
6.0001 Recitation 1 - Spring 2019
Feb 7

I. Administrivia

Recitation Times
● 10 AM, 11 AM, and 1 PM (5-134)

○ Will review lecture material from that week
○ Notes will be posted on Stellar after recitation on Fridays

Course Website
● Link: https://sicp-s1.mit.edu/spring20/
● Used for course materials, calendar, psets (submitting and grading), help queue, 

checkoffs, everything really.
○ Grades from the pset autograder will be released 3 days after the deadline 

Ed Forum
● Link: https://us.edstem.org/courses/272/discussion/

○ There are separate forums for 6.0001 and 6.0002 halves
● Q&A forum, best way to get a fast response
● If you have a specific question (makeup, psets grades, etc) make a private post

○ Please use this as opposed to emailing the staff email (emails can get lost, etc.)

Stellar
● Used for course announcements

Office Hours (38-370)
● Monday - Thursday (11am - 9pm, except during lecture time); Friday (11am - 5pm)
● Come in to get help on psets, lecture material, and pset checkoffs
● Queue: https://sicp-s1.mit.edu/spring20/queue

○ (need certificates, talk to a TA in office hours if you’re having trouble logging in)

Problem Sets
● Collaboration: don’t plagiarize. write your own code
● Pset 1 is out, due Wednesday 2/12 at 5PM
● Check-offs start with Pset 1, no check off for Pset 0 
● Cannot use late days on PS0
● The last submitted pset is used for grading & late day calculation
● Submit on course website - (Need to be logged in)

https://sicp-s1.mit.edu/

Late Days
● 3 late days in total



● Can use up to 3 per pset
○ 1 late day = 24-hour extension
○ Late days are discrete (no half late day/12-hour extensions)

MITx
● Link   on Stellar
● Has mandatory finger exercises, which will help you solidify important concepts with 

small, relatively quick problems
○ Graded for accuracy
○ Lots of them - one poor score won’t kill you! :)
○ Due before each lecture
○ Also contains optional exercises for extra practice

Checkoffs
● Starting with PS1, you need a checkoff for each pset (generally worth 30% of your 

overall pset grade)
● Usually due 10 days following the posted due date of the problem set. Check pset doc or

calendar for specific due dates.
● Late days cannot be used for a late checkoff
● You will go through your code with a TA or LA. They will ask you simple questions about 

your code and determine a score based on code style and understanding of the pset and
code.

● Generally speaking the closer you are to the checkoff deadline, the longer the queues in 
OH, so get them done early!!

How to Succeed
● Sign up for HKN Tutoring     
● Read the Style Guide! You want to make sure your code is easily understood by others

○ In the real world, there are lots of rules for how code should be formatted
○ Paying attention to how your code looks is just as important as functionality
○ Many deductions on psets are because students don’t read the style guide 

(available on Stellar)
● Practice Practice Practice!!

○ Reference links on Stellar for more Python practice (Python Resources under 
Materials)

II. Intro to Python and Anaconda/Spyder

Anaconda
● Anaconda is a Python Distribution, which in one installable package contains Python, a 

set of Python packages, a code editor (Spyder), and an interactive interpreter/shell 
(IPython)

Spyder



● Spyder = Scientific PYthon Development EnviRonment (a place to edit code, run it, and 
debug it)

● This is the development environment encouraged by this class, though there are others
● IPython shell vs new window/opening a file:

○ The shell is interactive and will give you results right away at each step as you 
type it

■ use mostly for testing things out - try it before you ask about it!
■ has a help command (like help(str))

■ can have multiple shells open at once via Consoles > Open an 
IPython console

■ If your console disappears, go to Consoles > Open to get it back!
○ use File > New File... to create a new file to run later and get the results all at 

once after you’re done writing it
■ can do more complex code this way than in the shell
■ can also open .py files you already have and run them
■ These results are only printed out if you explicitly use the print 

command, unlike in the shell where the result is printed either way
● Saving your File

○ Hit File > SaveAs to name your file.
○ When you hit the green Run button, your work at that point is saved!

● Make sure you run your code before you turn it in. Anaconda/Spyder saves all 
variables - if you use x = 5, and then delete x later, Spyder will still know what x is

○ make sure you open a new console and try to run your code before you turn it in!
○ You can also restart your kernel - it will have the same effect
○ There are instructions in the Getting Started PDF from PS0 on how to prevent 

this from happening

What does a Computer do? 

● Performs built-in and defined calculations and remembers results 
● Computes can only do what you tell them to do 



 

Keep in Mind:
● Computers are dumb. They can only calculate and remember things. They are very 

good at this
● Your computer will do EXACTLY what you tell it to - no more, no less.

Python
● general-purpose, high-level language that is widely-used
● a program in Python (and other languages) is a sequence of expressions, or instructions
● expressions are sequences of operands and operators
● Whitespace matters in Python - be careful with indentation and use the tab key, not the 

spacebar (when you have long, nested code, it’s hard to tell the difference between 3 
and 4 spaces, 7 and 8 spaces, 11 and 12 spaces, etc)

● use the Python documentation: https://docs.python.org/3.6/library/index.html 

Variables
● Naming convention: snake_case
● Must start with a letter or underscore (_)
● Can only contain alphanumerics & underscores
● Can’t use reserved keywords: 

https://docs.python.org/3/reference/lexical_analysis.html#keywords 
● order of evaluation is right side then left side ; ex:

>>> a = 5
>>> a = a + 5
# prints that a is 10

Type



● everything in python is an object, and objects have types
● Basic (“primitive”) types: int, float, string, boolean
● other types to know: NoneType (None)
● Built-in function type(some_object) will tell you its type

○ Other built-in functions: https://docs.python.org/3/library/functions.html
● be careful of type issues

○ 1 / 2 = 0.5 (float division)
○ 3 // 2 = 1 (integer/floor division)
○ 1 / 2.0 = 0.5 (float division)
○ 3. // 2 = 1.0 (integer division, cast to float) 
○ float(1)  (casting)

Operations
● Arithmetic operations follow PEMDAS rules

○ +, -, *, /
○ ** for exponents (note: ^ is bitwise XOR - be careful!)
○ % “modulo” or “mod” to get remainder

● String operations (overloading arithmetic operators)
○ + for concatenation
○ * to repeat

Loops
● for loops have pre specified range over which they run.

for i in range(x):
■ i goes from 0 to x-1

for char in s:
■ char is string that takes on the value of each character in s

● while loops have a condition that they check to determine if they should keep 

running. They run until the condition no longer evaluates to True.
counter = 0
while counter < 3:

print(counter)
counter += 1

● Converting between for and while loops
○ All for loops can be written as while loops
○ Not all while loops can be written as for loops

Output
● print(x)
● print (“x = ”, x) (comma concatenates with a space between)

● print statements are super useful for debugging! especially to see what is happening in 

loops
○ print out intermediate variables/values to trace what is going on

● Ex: Will this work? If it does, what does it print?
○  print(“hello” + “world”)

■ “helloworld”



○  print(“hello” , “world”)
■ “hello world”

○ print(“hello” , “wor” + “ld”)
■ “hello world”

Input
● x = input(“user prompt ”) → x is a string
● Remember to save user input to a variable if you want to use it later
● Remember to cast it to the type that you want 

○ integer = int(input(“enter an int”))

III. Style
● Choose descriptive variable names

○ You will lose points on your psets if you don’t!

● Comments
○ # single line
○ “““ multiple line docstring for documentation purposes ”””

■ Can use single ‘’’ ‘’’ or double “”” “”” quotes (3 on each side of same kind)
○ In Spyder, Edit > Comment/Uncomment

○ Be descriptive but concise - don’t need paragraphs or comments on every line

○ Comments look best when put before the line or block of code they refer to, and 

with the same indentation
● Why?

○ Helps explain your code

○ Easier to debug & understand - especially if someone else is reading it

○ Real Life coders have rules - there are conventions that you are expected to 

follow when working at companies!
○ You will lose points on your psets if you don’t :)

● Read style guide to avoid deductions on psets


