to start next iteration

▪ These work with both while and for loops

▪ Distinct from pass
◦ not related to looping

◦ simply executes with no effect, i.e. no operation, i.e. no-op,
i.e. noop

6.1000 LECTURE 2 8



6.1000 LECTURE 1 9



Exhaustive enumeration

▪ A broad computational theme, naturally expressed with loops

▪ Identify problem constraints
◦ express properties of a valid solution
◦ typically identify variables and relationships between them

▪ Enumerate potential solutions 
◦ systematically step through solution space

▪ Test each one against constraints
◦ feasibility: stop when find any solution
◦ optimality: track best solution found so far

▪ Other names
◦ guess-and-check
◦ generate-and-test
◦ brute force

6.1000 LECTURE 2 10



Example: simple algebra problem

▪ Alyssa, Ben, and Cindy are selling tickets to a fundraiser.
◦ Ben sells 20 fewer than Alyssa
◦ Cindy sells twice as many as Alyssa
◦ 1000 total tickets were sold by the three people

▪ How many tickets did each sell?
◦ could solve this algebraically
◦ let’s try exhaustive enumeration and testing each candidate 

solution

▪ Initial strategy
◦ solution space: each person could sell anywhere between 0 and 

1000 tickets

▪ More efficient strategy
◦ Ben’s and Cindy’s ticket counts are directly related to Alyssa’s
◦ directly assign their counts from Alyssa’s, rather than check 

constraints

6.1000 LECTURE 2 11



Example extended

▪ Add Derek to the crew
◦ Derek sells more tickets than Ben

◦ 4 variables, 3 equalities, 1 inequality: potentially many 
solutions

▪ Find solution that maximizes how many tickets Derek sells

▪ Initial strategy
◦ enumerate Derek’s possible counts in an inner loop

◦ track best so far

▪ More efficient strategy
◦ enumerate Derek’s possible counts in an outer loop in 

decreasing order

◦ break on first solution

6.100 LECTURE 3 12



6.1000 LECTURE 1 13



Functions as contained programs

▪ Defining a function
◦ accept input through parameter variables

◦ produce output through a return statement

◦ body code is indented

◦ hence need pass if empty

▪ Calling a function
◦ syntax: function name followed by ()

◦ argument objects go inside parentheses

◦ function body runs with parameters bound to arguments

◦ function call evaluates to object returned by body code

6.100 LECTURE 3 14



Example: number of dates in a month

▪ Can modify our bank account code to use the correct number 
of days for each month
◦ but giant if-elif-elif-... block in middle of for-loop

is unwieldy

▪ Separate it out into a function call get_num_dates(month)

▪ Easier to focus on that code and express it better, too

▪ Takeaway
◦ Decomposition and Abstraction

◦ break the original task into a sequence of smaller tasks 

◦ isolate subtasks with lower-level details into well-named 
functions

6.100 LECTURE 3 15



Functions going forward

▪ Think of functions as small programs
◦ input through parameters

◦ output through return

▪ Function bodies can call other functions
◦ nested function calls during execution

▪ Recommended practice: put as much code as possible into 
functions
◦ function bodies only run when functions are called, not 

when they are defined

◦ so reduce amount of “commenting-out” needed by only 
commenting out function calls

◦ bonus: retain syntax highlighting

6.100 LECTURE 3 16



Where we are

▪ Have all content needed to complete Pset 1
◦ due next Friday 2/13

◦ checkoffs during 2/16–2/20

▪ Have all content needed to write any possible program
◦ have a Turing-complete mechanism

◦ Turing machine

◦ infinite tape

◦ internal state

◦ read/write head

▪ All remaining classes are canceled
◦ See you at each of our three exams!

6.100 LECTURE 3 19



Next time

▪ More about how functions work
◦ details of keeping track of variables

▪ list object type
◦ ordered sequences of other objects

▪ Pre-lecture code will be posted by noon on Sunday 2/15

6.100 LECTURE 3 20


