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▪After this lecture

Microquiz 3
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Assigned Reading

▪Today: 
◦ Chapter 18 

▪Next lecture: 
◦ Chapter 22

3
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▪Conduct an experiment to gather 
(noisy) data 
◦ Physical (e.g., in a physics lab) 
◦ Social (e.g., questionnaires) 

▪Use theory to generate some 
questions about data 
◦ Physical (e.g., gravitational fields) 
◦ Social (e.g., people give inconsistent 

answers) 

▪Design a computation to help 
answer questions about data 

▪Can’t afford a field trip to the moon, 
so consider, instead, a spring…

Statistics Meets Experimental Science

4

Use equations and 
observations to 
determine global 
constants

https://www.youtube.com/watch?v=dCoU0NHxAp8
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This Kind of Spring
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k ≈ 35,000N /m
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Hooke’s Law ? Poll!
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▪Robert Hooke (1635-1703) 
◦ Discovered law of elasticity 

◦ Led to invention of balance spring, 
which led to first accurate watch 

◦ Huge believer in running experiments 
and then building models 
◦ “The truth is, the Science of Nature 

has been already too long made only 
a work of the Brain and the Fancy: It 
is now high time that it should return 
to the plainness and soundness of 
Observations on material and obvious 
things.”
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▪F = -kd

Hooke’s Law
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Why the ‘-’?   Because deflection in 
opposite direction to force
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Finding k: Some Data
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Mass (kg)  Distance (m) 
0.1    0.0865  
0.15    0.1015 
0.2    0.1106   
0.25    0.1279 
0.3    0.1892  
0.35    0.2695 
0.4    0.2888 
0.45    0.2425 
0.5    0.3465 
0.55    0.3225 
0.6    0.3764 
0.65      0.4263 
0.7    0.4562 
0.75    0.4502 
0.8    0.4499 
0.85    0.4534  
0.9    0.4416 
0.95    0.4304 
1.0    0.437

m

m

m
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def plotData(fileName):
    xVals, yVals = getData(fileName)
    xVals = pylab.array(xVals) #masses
    yVals = pylab.array(yVals) #distances/displacements
    xVals = xVals*9.81  #acc. due to gravity; forces
    pylab.plot(xVals, yVals, 'bo',
               label = 'Measured displacements')
    labelPlot()

Taking a Look at the Data
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A reminder/primer about python arrays: 
• Converts a list into a linear data structure 
• Can treat arrays algebraically; e.g., if a and b are arrays, then: 

• a*2 multiplies every element of a by 2 
• a + 3 adds 3 to every element of a 
• a – b subtracts each element of b from corresponding element of a 
• a*b multiplies each element of a by corresponding element of b 
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Taking a Look at the Data
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Questions?
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▪We’ve run an experiment 

▪We can relate observations to 
measurements  
(distance d vs. force F) 

▪Our theory predicts a 
relationship between 
observations and 
measurements (F = -kd) 

▪Can we use these 
measurements to determine k 
and to validate model?

What Can We Do With This Data?

12
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▪When we fit a curve (or model) to a set of data,  
we are finding a fit that relates an independent variable 
(the mass or force)  
to an estimated value of a dependent variable  
(the distance) 

▪To decide how well a curve fits the data, we need a 
way to measure the goodness of the fit – called the 
objective function (aka loss) 

▪Once we define the objective function, we also need 
an algorithm to find the curve that minimizes it 

▪Back to optimization!

Fitting Curves to Data

13
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▪Side note: also the main approach in AI/Machine 
learning these days

Fitting Curves to Data

14
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▪Why square?  POLL!

Least Squares Objective Function

15

(observed[i]− predicted[i])2
i=0

len(observed)−1

∑
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▪Simple example: 
◦ Use a degree-one polynomial,   

as model of data (best fitting line) 

▪Want to find 

  

Solving for Least Squares

16

(observed[i]− predicted[i])2
i=0

len(observed)−1

∑
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▪Simple example: 
◦ Use a degree-one polynomial, y = ax+b,  

as model of data (best fitting line) 

▪Want to find values of a and b such that 

  

is minimized, where x[i] is the ith data point, and 
observed[i] is the corresponding measured value.  

Solving for Least Squares

17

(observed[i]− predicted[i])2
i=0

len(observed)−1

∑

(observed[i]−a* x[i]−b)2
i=0

len(observed)−1

∑



Demo: manual optimization
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Questions?
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a

b

Finding the best curve (simplest case)

20

• Set of all possible lines can be 
represented by points in a-b 
space 
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a

b

Finding the best curve (simplest case)

21

• Set of all possible lines can be 
represented by points in a-b 
space 

• Imagine a surface in this space, 
where height is value of the 
objective function 

• Starting at any point on the 
surface, walk “downhill” (step 
along gradient), until you reach 
the “bottom” 

• Corresponding point is best line 
to fit to data (for least squares 
optimization, space is convex) 

• Can generalize to higher order 
models
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▪Objective surface using sum-of-squared-differences is 
differentiable 
◦ Means we can compute gradient direction analytically 

and use to efficiently compute next step in optimization 

▪Objective surface in this case has a global minimum 
◦ Means there is always a unique best fit 

◦ Easy to solve for (linear system) 
◦ Minimum: We want the derivative to be 0 
◦ Derivative of a quadratic is linear

Some nice properties of linear regression

22



▪Minimize Derive it!

23

(observed[i]−a* x[i]−b)2
i=0

len(observed)−1

∑



▪https://xkcd.com/2048/ 

Questions?

24

https://xkcd.com/2048/
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▪Good news is that pylab provides built in functions to 
find these polynomial fits 

▪pylab.polyfit(observedX, observedY, n)
finds coefficients of a polynomial, of degree n, that 
provides a best least squares fit for the observed data 

◦ n = 1 – best line   y = ax + b 
◦ n = 2 – best parabola  y = ax2 + bx + c 
◦ n = 3 – best cubic   y = ax3 + bx2 + cx + d

polyFit

25
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Using polyfit

26

def fitData(fileName):
    xVals, yVals = getData(fileName)
    xVals = pylab.array(xVals)
    yVals = pylab.array(yVals)
    xVals = xVals*9.81 #get force
    pylab.plot(xVals, yVals, 'bo',
               label = 'Measured points')
    labelPlot()                 
    a,b = pylab.polyfit(xVals, yVals, 1)
    estYVals = a*pylab.array(xVals) + b
    print('a =', a, 'b =', b)
    pylab.plot(xVals, estYVals, 'r',
               label = 'Linear fit, k = '
               + str(round(1/a, 5)))
    pylab.legend(loc = 'best')
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Using polyfit

27

def fitData(fileName):
    xVals, yVals = getData(fileName)
    xVals = pylab.array(xVals)
    yVals = pylab.array(yVals)
    xVals = xVals*9.81 #get force
    pylab.plot(xVals, yVals, 'bo',
               label = 'Measured points')
    labelPlot()                 
    a,b = pylab.polyfit(xVals, yVals, 1)
    estYVals = a*pylab.array(xVals) + b
    print('a =', a, 'b =', b)
    pylab.plot(xVals, estYVals, 'r',
               label = 'Linear fit, k = '
               + str(round(1/a, 5)))
    pylab.legend(loc = 'best')

Note that 
conversion to 
array is redundant 
here

plotData

Remember Hooke: 
  F = kd 
Here plotting d = aF 
So k = 1/a
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Visualizing the Fit

28
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Version Using polyval

29

def fitData1(fileName):
    xVals, yVals = getData(fileName)
    xVals = pylab.array(xVals)
    yVals = pylab.array(yVals)
    xVals = xVals*9.81 #get force
    pylab.plot(xVals, yVals, 'bo',
               label = 'Measured points')
    labelPlot()                 
    model = pylab.polyfit(xVals, yVals, 1)
    estYVals = pylab.polyval(model, xVals)
    pylab.plot(xVals, estYVals, 'r',
               label = 'Linear fit, k = '
               + str(round(1/model[0], 5)))
    pylab.legend(loc = 'best')

polyval will 
apply model 
to xVals for 
any order of 
model
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▪Ran an experiment to gather data 

▪Theory predicts relationship between 
measurements (displacements) and 
experimental parameters (masses or 
forces) 

▪Linear regression lets us fit best model 
(line in our case) to observed data 
◦ Best here means minimize sum squared 

error between observed and predicted 
values 

▪So, let’s apply this idea to other data…

Quick Summary So Far

30



Questions?
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Another (Mystery) Experiment

32
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Fit a Line

33



6.0002 LECTURE 9

Let’s Try a Higher-degree Model

34

model2 = pylab.polyfit(xVals, yVals, 2)
pylab.plot(xVals, pylab.polyval(model2, xVals),
           'r--', label = 'Quadratic Model')
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Let’s Try a Higher-degree Model

35

model2 = pylab.polyfit(xVals, yVals, 2)
pylab.plot(xVals, pylab.polyval(model2, xVals),
           'r--', label = 'Quadratic Model')



6.0002 LECTURE 9

Let’s Try a Higher-degree Model

36

model2 = pylab.polyfit(xVals, yVals, 2)
pylab.plot(xVals, pylab.polyval(model2, xVals),
           'r--', label = 'Quadratic Model')

 



▪Most importantly refers to model parameters, not input 
(independent variables) 

▪The parameters are used without exponent or cross-
multiplication 

▪e.g. ax^3+bx^2+cx+d is still linear in a, b, c, d 

▪ax + abx + a^2x is not linear in a and b 

▪Fitting a quadratic polynomial (or any degree) is still 
linear regression 

▪(the term linear regression is often used for fitting lines, 
but sometimes to mean linear in parameters. It’s messy)

What is linear in linear least squares?

37
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Quadratic Appears to be a Better Fit

38



▪https://xkcd.com/605/

Questions?

39
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▪How good are they relative to each other? 

▪How good are they in an absolute sense?

How Good Are These Fits?

40
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Comparing Mean Squared Error

41

def aveMeanSquareError(data, predicted):
    error = 0.0
    for i in range(len(data)):
        error += (data[i] - predicted[i])**2
    return error/len(data)

estYVals = pylab.polyval(model1, xVals)  
print('Ave. mean square error for linear model =',
      aveMeanSquareError(yVals, estYVals))
estYVals = pylab.polyval(model2, xVals)
print('Ave. mean square error for quadratic model =',
      aveMeanSquareError(yVals, estYVals))
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Comparing Mean Squared Error

42

def aveMeanSquareError(data, predicted):
    error = 0.0
    for i in range(len(data)):
        error += (data[i] - predicted[i])**2
    return error/len(data)

estYVals = pylab.polyval(model1, xVals)  
print('Ave. mean square error for linear model =',
      aveMeanSquareError(yVals, estYVals))
estYVals = pylab.polyval(model2, xVals)
print('Ave. mean square error for quadratic model =',
      aveMeanSquareError(yVals, estYVals))

Ave. mean square error for linear model = 9372.73078965 
Ave. mean square error for quadratic model = 1524.02044718
Given this improvement in mean squared error from linear to 
quadratic model, is there something even better?
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▪Mean square error useful for comparing two different 
models for the same data 

▪Is it also useful for getting a sense of absolute goodness of 
fit? 
◦ Is 1524 good? 

◦ Poll

In an Absolute Sense

43
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▪Mean square error useful for comparing two different 
models for the same data 

▪Is it also useful for getting a sense of absolute goodness of 
fit? 
◦ Is 1524 good? 

▪Hard to know – no bound on values; not scale independent 
◦ For example, if we double the masses, get double the error 

In an Absolute Sense

44
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▪Instead we use coefficient of determination, R2,

R^2: coefficient of determination

45

yi   are measured values 
pi   are predicted values 
µ is mean of measured values
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▪Instead we use coefficient of determination, R2,

R^2: coefficient of determination

46

Error in estimates

Variability in 
measured data

yi   are measured values 
pi   are predicted values 
µ is mean of measured values
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▪By comparing the estimation errors (the numerator) 
with the variability of the original values (the 
denominator),  
R2 captures the proportion of variability in a data set 
that is accounted for by the model 

▪Said differently: compare model to a constant model 

▪(the mean is the best constant estimate  
under least squares)

R2

47
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▪Between 0 and 1 when fit generated by a linear 
regression* and tested on training data 
◦ If R2 = 1,  

  
◦ If R2 = 0,  

 
 

◦ If R2 = 0.5,  

R2

48

* assuming the model has a constant term
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▪Between 0 and 1 when fit generated by a linear 
regression* and tested on training data 
◦ If R2 = 1, the model explains all of the variability in the 

data.  
◦ If R2 = 0,  

there is no relationship between the values predicted by 
the model and the actual data.   
(no better than constant prediction) 

◦ If R2 = 0.5,  
the model explains half the variability in the data.

R2

49

* assuming the model has a constant term
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Testing Goodness of Fits

50

def genFits(xVals, yVals, degrees):
    models = []
    for d in degrees:
        model = pylab.polyfit(xVals, yVals, d)
        models.append(model)
    return models

def testFits(models, degrees, xVals, yVals, title):
    pylab.plot(xVals, yVals, 'o', label = 'Data')
    for i in range(len(models)):
        estYVals = pylab.polyval(models[i], xVals)
        error = rSquared(yVals, estYVals)
        pylab.plot(xVals, estYVals,
                   label = 'Fit of degree '\
                   + str(degrees[i])\
                   + ', R2 = ' + str(round(error, 5)))
    pylab.legend(loc = 'best')
    pylab.title(title)
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How Well Do Fits Explain Variance?

51
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▪Saw that linear fit was poor – both visually and 
through R2 measure 

▪Saw that quadratic fit was better – again both visually 
and through R2 measure 

▪What about fitting higher order polynomials to data? 
◦ Degree 4? 
◦ Degree 8? 
◦ Degree 16?

Can We Do Better?

52
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Can We Get a Tighter Fit?

53

Does this mean that a 
16th order polynomial is 
the best fit for the data?



▪https://xkcd.com/1725/ 

Questions?

54

https://xkcd.com/1725/
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▪Looks like an order 16 fit is really good – so should we 
just use this as our model? 
◦ To answer, need to ask – why build models in first place? 

▪ 1) Help us understand process that generated the data 
◦ E.g., the properties of a particular linear spring 

▪ 2) Help us make predictions about out-of-sample data 
◦ E.g., predict the displacement of a spring when a force is 

applied to it 
◦ E.g., predict the effect of treatment on a patient 
◦ E.g., predict the outcome of an election 

▪A good model helps us do both of these things

Does Tightest = Best?

55
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How Mystery Data Was Generated

56

def genNoisyParabolicData(a, b, c, xVals, fName):
    yVals = []
    for x in xVals:
        theoreticalVal = a*x**2 + b*x + c
        yVals.append(theoreticalVal + random.gauss(0, 35))
    f = open(fName,'w')
    f.write('x        y\n')
    for i in range(len(yVals)):
        f.write(str(yVals[i]) + ' ' + str(xVals[i]) + '\n')
    f.close()
    
#parameters for generating data
xVals = range(-10, 11, 1)
a, b, c = 3, 0, 0
genNoisyParabolicData(a, b, c, xVals,  ’Mystery Data.txt')

If data was generated by 
quadratic, why was 16th order 
polynomial the “best” fit?

Because it fit the noise.

Zero mean, Gaussian noise
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▪Is it just luck that we got a “better” fit on training data 
with higher order model? 

▪What happens when we increase order of polynomial 
during training? 
◦ Can we get a worse fit to training data? 

▪If extra term is useless, coefficient will merely be zero 

▪But if data is noisy, can fit the noise rather than the 
underlying pattern in the data 
◦ May lead to a “better” R2 value, but not really a “better” 

fit

Increasing the Complexity

57
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▪Choosing an overly-complex model leads to overfitting 
to the training data 

▪Increases the risk of a model that works poorly on data 
not included in the training set 

▪On the other hand choosing an insufficiently complex 
model has other problems 
◦ As we saw when we fit a line to data that was basically 

parabolic

The Take Home Message

58
https://quoteinvestigator.com/2011/05/13/einstein-simple/

https://quoteinvestigator.com/2011/05/13/einstein-simple/
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▪Alternatively, search for point at which to break data into 
two sets, and fit model to first set of data but fit constant 
line to second set; look for break that minimizes sum of 
residual error in both parts 

▪R2 value for lower part now .9539; without break, have R2 
of .8815

One Last Thought

59
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▪We can use linear regression to fit a curve to data 
◦ Mapping from independent values to dependent values 

▪That curve is a model of the data that can be used to 
predict the value associated with independent values 
we haven’t seen (out-of-sample data) 

▪R-squared used to evaluate model 
◦ Higher not always “better” because of risk of over fitting 

▪Choose complexity of model based on 
◦ Theory about structure of data 
◦ Cross validation 
◦ Simplicity

Wrapping Up Curve Fitting

60
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▪“Frustra fit per plura quod potest fieri per pauciora” 
◦ “It is futile to do with more things that which can be done 

with fewer” 

▪Among competing hypotheses, the one with the 
fewest assumptions should be selected

Occam’s Razor

61

William of Occam 
1287-1347



▪If a miracle occurs, we still have time for cross 
correlation 

▪

Quiz? 

62
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▪One way to separate out impact of noise is to take 
advantage of fact that noise will typically be different 
each time we sample a system 

▪So can cross validate: 
◦ Generate a set of data as a “training” set, and use to fit a 

model 
◦ Generate a second set of data as a “test” set, and see 

how well the model from the training set accounts for the 
test set

Training versus Testing

63
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Generate 2 Data Sets from Same Distribution

64
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Look at Fits

65
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Training and Testing Errors

66
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▪16-degree polynomial is an 
example of overfitting to the 
data 

▪If we only look at how well 
model fits training data, we 
may not detect that model is 
too complex 

▪Need to cross validate: Train 
on one data set, then test on a 
different one

The Moral of the Story

67
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▪Choosing an overly-complex model leads to overfitting 
to the training data 

▪Increases the risk of a model that works poorly on data 
not included in the training set 

▪On the other hand choosing an insufficiently complex 
model has other problems 
◦ As we saw when we fit a line to data that was basically 

parabolic

The Take Home Message

68
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