
6.0001 Recitation 2 - Spring 2020
February 14

I. Administrivia

● PS2 due ​Wednesday 2/19 @ 9PM
● PS1 checkoff ongoing, due ​2/24 @ 9PM
● Microquiz 1 Tuesday 2/18 in class

II. Representing numbers in python

● int​: ​representation of whole numbers
● float​: approximation of real numbers.

○ Do not use ​== ​to test equality among floats as it has unexpected
behavior. For example, if we create a variable x and add 0.1 to 10 times, it
doesn’t “equal” 1. Instead, to test equality among two floats check if they
are within some small epsilon.

○ Exhaustive enumeration isn’t feasible when working with floats because
the possibility space is infinite.

III. Binary numbers

● Base 2 representation of a number
● Example: let’s look at the number 38 in base 10 and 2

○ base 10: 3*10​1 ​+ 8*10​0
○ base 2: ​1​*2​5 ​+ ​0​*2​4​ + ​0​*2​3​ + ​1​*2​2​ + ​1​*2​1​ + ​0​*2​0 ​= 100110

IV. Functions

● Motivation
○ Achieving abstraction / decomposition
○ A black box can be reused in the future

● Defining a function
def function_name(arg1, arg2, …, argN):

#code

return something

● Calling a function
function_name(arg1, arg2, …, argN)

● print vs return
○ print:​ for the user, just displays a value
○ return​: for the computer and allows you to send values in a function back

to other parts of your code

■ Nothing in the function will be executed after a return statement is
executed.

■ Python’s default ​return ​is ​None​. None in most cases will make you
sad, so make sure you return something when it needs to be
returned.

● {code example} Function that multiplies by 5
1. What’s printed?
2. What’s the value of multiple_of_five?
3. If you delete the return statement, what will be the value of

multiple_of_five?
● {code example} Incorrect argument types

○ If you alter the argument types one of two things will happen:
■ Silently give a very wrong answer
■ Throw an error in your code

V. Scope

● Variable assignments are tracked in a ​symbol table​ or ​stack frame​ that maps
variable names to their values

● When a function is ​called​, a new stack frame is created.
● When the function returns, the stack frame pops off/is destroyed
● Last in, first out - just like a real-life stack!
● {code example}

○ The scope of “number” is within the function.
○ The scope of “two” is outside the function

VII. Recursion

● {code example} Factorial is an example of recursion
● {code example} Fibonacci: is an example of recursion

VII. Iteration​​​

● for​ ​loops​​​ ​have a pre-specified range over which they run.
for i in range(x):

■ i ​goes from 0 to x​-1
for char in s:

■ char​ is string that takes on the value of each character in ​s
● while​ ​loops​ ​​have a condition that they check to determine if they should keep

running.​ ​They run until the condition no longer evaluates to True.
counter = 0

while counter < 3:

print(counter)

counter += 1

● Converting between for and while loops
○ All for loops can be written as while loops
○ Not all while loops can be written as for loops

● range

○ take 1, 2, or 3 arguments
■ stop: the number the iteration stops at, NOT INCLUDED
■ start: the number the iteration starts at. INCLUDED
■ step: the number the value increases by each iteration (e.g. step

size of 2 can be used to count just even numbers)
○ 1 argument: ​range(stop)
○ 2 arguments: ​range(start, stop)
○ 3 arguments: ​range(start, stop, step)

● break​ and ​continue
○ break ​​terminates the innermost loop. The program jumps to code

immediately​ ​after the loop
○ continue ​​ends current iteration of the loop. The program jumps to the top

of the​ ​loops and continues with the next iteration of the loop.

VIII. Guess​And​Check Algorithms

● The process is exhaustive enumeration
○ guess a value
○ check if solution is correct
○ keep guessing until solution found or all values guessed

● {code example} Finding square roots (from an earlier lecture)

○ Approximate solutions (good enough solution)
■ to approximate the square root of a number x, guess a number g. If

g*g is close enough to x, you’re done, otherwise your next guess is
the average of g and x/g

● Uses: while loops, comparing floats

