6.0001 Recitation 3 - Spring 2020
Friday, February 21

I. Administrivia

Pset 1 checkoff due 2/24 @ 9pm

Pset 2 checkoff ongoing, due 3/12 @9pm
Pset 3 checkoff due 2/26 @ 9pm

Microquiz 2 on Monday 2/24, during lecture

Il. Data structures
e Immutable data types: cannot change element value after assignment
o Examples of immutable data types we’ve seen:
m int
m float
m bool
m string
(NEW) tuple
e Mutable data types: can change element after assignment

o We can think of mutable objects as being assigned to a certain place in
memory. In this case, assigning a variable to a mutable object just means
that it points to that object in memory.

o Multiple variables can point to the same object in memory. This can be
problematic because mutating a variable will affect the other variables that
point to it. This is called aliasing, more on this later.

o Examples of immutable data types we’ve seen:

m (NEW) lists
m (NEW) dictionaries

lll. Tuples
e These are ordered sequences of objects. These objects can be of any type.

immutable, i.e cannot be changed once created

can be indexed

you can slice a tuple giving you a subset of the original tuple
tuplel = (1, 2, 3, 4)
len(tuplel) # gives you the length of the tuple
tuplel[0:2] # gives (1,2)

IV. Lists

ordered sequence of objects
can be indexed & sliced similarly to tuples
mutable, i.e. can be changed/modified after being created
o For example given the two lists:
listl = [1,2,3, “MIT”]
list2 = [4,5,6]
o You can change the element at index 0 with
listl[@] = 5
o add an element to the end
listl.append(5)
o add all elements of 1ist2 to the end of 1ist1 with
listl.extend(list2)
o remove an element at specific index with
del listl[index]
o remove element at the end
listl.pop()
o remove a specific element with
listl.remove(“MIT”)
m note that if an element appears multiple times, this method will only
remove the first occurance of that element
m if the element is not present, throws error

V. Dictionaries
e Map keys to values
e Keys:
o Must be immutable
o Must be unique
o Ordering is not guaranteed
o dict.keys()
e Values:
o Don’t need to be immutable or unique
o dict.values()
e .get(key, default)
o tries to get value associated with key, with a default “fallback”
o The default of default is None
Iterating over a dictionary iterates over the keys
Using in tests for membership amongst keys
always check in dict, notin dict.keys() for efficiency reasons

VI. Mutability
e Mutable objects can be changed after they are created
e \What mutable types do we know?
e Aliasing: When two variable names refer to the same object

o Example:
a = [1,2,3,4]
b =a

o Now b points to a. Since a list is mutable, if you make changes to b,
you will change a.
e Cloning: Making a copy (always a safer option!)
o “But | can change strings after they’re assigned!”
word = “the”
aliased_word = word
word += “ bird”
print (word) # “the bird”
print (aliased_word) # “the”
o Not actually changing the string. += is the same as creating a new
variable:
m word = word + “ bird”
m Why? Strings are immutable
e For immutable types: creates a new object instead of modifying the original one
For mutable types: new name refers to same object
e \Why does mutability matter?
o Makes your code do unexpected things (more examples in code)

e How can | avoid mutability problems?

o Make clones, or copies

o Use temporary variables
e {code example} Don’t change lists while iterating over them!!
{code example} sort vs sorted

o sort: mutate the list, return nothing
o sorted: doesn’t mutate the list, return a new sorted list

VIl. Debugging Tips

Print out the values of your variables
Google is your friend if you encounter an error you don’t understand.
The stack trace shows what line(s) caused the error -- use it!

Using assertions:
assert <boolean condition>

assert <boolean condition>, <argument>
e Exceptions (and how to handle them)
o Exceptions occur when the syntax is correct but the code performs some
operation that isn’t allowed
m int(€1.1%)
m trying to divide by zero.
o Exceptions are better than letting the program silently fail
e Terminology
o raise: you raise (or throw) an exception when you want an exception to
occur
o try/except : you handle (or catch) an exception when you want to do
something (and not have the program crash) in the case you encounter an
exception
o an unhandled exception will cause a Traceback (or stack trace) to be
printed to the interactive shell (in IDLE it’s printed in red)

e Exception Handling
o try/except: allows you to handle exceptions in your code
o If you say except without specifying a specific exception, then it
handles ALL exceptions that occur in the try block.
try:

except:

o IfaVvalueError (or a subclass of ValueError) is raised (i.e.
happens) within the try clause, then whatever is in the try clause
after the erroring line is not executed, and the program jumps to the
except clause:

try:

except ValueError:
e raise: allows you to raise an error in your code

e You can raise a ValueError in your code by saying:
raise ValueError

