Looping,
Enumeration,
Functions

6.100 LECTURE 3
SPRING 2026




Announcements

= Remember to install Python and VS Code!
> help available during office hours 5-9 pm MTWRF

> Room 38-370

= |nstructor office hours
° Thursdays 2:30-3:30 pm
o Room 38-648

= Recitation starts Friday
o check your schedule

o https://registrar.mit.edu/registration-academics/registration-
information/understanding-your-schedule

° if need to switch or get assigned a section, email
6.100-staff@mit.edu

6.100 LECTURE 3 2


https://registrar.mit.edu/registration-academics/registration-information/understanding-your-schedule
mailto:6.100-staff@mit.edu

Muddy cards

dves rend0, abs() . pin (), <) cremsz

Nes Obtects 2 LN renary

dics (n4Q (foede o pY el s o)

tﬁWV‘Ta .ﬂ,{, -Pj/g af~ en c:loé:(f%}

6.100 LECTURE 3



Looping
Mechanisms




Looping with while

= General mechanism in Python

o-while condition:
body code of Loop

= Loop exits only once condition is False
o condition is an unchanging expression in code

° but its evaluation depends on what variables it references
> s0 body code needs to update relevant variables

6.1000 LECTURE 2



Looping with for

= Python syntax

o for var in 1iterable:
Loop body code

= A Python iterable is a certain type of object

o produces one value at a time specifically when “queried” by
the for mechanism

o so far, we’ve encountered str and range types
o https://docs.python.org/3/library/stdtypes.html#range

" Loop automatically exits when 1terable is exhausted
o for makes repeated assignments to variable var until then

6.1000 LECTURE 2 7


https://docs.python.org/3/library/stdtypes.html#range

Interrupting loop execution

" break
o immediately jumps out of loop

= continue
o stops current loop iteration

o jumps back to the loop condition to start next iteration

= These work with both while and for loops

= Distinct from pass
° not related to looping

o simply executes with no effect, i.e. no operation, i.e. no-op,
l.e. noop

6.1000 LECTURE 2 8



Enumeration
Strategies



Exhaustive enumeration

= A broad computational theme, naturally expressed with loops

Identify problem constraints
o express properties of a valid solution

o typically identify variables and relationships between them

Enumerate potential solutions
o systematically step through solution space

Test each one against constraints
o feasibility: stop when find any solution

o optimality: track best solution found so far

Other names
o guess-and-check

o generate-and-test
° brute force

6.1000 LECTURE 2

10



Example: simple algebra problem

Alyssa, Ben, and Cindy are selling tickets to a fundraiser.
o Ben sells 20 fewer than Alyssa

o Cindy sells twice as many as Alyssa
> 1000 total tickets were sold by the three people

How many tickets did each sell?
o could solve this algebraically

o let’s try exhaustive enumeration and testing each candidate
solution

Initial strategy

> solution space: each person could sell anywhere between 0 and

1000 tickets

More efficient strategy
> Ben’s and Cindy’s ticket counts are directly related to Alyssa’s

o directly assign their counts from Alyssa’s, rather than check
constraints

6.1000 LECTURE 2

11



Example extended

= Add Derek to the crew
o Derek sells more tickets than Ben
o 4 variables, 3 equalities, 1 inequality: potentially many
solutions

* Find solution that maximizes how many tickets Derek sells

= |nitial strategy
o enumerate Derek’s possible counts in an inner loop

o track best so far

= More efficient strategy

o enumerate Derek’s possible counts in an outer loop in
decreasing order

o break on first solution

6.100 LECTURE 3

12



Functions

6.1000 LECTURE 1

13



Functions as contained programs

= Defining a function
o accept input through parameter variables

o produce output through a return statement

> body code is indented
> hence need pass if empty

= Calling a function
o syntax: function name followed by ()

o argument objects go inside parentheses
o function body runs with parameters bound to arguments
> function call evaluates to object returned by body code

6.100 LECTURE 3

14



Example: number of dates in a month

= Can modify our bank account code to use the correct number
of days for each month

o but giant 1f-elif-elif-... blockin middle of for-loop
is unwieldy

= Separate it out into a function call get num dates(month)

= Easier to focus on that code and express it better, too

= Takeaway
o Decomposition and Abstraction

o break the original task into a sequence of smaller tasks

o isolate subtasks with lower-level details into well-named
functions

6.100 LECTURE 3 15



Functions going forward

= Think of functions as small programs
° input through parameters

o output through return

= Function bodies can call other functions
> nested function calls during execution

= Recommended practice: put as much code as possible into
functions

o function bodies only run when functions are called, not
when they are defined

> so reduce amount of “commenting-out” needed by only
commenting out function calls

> bonus: retain syntax highlighting

6.100 LECTURE 3

16



Where we are

= Have all content needed to complete Pset 1
> due next Friday 2/13

o checkoffs during 2/16-2/20

= Have all content needed to write any possible program
° have a Turing-complete mechanism

o Turing machine

° infinite tape U

o internal state _

0 GUUOODEUUOUUBDUUUDDDDUUﬂUDDDﬂDOD 0i0 0o

. 1-1; :I iy

[e) read/wrlte head go00 DDDDDBDUDDUDDDUUDUUDDUOU UUUDDUUGU g0 b o
TARE
MOVER

WOGICALCOMTROL | | [AND WRIT

= All remaining classes are canceled
o See you at each of our three exams!

6.100 LECTURE 3 19



Next time

= More about how functions work
o details of keeping track of variables

= 1ist object type
o ordered sequences of other objects

= Pre-lecture code will be posted by noon on Sunday 2/15

6.100 LECTURE 3

20



