6.0001 Recitation 1 - Spring 2019
Feb 7

I. Administrivia

Recitation Times
e 10 AM, 11 AM, and 1 PM (5-134)
o Will review lecture material from that week
o Notes will be posted on Stellar after recitation on Fridays

Course Website
e Link: https://sicp-s1.mit.edu/spring20/
e Used for course materials, calendar, psets (submitting and grading), help queue,
checkoffs, everything really.
o Grades from the pset autograder will be released 3 days after the deadline

Ed Forum
e Link: https://us.edstem.org/courses/272/discussion/
o There are separate forums for 6.0001 and 6.0002 halves
e QG&A forum, best way to get a fast response
e |f you have a specific question (makeup, psets grades, etc) make a private post
o Please use this as opposed to emailing the staff email (emails can get lost, etc.)

Stellar
e Used for course announcements

Office Hours (38-370)
e Monday - Thursday (11am - 9pm, except during lecture time); Friday (11am - 5pm)
e Come in to get help on psets, lecture material, and pset checkoffs

e Queue: https://sicp-s1.mit.edu/spring20/queue
o (need certificates, talk to a TA in office hours if you're having trouble logging in)

Problem Sets

e Collaboration: don't plagiarize. write your own code
e Pset 1 is out, due Wednesday 2/12 at 5PM
e Check-offs start with Pset 1, no check off for Pset 0
e Cannot use late days on PS0O
e The last submitted pset is used for grading & late day calculation
e Submit on course website - (Need to be logged in)
https://sicp-s1.mit.edu/
Late Days

e 3 late days in total

e Can use up to 3 per pset
o 1 late day = 24-hour extension
o Late days are discrete (no half late day/12-hour extensions)

MITX
Link on Stellar
Has mandatory finger exercises, which will help you solidify important concepts with
small, relatively quick problems
o Graded for accuracy
o Lots of them - one poor score won't kill you! :)
o Due before each lecture
o Also contains optional exercises for extra practice
Checkoffs

e Starting with PS1, you need a checkoff for each pset (generally worth 30% of your
overall pset grade)

e Usually due 10 days following the posted due date of the problem set. Check pset doc or
calendar for specific due dates.
Late days cannot be used for a late checkoff
You will go through your code with a TA or LA. They will ask you simple questions about
your code and determine a score based on code style and understanding of the pset and
code.

e Generally speaking the closer you are to the checkoff deadline, the longer the queues in
OH, so get them done early!!

How to Succeed
e Sign up for HKN Tutoring
e Read the Style Guide! You want to make sure your code is easily understood by others
o In the real world, there are lots of rules for how code should be formatted
o Paying attention to how your code looks is just as important as functionality
o Many deductions on psets are because students don't read the style guide
(available on Stellar)
e Practice Practice Practice!!
o Reference links on Stellar for more Python practice (Python Resources under
Materials)

Il. Intro to Python and Anacondal/Spyder

Anaconda
e Anaconda is a Python Distribution, which in one installable package contains Python, a
set of Python packages, a code editor (Spyder), and an interactive interpreter/shell
(IPython)

Spyder

e Spyder = Scientific PYthon Development EnviRonment (a place to edit code, run it, and
debug it)
This is the development environment encouraged by this class, though there are others
IPython shell vs new window/opening a file:
o The shell is interactive and will give you results right away at each step as you
type it
m use mostly for testing things out - try it before you ask about it!
m has a help command (like help(str))
m can have multiple shells open at once via Consoles > Open an
IPython console
m If your console disappears, go to Consoles > Open to get it back!
o use File > New File... to create a new file to run later and get the results all at
once after you're done writing it
m can do more complex code this way than in the shell
m can also open .py files you already have and run them
m These results are only printed out if you explicitly use the print
command, unlike in the shell where the result is printed either way
e Saving your File
o Hit File > SaveAs to name your file.
o When you hit the green Run button, your work at that point is saved!
e Make sure you run your code before you turn it in. Anaconda/Spyder saves all
variables - if you use x = 5, and then delete x later, Spyder will still know what x is
o make sure you open a new console and try to run your code before you turn it in!
o You can also restart your kernel - it will have the same effect
o There are instructions in the Getting Started PDF from PS0 on how to prevent
this from happening

What does a Computer do?
e Performs built-in and defined calculations and remembers results
e Computes can only do what you tell them to do

BASIC MACHINE ARCHITECTURE

CONTROL ARITHMETIC

UNIT LOGIC UNIT

Keep in Mind:

e Computers are dumb. They can only calculate and remember things. They are very
good at this
e Your computer will do EXACTLY what you tell it to - no more, no less.

Python
general-purpose, high-level language that is widely-used

a program in Python (and other languages) is a sequence of expressions, or instructions
expressions are sequences of operands and operators

Whitespace matters in Python - be careful with indentation and use the tab key, not the
spacebar (when you have long, nested code, it's hard to tell the difference between 3
and 4 spaces, 7 and 8 spaces, 11 and 12 spaces, etc)

e use the Python documentation: https://docs.python.org/3.6/library/index.html

Variables
e Naming convention: snake_case
e Must start with a letter or underscore ()
e Can only contain alphanumerics & underscores
e Can't use reserved keywords:
https://docs.python.org/3/reference/lexical_analysis.html#keywords
e order of evaluation is right side then left side ; ex:
>>> g = 5
>>>a =a + 5
prints that a is 10

everything in python is an object, and objects have types
Basic (“primitive”) types: int, float, string, boolean
other types to know: NoneType (None)
Built-in function type(some_object) will tell you its type
o Other built-in functions: https://docs.python.org/3/library/functions.html
e Dbe careful of type issues

o 1/2=0.5 (float division)
o 3// 2 =1 (integerffloor division)
o 1/2.0=0.5 (float division)
o 3.//2=1.0(integer division, cast to float)
o float(1) (casting)

Operations

e Arithmetic operations follow PEMDAS rules

o +,-*/

o **for exponents (note: " is bitwise XOR - be careful!)
o % “modulo” or “mod” to get remainder
e String operations (overloading arithmetic operators)
o + for concatenation
o *to repeat
Loops
e for loops have pre specified range over which they run.
for i in range(x):
m i goesfromOtox-1
for char in s:
m char is string that takes on the value of each character in s
e while loops have a condition that they check to determine if they should keep
running. They run until the condition no longer evaluates to True.
counter = 0
while counter < 3:
print(counter)
counter += 1
e Converting between for and while loops
o All for loops can be written as while loops
o Not all while loops can be written as for loops

Output
e print(x)

print (“x = ", x) (comma concatenates with a space between)
e print statements are super useful for debugging! especially to see what is happening in
loops
o print out intermediate variables/values to trace what is going on
e Ex: Will this work? If it does, what does it print?
o print(“hello” + “world”)
m “hellowor1d”

o print(“hello” , “world”)
m “hello world”

o print(“hello” , “wor” + “1d”)
m “hello world”

Input
e X = input(“user prompt ”) - Xxis a string

e Remember to save user input to a variable if you want to use it later
e Remember to cast it to the type that you want
o integer = int(input(“enter an int”))

lll. Style
e Choose descriptive variable names
o You will lose points on your psets if you don't!

e Comments
o # single line
o ““% multiple line docstring for documentation purposes """
m Can use single ”’ " or double “" “™ quotes (3 on each side of same kind)
o In Spyder, Edit > Comment/Uncomment
o Be descriptive but concise - don’t need paragraphs or comments on every line
o Comments look best when put before the line or block of code they refer to, and

with the same indentation

o Helps explain your code
o Easier to debug & understand - especially if someone else is reading it
o Real Life coders have rules - there are conventions that you are expected to
follow when working at companies!
o You will lose points on your psets if you don't 3)
¢ Read style guide to avoid deductions on psets

