
6.100
Intro to Programming
and Computer Science
6.100 LECTURE 1

SPRING 2026

16.100 LECTURE 1

Course instructors

▪ 6.100
◦ Andrew Wang

▪ 6.100A
◦ Ana Bell

▪ 6.100B
◦ John Guttag

▪ Contacts for 6.100
◦ 6.100-staff@mit.edu

◦ 6.100-instructors@mit.edu

6.100 LECTURE 1 2

mailto:6.100-staff@mit.edu
mailto:6.100-instructors@mit.edu

(Relatively) New courses!

▪ 6.100
◦ 12-units full semester

◦ Blended material from former half-semester 6.100A and
6.100B

▪ 6.100A
◦ 6-units full semester

◦ Formerly called 6.100L

◦ Former 6.100A material stretched

▪ 6.100B
◦ 6-units full semester

◦ Former 6.100B material stretched

▪ See details
◦ https://www.eecs.mit.edu/changes-to-6-100a-b-l/

6.100 LECTURE 1 3

https://www.eecs.mit.edu/changes-to-6-100a-b-l/

Course logistics

▪ All materials on website:
https://introcomp.mit.edu/spring26

▪ Read Course Info pages

▪ Assignments are linked to
from homepage calendar

▪ Contacting us
◦ Office hours – in person
◦ Piazza – public questions only
◦ Email – 6.100-staff@mit.edu

6.100 LECTURE 1 4

https://introcomp.mit.edu/spring26
mailto:6.100-staff@mit.edu

Course structure

▪ First third
◦ lists, functions, simulation, data analysis

▪ Middle third
◦ dictionaries, graphs

▪ Last third
◦ combinatorial optimization, classes

▪ Exams are the largest factor determining your grade

▪ Psets and checkoffs are for learning and keeping up

6.100 LECTURE 1 5

Expectations

▪ Typical week
◦ review pre-lecture code on Sunday/Tuesday
◦ attend Monday/Wednesday lecture
◦ complete finger exercises after each lecture
◦ attend Friday recitation

▪ Name cards
◦ optional to display during class
◦ will help staff to learn names

▪ Muddy cards
◦ anonymous survey of what isn’t clear in lecture
◦ will review at beginning of next lecture

▪ Collaboration and AI policy
◦ “Write your code yourself.”

6.100 LECTURE 1 6

Studying tips

▪ Two big themes

▪ Be clear on the mechanics of how the code works
◦ How does the computer interpret the code?

▪ Reflect on how code is designed
◦ How to break problems down?

◦ Are there alternative ways of achieving the same goal?

▪ Expect some independence in 6.100
◦ Study lecturer/recitation on your own, not enough time in

class to go over all details

◦ Ask for help soon if needed

◦ Attend instructor office hours or schedule a meeting

6.100 LECTURE 1 7

6.100 LECTURE 1 8

Objects and types

▪ Computation is about transforming data from input to
output

▪ What data can we represent?

▪ Data is represented in computer memory as sequences of bits

▪ Modern programming languages abstract away these
sequences into objects

▪ Objects are classified into types

6.100 LECTURE 1 9

Numeric objects and operations

▪ Numeric types
◦ int float

▪ Arithmetic
◦ + - * / // % **
◦ always produce new ints or floats

▪ Comparisons
◦ == != < <= >= >
◦ always produce a new bool object

▪ Order of operations
◦ https://docs.python.org/3/reference/expressions.html#operator-

precedence

▪ Additional operations
◦ round(), abs(), min(), max()
◦ convert types with int(), float()

6.100 LECTURE 1 10

https://docs.python.org/3/reference/expressions.html#operator-precedence

Variables

▪ Long expressions get unwieldy to write
◦ also waste computation
◦ would like to save and retrieve intermediate results

▪ Variables are simply names that reference (i.e., point to) objects
◦ variables only ever point to objects, not other variables!
◦ objects are stored in the heap
◦ variables are stored on the stack
◦ syntax: variable = expression

▪ Functionally, variables save computation and make expressions
easier to read

▪ Example: add deposit to bank account while accumulating interest

▪ Combined arithmetic and assignment
◦ this statement: variable += expression
◦ is equivalent to: variable = variable + expression
◦ works with +=, -=, *=, /=, etc.

6.100 LECTURE 1 11

Branching

▪ Programs composed of only sequences of expressions can’t react to input

▪ Branching allows us to specify alternate execution paths depending on
Boolean conditions
◦ if condition:

statement
...

else:
statement

▪ Example: account behavior when over-withdraw funds from bank account
◦ pay overdraft fee

◦ stop accumulating interest

▪ With variables and bool-type operations, can express complex yet redable
conditions
◦ operations on bool objects: and or not

▪ With nested conditionals, look for opportunities to reduce indentation,
but be careful!

6.100 LECTURE 1 12

Strings

▪ Objects of type str represent sequences of characters
◦ single character is a str of length 1

▪ Indexing and slicing
◦ for str of length n, indices go from 0 to n–1
◦ think of as half-open interval [0, n)
◦ slicing syntax is [start : stop : step]

▪ + (concatenation) and * (repetition)

▪ Binary operations that yield bools
◦ substring testing in
◦ comparison == != < <= >= >

▪ Additional operations
◦ len()
◦ str methods: .find(), .replace(), .strip(), ...
◦ https://docs.python.org/3/library/stdtypes.html#string-methods

6.100 LECTURE 1 13

https://docs.python.org/3/library/stdtypes.html#string-methods

So far

▪ Demonstrated Python’s capabilities as a fancy calculator

▪ Added branching ability to encode multiple possible
computations in one program

▪ Can’t write all possible programs yet

▪ More features on Wednesday

6.100 LECTURE 1 14

Next steps

▪ Logistics
◦ read course info pages

◦ install Python

◦ check recitation section

◦ office hours start tomorrow

▪ Material
◦ do Lecture 1 finger exercise

◦ start reading Pset 1

◦ review Lecture 1 code, links to Python docs

◦ read pre-lecture code for Lecture 2, posted tomorrow
morning

6.100 LECTURE 1 15

