
6.0001 Recitation 3 - Spring 2020
Friday, February 21​st

I. Administrivia
Pset 1 checkoff due 2/24 @ 9pm
Pset 2 checkoff ongoing, due 3/12 @9pm
Pset 3 checkoff due 2/26 @ 9pm
Microquiz 2 on Monday 2/24, during lecture

II. Data structures

● Immutable data types:​ cannot change element value after assignment
○ Examples of immutable data types we’ve seen:

■ int
■ float
■ bool
■ string
■ (NEW) tuple

● Mutable data types:​ can change element after assignment
○ We can think of mutable objects as being assigned to a certain place in

memory. In this case, assigning a variable to a mutable object just means
that it points to that object in memory.

○ Multiple variables can point to the same object in memory. This can be
problematic because mutating a variable will affect the other variables that
point to it. This is called aliasing, more on this later.

○ Examples of immutable data types we’ve seen:
■ (NEW) lists
■ (NEW) dictionaries

III. Tuples

● These are ordered sequences of objects. These objects can be of any type.
● immutable, i.e cannot be changed once created
● can be indexed
● you can slice a tuple giving you a subset of the original tuple

tuple1 = (1, 2, 3, 4)

len(tuple1) # gives you the length of the tuple

tuple1[0:2] # gives (1,2)

IV. Lists

● ordered sequence of objects
● can be indexed & sliced similarly to tuples
● mutable, i.e. can be changed/modified after being created

○ For example given the two lists:
list1 = [1,2,3, “MIT”]

list2 = [4,5,6]

○ You can change the element at index 0 with
list1[0] = 5

○ add an element to the end
list1.append(5)

○ add all elements of ​list2​ to the end of ​list1​ with
list1.extend(list2)

○ remove an element at specific index with
del list1[index]

○ remove element at the end
list1.pop()

○ remove a specific element with
list1.remove(“MIT”)

■ note that if an element appears multiple times, this method will only
remove the first occurance of that element

■ if the element is not present, throws error

V. Dictionaries
● Map keys to values
● Keys:

o Must be immutable
o Must be unique
o Ordering is not guaranteed
o dict.keys()

● Values:
o Don’t need to be immutable or unique
o dict.values()

● .get(key, default)
o tries to get value associated with key, with a ​default​ “fallback”
o The default of ​default ​is ​None

● Iterating over a dictionary iterates over the keys
● Using ​in​ tests for membership amongst keys
● always check ​in dict​, not ​in dict.keys()​ for efficiency reasons

VI. Mutability
● Mutable objects can be changed after they are created
● What mutable types do we know?
● Aliasing​: When two variable ​names​ refer to the same object

○ Example:
a = [1,2,3,4]
b = a

○ Now b points to a. Since a list is mutable, if you make changes to b,
you will change a.

● Cloning: ​Making a copy (always a safer option!)
○ “But I can change strings after they’re assigned!”

word = “the”
aliased_word = word
word += “ bird”
print (word) # “the bird”
print (aliased_word) # “the”

○ Not actually changing the string​. += is the same as creating a new
variable:

■ word = word + “ bird”
■ Why? Strings are immutable

● For immutable types: creates a new object instead of modifying the original one
● For mutable types: new name refers to same object
● Why does mutability matter?

○ Makes your code do unexpected things (more examples in code)

● How can I avoid mutability problems?
○ Make clones, or copies
○ Use temporary variables

● {code example} Don’t change lists while iterating over them!!
● {code example} ​sort​ vs ​sorted

○ sort​: mutate the list, return nothing
○ sorted​: doesn’t mutate the list, return a new sorted list

VII. Debugging Tips

● Print out the values of your variables
● Google is your friend if you encounter an error you don’t understand.
● The stack trace shows what line(s) caused the error -- use it!

● Using ​assertions​:

assert <boolean condition>

assert <boolean condition>, <argument>
● Exceptions (and how to handle them)

○ Exceptions occur when the syntax is correct but the code performs some
operation that isn’t allowed

■ int(‘1.1’)
■ trying to divide by zero.

○ Exceptions are better than letting the program silently fail
● Terminology

○ raise​ : you ​raise​ (or ​throw​) an exception when you want an exception to
occur

○ try/except​ : you ​handle​ (or ​catch​) an exception when you want to do
something (and not have the program crash) in the case you encounter an
exception

○ an unhandled exception will cause a ​Traceback​ (or ​stack trace​) to be
printed to the interactive shell (in IDLE it’s printed in red)

● Exception Handling

○ try/except: ​allows you to handle exceptions in your code
○ If you say ​except​ without specifying a specific exception, then it

handles ALL exceptions that occur in the try block.
try:

...

except:

...
○ If a ​ValueError​ (or a subclass of ​ValueError​) is raised (i.e.

happens) within the ​try​ clause, then whatever is in the ​try​ clause
after the erroring line is not executed, and the program jumps to the
except​ clause:

try:

...

except ValueError:

…
● raise:​ allows you to raise an error in your code

● You can raise a ​ValueError​ in your code by saying:
raise ValueError

