
6.100A
Final Review

1

Andrew Wang & Disha Kohli

https://shorturl.at/kDK18

https://shorturl.at/kDK18

Type of knowledge
Declarative knowledge - a statement of fact
● Stata is building 32

Imperative knowledge - a recipe, ‘how-to’ knowledge
1. Start at Student Center
2. Walk down Mass Ave, towards Vassar St
3. Make a right on Vassar
4. Walk until you see a funky-looking building

Programming is about writing recipes to generate facts!

2

Rules of The Language
1) Syntax – ordering of tokens (words/characters in Python language)

a) English Example: Noun + Verb + Adjective + Noun + Punctuation
■ “Colorless green ideas sleep furiously” vs. “Furiously sleep ideas colorless green”

b) Python Example: Including necessary quotes or parentheses
■ print(“hello world”) vs. print “hello world”

2) Static Semantics – meaningful statements
a. Static semantic errors happen when you put the right types of pieces in the right order,

but the result has no meaning
b. Example: 2.3/"abc" (Syntax is correct, but does not make sense)

3

Expressions and Statements
Expression - combination of objects and operators, and can be evaluated to a
value
● 3 + 5
● a or (True and b)

Statement - instructs the interpreter to perform some action
● print(3 + 5)
● return a or (True and b)

4

Immutable built-in Types (Primitives)
1) Booleans: True, False
2) Strings: "abc", "123", "@#%!$&@*"
3) Numbers:

a) ints: -3, 0, 5, 1374829,
b) floats: 1., 1.46, 8.76, 1.1111

4) None

● Can use type() to check a variable’s type

5

Type Issues

Integer division floors the answer – it does NOT truncate (int), nor round

6

-7 / 3 = -2.33333333
-7 // 3 = -3
int(-7 / 3) = -2

7 / 3 = 2.33333333
7 // 3 = 2
int(7 / 3) = 2

1 / 2 = 0.5 float division

int(1 / 2) = 0 casting to int, i.e. truncating

1 // 2 = 0 integer division

1.0 // 2 = 0.0 integer division cast (implicitly) to float

Operations
● Arithmetic operations (follow order of operations / PEMDAS rules)

○ +, -, *, /
○ ** for exponents
○ % modulo to get remainder

● String operations
○ + for concatenation
○ * to repeat

● Boolean comparators
○ >, >=, <, <=, ==, !=

● Logical operators
○ and, or, not

7

T/F Question!

T/F Question: The value of math.sqrt(2.0) * math.sqrt(2.0) == 2.0
is True.

False! 2.0000000000000004 != 2.0

8

Approximation - Floats

9

Questions?

10

Control: IF
if condition 1:
 # some code to run

if condition 2:
other code to be run

else:
some code to run if condition 2 was not met

11

Control: IF
if condition 1:
 # some code to run
elif condition 2:

some other code to run instead
else:

some more conditions to run if the other conditions
weren’t met

12

Control: Loops

13

Control: For Loops
()

()()

()

14

Think about if you
want the element in
the iterable itself, or
just its index

Example Question
what will be printed?

T = (0.1, 0.1)
x = 0.0
for i in range(len(T)):
 for j in T:
 x += i + j
 print(x)

print(i)

15

What is going to be printed?

Example Question What is going to be printed?

Behind the scenes (bolded text is what is printed):
Remember, x += i + j is the equivalent of x = x + i + j

i = 0
j = 0.1

x = x + i + j → x = 0.0 + 0 + 0.1 = 0.1
j = 0.1

x = x + i + j → x = 0.1 + 0 + 0.1 = 0.2
i = 1

j = 0.1
x = x + i + j → x = 0.2 + 1 + 0.1 = 1.3

j = 0.1
x = x + i + j → x = 1.3 + 1 + 0.1 = 2.4

Last value of i was 1 → 1

16

what will be printed?

T = (0.1, 0.1)
x = 0.0
for i in range(len(T)):
 for j in T:
 x += i + j
 print(x)

print(i)

Guess and Check
● Guess a value for the solution
● Check if the solution is correct
● Keep guessing until solution is good enough

 Process is exhaustive enumeration, can take really long to find answer

17

Example of Guess & Check: Finding Square Roots
)

18

Bisection search

19

Questions?

20

T/F Question:
Given a list L = ['f', 'b'] the statement L[1] = 'c' will mutate list L.

T/F Question:
Let L be a list, each element of which is a list of ints. In Python, the assignment
statement L[0][0] = 3 mutates the list L.

● Ordered sequence of elements
● Initialized with square brackets
● Mutable

Lists

True

False

>>> myList = [3,5,2,7]
>>> myList[0]
3
>>> myList[1] = 6
[3, 6, 2, 7]
>>> myList[:2]
[3, 6]

21

List Functions

22

Function Return value L Notes
len(L) 6 ['6', '.', '1', '0', '0', 'A']
L.append(['e']) None ['6', '.', '1', '0', '0', 'A',

['e']]
L.extend(['b', 'a']) None ['6', '.', '1', '0', '0', 'A',

'b', 'a']
L + ['b', 'a'] ['6', '.', '1', '0',

'0', 'A', 'b', 'a']
['6', '.', '1', '0', '0', 'A'] creates a new list

L.insert(2, 'c') None ['6', '.', 'c', '1', '0', '0',
'A']

L.remove('.') None ['6', '1', '0', '0', 'A'] error if element not in L
L.reverse() None ['A', '0', '0', '1', '.', '6']
L.pop() 'A' ['6', '.', '1', '0', '0'] can take an optional index
L.sort() None ['.', '0', '0', '1', '6', 'A'] can take an optional key

parameter
sorted(L) ['.', '0', '0', '1',

'6', 'A']
['6', '.', '1', '0', '0', 'A'] can take an optional key

parameter
enumerate(L) [(0, '6'), (1, '.'),

(2, '1'), (3, '0'),
(4, '0'), (5, 'A')]

['6', '.', '1', '0', '0', 'A']

L = list('6.100A') Don't iterate over a list you're modifying!

List Indexing
>>> letters = ['a', 'b',
'c', 'd', 'e']
>>> letters[:]
['a', 'b', 'c', 'd', 'e']
>>> letters[2:]
['c', 'd', 'e']
>>> letters[:2]
['a', 'b']
>>> letters[:-2]
['a', 'b', 'c']

>>> letters[::2]
['a', 'c', 'e']
>>> letters[::-1]
['e', 'd', 'c', 'b', 'a']
>>> letters[1:4:2]
['b', 'd']

23

L[start:stop:step]
defaults to 0 len(L) 1

exclusiveinclusive

shallow copy reverse

List Comprehensions
Create a new list using the values in an existing one:

L1 = [0, 4, 8, 16]
L2 = [x ** 2 for x in L1]
print(L1)
print(L2)

24

A fast, pythonic trick!

>>> [0, 4, 8, 16]
>>> [0, 16, 64, 256]

Tuples

Like lists, but immutable

t1 = (1, 2, 3, “abc”)
t2 = (5, 6, t1)

Operations:

Concatenation: t1 + t2

Indexing: (t1 + t2)[3]

Slicing: (t1 + t2)[1:3]

(1,2,3,'abc',5,6,(1,2,3,'abc'))

'abc'

(2,3)

25

● You can iterate over tuples
● You cannot mutate tuples
● Can be used as keys in the dictionary (lists can’t) — why?

Dictionaries
● Key, value pairs
● Keys can be integers, strings, tuples, etc. (anything immutable)
● Keys can’t be lists, dictionaries, etc. (anything mutable)
● Keys are unique, values don’t have to be

T/F Question:
In Python, the keys of a dictionary must be immutable.

T/F Question:
The dictionary {'a':'1', 'b':'2', 'c': '3'} has a mapping of str to
int

True

False

26

Using Dictionaries
zoo = {'elephant': 3, 'giraffe': 4}
print(len(zoo)) # 2
print(zoo['elephant']) # 3

try:
 print(zoo['frog'])
except Exception as e:
 print(e) # KeyError: 'frog'

if 'cheetah' not in zoo:
 zoo['cheetah'] = 5

print(zoo) # {'elephant': 3, 'giraffe': 4, 'cheetah': 5}
print(list(zoo.keys())) # ['elephant', 'giraffe', 'cheetah']
print(list(zoo.values())) # [3, 4, 5]

del zoo['elephant']
print(zoo) # {'giraffe': 4, 'cheetah': 5}

27

Mutability & Aliasing
Mutable: Lists, Dictionaries, Sets
Immutable: Strings, int, float, bool, tuples

Aliasing: Two variables bound to the same object

28

[1]

ObjectsVariables

a

b

>>> a = [1]
>>> b = a
>>> a.append(2)
>>> print(a)
[1, 2]
>>> print(b)
[1, 2]

Mutability: Lists
L1 = ['a', 'b', 'c']
L2 = [[], L1, 1]
L3 = [[], ['a', 'b',
'c'], 1]
L4 = [L1] + L1
L2[1][2] = 'z'
print('L1 = ', L1)
print('L2 = ', L2)
print('L3 = ', L3)
print('L4 = ', L4)

What is going to be printed?

L1 = ['a', 'b', 'z']
L2 = [[], ['a', 'b', 'z'], 1]
L3 = [[], ['a', 'b', 'c'], 1]
L4 = [['a', 'b', 'z'], 'a', 'b', 'c']

29

Cloning
L1 = ['a', 'b', 'c']
L2 = L1[:]

print('L1 = ', L1)
print('L2 = ', L2)

L1.append('d')

print('L1 = ', L1)
print('L2 = ', L2)

What is going to be printed?

L1 = ['a', 'b', 'c']
L2 = ['a', 'b', 'c']
L1 = ['a', 'b', 'c', 'd']
L2 = ['a', 'b', 'c']

30

Questions?

31

Abstraction & Decomposition
How to think about and solve complex systems at a high-level:

● break up a problem into simpler building blocks
● give each block a name, forget about the details of how it’s built, just

know its inputs and outputs

32

Abstraction & Decomposition
Why abstract and decompose?

● better code organization
● fewer lines of code
● can test small units (testing full system may be unmanageable)

33

Abstraction & Decomposition
How do we abstract and decompose?

Functions !!!

the most basic unit of code abstraction

Variables abstract values

Functions abstract blocks of code

34

Functions

def function_name(arg1, arg2, …, argN):
'''
docstring here (can specify the function’s promise)
'''
#some code
#some more code
return something

1. name

3. Promises a certain behavior
(if given proper inputs)

2. Inputs
(parameters)

35

Calling a function ⇒ running it, with specific parameters

Functions

36

Functions
Calling a function ⇒ running it, with specific parameters

How to call a function:

● specify name
● pass the parameters
● optionally, save the returned output

out = function_name(x1,x2,…,xn)

37

Functions examples
function definition function call

Question: what’s the difference between even_or_odd() and even_or_odd in
code?

38

Functions examples

what does this do?

what is returned by mult_by_five ?

Prints: hihihihihi

None !

39

Lambda functions
A way to define a short function in one line, often to be used as an argument
to another function:

40

Questions?

41

Scope
scope dictates what parts of a program can see each variable’s value

42

Scope
scope dictates what parts of a program can see each variable’s value

● a scope is a table, mapping variable names to values
○ assignment (<variable> = <expression>) adds an item to the table

43

Scope
scope dictates what parts of a program can see each variable’s value

● a scope is a table, mapping variable names to values
○ assignment (<variable> = <expression>) adds an item to the table

● when your program starts, there’s one scope called global scope

44

Scope
scope dictates what parts of a program can see each variable’s value

● a scope is a table, mapping variable names to values
○ assignment (<variable> = <expression>) adds an item to the table

● when your program starts, there’s one scope called global scope
● when you call a function, a new scope is created

○ the scope is destroyed when the function returns

45

Scope
How is scope used?

● when a variable is used in an expression, the variable is looked up in the
current scope

46

Scope
How is scope used?

● when a variable is used in an expression, the variable is looked up in the
current scope

○ if not found, the variable is looked up in the scope where the function
was defined

47

Scope
How is scope used?

● when a variable is used in an expression, the variable is looked up in the
current scope

○ if not found, the variable is looked up in the scope where the function
was defined

○ if not found there, repeat until found or we hit global scope and still
not found

48

Scope

49

x = 5
y = 8

global

def my_function(x):
y = 10

 print(y)
return x * y

print(my_function(9))

print(x)
print(y)

90

5
8

10

Exam Question

What is going to be printed?

()

()

() 3
-3
 3

50

Scope
def f(x):
 print('In f(x): x =', x)
 print('In f(x): y =', y)
 def g():
 print('In g(): x =', x)
 g()

x = 3
y = 2
f(1)

in f (x) : x = 1
in f (x) : y = 2

in g () : x = 1

51

Questions?

52

Recursion
a recursive function is any function that calls itself

53

Recursion
a recursive function is any function that calls itself

Two crucial structural characteristics:

● Base case: any input that can be solved immediately
○ no recursive calls in base case

54

Recursion
a recursive function is any function that calls itself

Two crucial structural characteristics:

● Base case: any input that can be solved immediately
○ no recursive calls in base case

● Recursive case: makes one or more recursive calls with a simpler input
○ recursive calls must bring us closer to the base case
○ some basic computation is done in addition to the recursive calls

55

Recursion
When to use recursion?

56

Recursion
When to use recursion?

when a problem can be solved easily if

we have the answer to a subproblem of the same form

57

Recursion (example: Deep Copy)
given a potentially nested list of ints, generate a deep copy of the list (so that
modifying any level of the copy does not modify the original nested list)

58

[1, [2, [3, [4]]]]
[1, [2, [3, ['MODIFIED']]]]

original = [1, [2, [3, [4]]]]
copy = deepcopy(original)

copy[1][1][1][0] = "MODIFIED"
print(original)
print(copy)

Recursion (example: Deep Copy)
Base case:

● If what we are copying doesn't require a deep copy, we can copy it
immediately.
○ ints don't require us to do any special copy operation.

Recursive case:

● we need to make a deep copy of any nested lists to avoid aliasing

59

60

def deepcopy(L):
 """
 Args:
 L: a potentially nested list of lists

 Returns:
 list: An exact copy of L (with nested structure)
 """

 ret = []

 for i in L:
 if type(i) is int:
 # base case
 ret.append(i)
 else:
 # recursive case
 ret.append(deepcopy(i))

 return ret

Recursion (example: Cartesian product)
given a list of lists, generate all combinations by selecting one item from each
sublist (this is known as the Cartesian product)

61

[
('red shoes', 'blue jeans'), ('red shoes', 'gray jeans'), ('red shoes', 'tan khakis'),
('white shoes', 'blue jeans'), ('white shoes', 'gray jeans'), ('white shoes', 'tan khakis'),
('black shoes', 'blue jeans'), ('black shoes', 'gray jeans'), ('black shoes', 'tan khakis')

]

print(cartesian_product([
["red shoes", "white shoes", "black shoes"],
["blue jeans", "gray jeans", "tan khakis"]

]))

Recursion (example: Cartesian product)
Base case: only one category

● L = [["leather boots", "white sneakers", "black
sneakers"]]
return [(i,) for i in L[0]]

Recursive case:

● Given the combinations of the other categories (e.g. shirts and pants), we
only need to add in the options for the current category (e.g. shoes) we
are looking at

62

63

def cartesian_product(L):
 """
 Args:
 L: a list of lists
 Returns:
 list: A list of tuples where each tuple is created
 by selecting one element from each sublist of L.
 """
 # base case
 if len(L) == 0:
 return []

 if len(L) == 1:
 options = L[-1] # equivalent to L[0]
 # used L[-1] for consistency with recursive case
 return [(i,) for i in options]

 # recursive case
 existing_combos = cartesian_product(L[:-1])

 ret = []
 for combo in existing_combos:
 options = L[-1]
 for i in options:
 ret.append(combo + (i,))

 return ret

Recursion (additional problems)
● generate all permutations of the elements in L
● flatten nested lists

64

Final Review
Session Part 2

65

Debugging
● Assertions

assert <boolean condition>
assert <boolean condition>, <argument>

● Exception
try:

<code>

except <exception_type>:

<other code to run if try block encounters an exception>

finally:

<always executed after try, else, and except clauses>

66

https://www.tutorialspoint.com/python/assertions_in_python.htm
https://docs.python.org/3/tutorial/errors.html

Assertion Error
x = 3
assert x == 4, 'x is not 4’

throws an AssertionError and stops all further computation

67

Exception Types
● NameError: e.g. access a name to a variable that doesn't exist

○ ex. NameError: name 'variable_name' is not defined

● ValueError: e.g. concatenating a non-string with a string

● IndexError: e.g. accessing beyond the limits of a list
○ ex. IndexError: list index out of range

● KeyError: e.g. attempting to use a key in a dict that doesn't exist
○ ex. KeyError: 'key_name'

● TypeError: converting an inappropriate type
○ ex. TypeError: unsupported operand type(s) for +: 'int' and 'str'

● AttributeError: e.g. trying to append to a string
○ ex. AttributeError: 'str' object has no attribute 'append'

68

Questions?

69

Complexity
● An algorithm might be useless if it takes too long to get an answer

● We need a notion to measure how long an algorithm takes

● We would like our notion to be independent of the machine it runs on

70

Big O? Θ? Ω?
O(g(n))

Describes an upper bound on the runtime complexity

Ω(g(n))
Describes a lower bound on the runtime complexity

Θ(g(n))
Describes the tight (upper and lower) bound on the runtime complexity

71

Big Θ Notation
● Describes the runtime of an algorithm as a function of its input size

● Typically describes the worst case runtime
○ “In the worst case, how much time will it take for this algorithm to run?”

● When describing an algorithm, choose the tightest bound

72

Examples
I have a function f(x) = 3x2 + 2x + 1

O(g(n))
Can be O(n2), because there exists g(n) = 4x2 that will surpass f(x)

But could also be O(n3), for example, since it will always surpass f(x)

Ω(g(n))
Could be Ω(n), meaning the complexity will always surpass g(n) = n

Θ(g(n))
Must be Θ(n2), because it is both an upper and lower bound

i.e. 4x2 and x2
73

Commonly Used Complexities in Algorithms
Θ(1) - Constant

Θ(log n) - Logarithmic

Θ(n) - Linear

Θ(n log n) - Log-Linear

Θ(nk) - Polynomial

Θ(kn) - Exponential

74

Big Θ Notation Mechanics
Fastest growing term dominates:

n2 + 100n + 1000 log(n) = Θ(n2)

Constant factors do not affect complexity:

1000000000n = O(n) = 0.0000001n

75

Big Θ Notation Mechanics
Fastest growing term dominates:

n2 + 100n + 1000 log(n) = Θ(n2)

Constant factors do not affect complexity:

1000000000n = Θ(n) = 0.0000001n

76

bigocheatsheet.com

77

Big Θ Notation Mechanics
Fastest growing term dominates:

n2 + 100n + 1000 log(n)

78

Big Θ Notation Mechanics
Fastest growing term dominates:

n2 + 100n + 1000 log(n) = Θ(n2)

79

● Constant-time, Θ(1)
○ Assignment, x = 2
○ Basic operations, + - * / > <

● Dictionary
○ Look-up: Θ(1)
○ Length: Θ(1)
○ Insert: Θ(1)
○ Delete: Θ(1)
○ dictionary.keys(): Θ(n) - because a list is generated
○ Check if a key is in the dictionary: Θ(1)

Complexity of built-in methods

80

● List
○ Append: Θ(1)
○ Length: Θ(1)
○ Insert: Θ(n)
○ Delete: Θ(n)
○ Copy: Θ(n)
○ Sort (L.sort(), sorted()): Θ(n log n)
○ Check if an item is in the list: Θ(n)

■ if elt in L:

Complexity of built-in methods

81

Strategies for analyzing complexity
● Loops

○ # of iterations in the loop
○ Amount of work within each loop

● Recursive calls
○ # of recursive calls that are made
○ Amount of work done for each recursive call

Total Time = Time per Iteration ⨉ # of Iterations

 or Time per Call ⨉ # of Calls

82

What is the complexity?
def beep(n):
 tot = 0
 while n >= 2:
 tot += n
 n = n // 2
 return tot

Complexity: Θ(log n)

83

What is the complexity?
def is_palindrome_iterate(s):
 """input size, n = len(s)"""
 string_len = len(s)
 i = 0
 while i < string_len // 2 + 1:
 if s[i] != s[-i - 1]:
 return False
 i += 1
 return True Number of iterations: Θ(n)

Number of operations in each iteration: constant
Complexity: Θ(n)

84

def is_palindrome_recursive(s):
 if len(s) in {0, 1}:
 return True

 first_char = s[0]
 last_char = s[-1]

 if first_char != last_char:
 return False

 return is_palindrome_recursive(s[1:-1])

n / 2 recursive calls: Θ(n)
Slicing strings: Θ(n)
Complexity: Θ(n2)

Slicing a string = Θ(n)

What is the complexity?

85

● Goal: To make object look up Θ(1) on average
● Idea: Uniformly map bins to objects using a hash function

○ The hash function uses the entire input to generate a hash value (integer between 0 and
the number of bins)

○ If multiple objects hash to the same bin, then we create a list and add both objects to that
list (chaining)

○ We dynamically adjust the number of bins so it is within a constant factor of the number
of elements.

○ The average length of any chain is thus “constant” compared to the total number of
objects in the hash table (object and bin combo)

● Dictionaries are implemented in Python as hash tables, where the
elements are (key, value) pairs.

Hashing

86

Questions?

87

Search
● Linear search

○ Brute force search
○ List doesn’t have to be sorted
○ Θ(n)

● Binary search
○ List must be sorted to give correct answer
○ Θ(log n)

88

Complexity of searching unsorted list
● Linear search

○ Θ(n)
○ One time search

● Binary search
○ complexity(sort) + complexity(binary search)
○ complexity(sort) + Θ(log n)
○ complexity(sort) > Θ(n), always* (in 6.1210, you'll learn a caveat to this)

89

Sorting Methods: Merge Sort
● Break list in half
● Recursively sort both halves
● Merge the sorted halves

90

● How many levels of the recursive tree?
● How much computation of each level of the tree?
● Complexity?

Sorting Methods: Merge Sort

91

● How many levels of the recursive tree? Θ(log n)
● How much computation of each level of the tree? Θ(n)
● Complexity? Θ(n log n)

Sorting Methods: Merge Sort

92

Sorting Methods (Complexity Ex): Bubble Sort
● Maintain an unsorted and a sorted portion of the array
● Compare adjacent elements pairwise
● Largest element “bubbles” to the top, and gets added to the sorted array
● Repeat comparison until all elements are in the sorted portion

93

Does this remind you of another sort
discussed in class?

Sorting Methods: Bubble Sort
● How many comparisons does it take to sort one element?
● How many elements are there?
● Complexity?

94

Sorting Methods: Bubble Sort
● How many comparisons does it take to sort one element? Θ(n)
● How many elements are there? Θ(n)
● Complexity? Θ(n^2)

95

Questions?

96

OBJECT ORIENTED PROGRAMMING

Classes provide a means of
bundling data and functionality
together

They have (instance) attributes
and (instance) methods specific
to themselves

Classes

98

class Vehicle(object):
 def __init__(self, name):
 # an instance attribute
 self.name = name

 def get_name(self):
 return self.name

 def honk(self):
 # an instance method
 print(f"{self.name} says HONK")

You can instantiate objects from classes

99

my_vehicle = Vehicle("batmobile")
print(my_vehicle.get_name()) # prints: batmobile
my_vehicle.honk() # prints: batmobile says HONK

class Vehicle(object):
 def __init__(self, name):
 # an instance attribute
 self.name = name

 def get_name(self):
 return self.name

 def honk(self):
 # an instance method
 print(f"{self.name} says HONK")

Instance methods belong to the object itself

100

my_vehicle = Vehicle("batmobile")
print(my_vehicle.get_name()) # prints: batmobile
my_vehicle.honk() # prints: batmobile says HONK
print(my_vehicle.honk)
prints:
<bound method Vehicle.honk of <__main__.Vehicle instance at
0x1010748c0>>

class Vehicle(object):
 def __init__(self, name):
 # an instance attribute
 self.name = name

 def get_name(self):
 return self.name

 def honk(self):
 # an instance method
 print(f"{self.name} says HONK")

Inheritance
Let’s define a new class Car that is also a
Vehicle. Note that not all Vehicles are Cars!

● Vehicle is the parent class (superclass)
● Car is the child class (subclass)
● Car.honk exists, even if we did not

explicitly define it!
● Inheritance helps us enforce the

substitution principle: Behaviors of the
supertype should be supported by each of
its subtypes.

● Does Vehicle.beep exist?

101

class Vehicle(object):
 def __init__(self, name):
 # an instance attribute
 self.name = name

 def get_name(self):
 return self.name

 def honk(self):
 # an instance method
 print(f"{self.name} says HONK")

No!

class Car(Vehicle):
 def __init__(self, name):
 super().__init__(name)
 self.type = "car"

 def beep(self):
 print(f"{self.name} says BEEP")

Subclasses can override
inherited functions

We can tailor what inherited functions
do for our specific subclass!

102

class Vehicle(object):
 def __init__(self, name):
 # an instance attribute
 self.name = name

 def get_name(self):
 return self.name

 def honk(self):
 # an instance method
 print(f"{self.name} says HONK")

class Car(Vehicle):
 def __init__(self, name):
 super().__init__(name)
 self.type = "car"

 def honk(self):
 print(f"{self.name} says BEEP")

class Truck(Vehicle):
 def __init__(self, name):
 super().__init__(name)
 self.type = "truck"

 def honk(self):
 print(f"{self.name} says BIGHONK")

vehicles = [Truck("john"),
 Vehicle("stefanie"), Car("andrew")]

for v in vehicles:
 v.honk()

A subclass method can use
super() to access otherwise
overridden attributes from the
parent class.

We use super() to find the parent class
and call its __init__ function

103

class Vehicle(object):
 def __init__(self, name):
 # an instance attribute
 self.name = name

 def get_name(self):
 return self.name

 def honk(self):
 # an instance method
 print(f"{self.name} says HONK")

class Car(Vehicle):
 def __init__(self, name):
 super().__init__(name)
 self.type = "car"

 def beep(self):
 print(f"{self.name} says BEEP")

