
6.0001 Recitation 4 - Spring 2020
Friday, February 28th 2020

I. Administrivia
Monday 3/2:

- Microquiz 3 during lecture
- Pset 2 checkoff due at 9pm

Wednesday 3/4:
- Pset 4 due at 9pm

Next Monday 3/9:
- Pset 3 checkoff due at 9pm

II Object Orientation Programming (OOP)

● Objects allow you to store data in python
● Everything in python is an object
● Class defines a type of object

○ so far in class we have seen the following built-in classes: ​int​, ​float​,
string​, ​list​, ​tuples​, ​dictionaries

● Object is to a specific instance of a class
○ for example: 3, “hello”, [1,2,3] are all instances of a class

● Advantages of OOP:
○ Allows you to bundle data into packages
○ Reduces complexity of your code, making it easy to reuse code
○ Allows you to implement & test behaviour of each class separately

III. Classes

● a way to create your own data type using the built-in data types as building blocks
● attributes are data & procedures that belong to the class

○ Data attributes: objects that make up the class
○ Methods/procedural attributes: functions that only work with this class

● self:
○ Refers to the instance the method is called on
○ Always the 1st argument when defining a method
○ Not used outside the class definition

● Creating a class:
1. Define class name

2. Define class attributes
a. Define how to create an instance of a class using the ​__init__

method

b. Define other methods, these do not need to start with __

● In order to be able to call ​print​ on an instance of your class you need to define the

__str__ function.
○ there are a few more special operators (look at lecture slides for details on

these)
● You can use ​isinstance()​ to check if an instance is an object of a class.
● In general the class defines the representation and methods common across all

instances of the class; whereas an object is a SPECIFIC instance of the class
● In general you want to keep your internal representation of your class hidden, to

prevent adversarial attacks.
○ the internal representation refers to what is in your ​__init__​ method

● class variables: shared across all members of a class
○ defined outside of the ​__init__​ method

IV. Inheritance

● Allows you to extend a class with new/different capability

● You create an inheritance relationship between two classes by defining what goes
into the parameter in the class definition.

● The child class inherits all of the methods from the parent class.
● We can define new methods in the child class to​ extend​ behavior
● We can redefine methods defined in the parent class to​ modify​ behavior
● When you call a method on an instance of a class: the interpreter tries to find the

method at the level of a class and then checks the parent.
○ This means that if two methods with the same name are defined, the method

in the child class takes precedence.

