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TODAY
§ Formally evaluate programs

§ Efficiency in time

§ Orders of growth, big Oh notation

§ Examples of different complexity cases
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Assigned Reading
§ Today

◦ Chapter 9
◦ 10.1 – 10.2

§ Monday
◦ 10.3
◦ Chapter 11
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WRITING EFFICIENT 
PROGRAMS
§ So far, we have emphasized correctness. It is the first thing 
to worry about!
§ But sometimes that is not enough
§ Problems can be very complex (as we shall see when we 
get to optimization in 6.0002)

§ But data sets can be 
very large: in 2014 
Google served 
30,000,000,000,000 
pages covering 
100,000,000 GB of data
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EFFICIENCY IS IMPORTANT
§ Separate time and space efficiency of a program

§ Tradeoff between them: can use up a bit more 
memory to store values for quicker lookup later

§ Challenges in understanding efficiency
◦ A program can be implemented in many different ways

◦ You can solve a problem using only a handful of different 
algorithms

§ Want to separate choice of implementation from 
choice of more abstract algorithm
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EVALUATING PROGRAMS
§ Measure with a timer

§ Count the operations

§ Abstract notion of order of growth
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Aside: MODULES
§A module is a set of python definitions and statements 
stored in a file

§You first need to “import” the module

§call functions inside the module using the module’s 
name and dot notation

§module.function()
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TIMING A PROGRAM
§ Use time module

§ Recall that 
importing means to 
bring in that class 
into your own file

§ Start clock

§ Call function

§ Stop clock

import time

def convert_to_km(m):
return m * 1.609

t0 = time.perf_counter()

c_to_f(100000)

t1 = time.perf_counter() - t0

print("t =", t1, "s,")
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Example: Convert, compound
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Measure time: convert
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Measure time: convert
multiple samples
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Measure time: compound
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Measure time: sum
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Measure time: is_in
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Measure time: diameter

6.0001 LECTURE 9 16



Measure time: 
binary numbers
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Two different machines
Fredo’s laptop Fredo’s (old) desktop



TIMING PROGRAMS IS 
INCONSISTENT
§ GOAL: to evaluate different algorithms
§ Running time varies between algorithms
§ Running time varies between implementations
§ Running time varies between computers
§ Running time is not predictable for small inputs

§ Time varies for different inputs but 
cannot really express a relationship 
between inputs and time

§Can only be measured a-posteriori
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Don’t get me wrong
§Timing is a critical tool to assess the performance of 
programs
◦ At the end of the day, it is is unreplaceable for real-world 

assessment

§But we will learn a complementary tool (asymptotic 
complexity) that has other advantages
◦ A priori evaluation (before writing or running code)
◦ Assesses algorithm independently of machine and 

implementation
◦ Provides direct insight to the design of efficient 

algorithms
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COUNTING OPERATIONS
§ Assume these steps take 
constant time:
• Mathematical operations
• Comparisons
• Assignments
• Accessing objects in 

memory

§ Count number of 
operations executed as 
function of size of input

def c_to_f(c):
return c*9.0/5 + 32 

def mysum(x):
total = 0
for i in range(x+1):

total += i
return total
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3 ops

1 op

1 op

2 ops

mysum à 1+3(x+1) ops

loop 

x tim
es



Count oeprations
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Count operations, binary 
search
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COUNTING OPERATIONS IS 
BETTER, BUT …
§ GOAL: to evaluate different algorithms

§ Count depends on algorithm

§ Count depends on implementations

§ Count independent of computers

§ No real definition of which operations to count

§ Count varies for different inputs and  
can come up with a relationship 
between inputs and the count
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… STILL NEED A BETTER WAY
• Timing and counting evaluate implementations

• Timing and counting evaluate machines

•Want to evaluate algorithm

•Want to evaluate scalability

•Want to evaluate in terms of input size
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A BETTER WAY
§ Focus on idea of counting operations in an algorithm, but 
not worry about small variations in implementation

§ Focus on how algorithm performs when size of problem 
gets arbitrarily large

§ Want to relate time needed to complete a computation, 
measured this way, against the size of the input to the 
problem

§ Need to decide what to measure, given that actual 
number of steps may depend on specifics of trial
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HOW TO CHOOSE WHICH INPUT TO 
USE TO EVALUATE A FUNCTION
§ Want to express efficiency in terms of input, so need 
to decide what is your input

§ Could be an integer 
-- mysum(x)

§ Could be length of list 
-- list_sum(L)

§ You decide when multiple parameters to a function
-- search_for_elmt(L, e)
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DIFFERENT INPUTS CHANGE 
HOW THE PROGRAM RUNS
§ A function that searches for an element in a list
def search_for_elmt(L, e):

for i in L:
if i == e:

return True
return False

§ When e is first element in the list à BEST CASE

§ When e is not in list à WORST CASE

§ When look through about half of the elements in 
list à AVERAGE CASE

§ Want to measure this behavior in a general way
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BEST, AVERAGE, WORST CASES
§ Consider that you are given a list L of some length len(L)
§ Best case: minimum running time over all possible inputs of 
a given size, len(L)
• Constant for search_for_elmt
• First element in any list

§ Average case: average running time over all possible inputs 
of a given size, len(L)
• Practical measure

§ Worst case: maximum running time over all possible inputs 
of a given size, len(L)
• Linear in length of list for search_for_elmt
• Must search entire list and not find it
• Focus on worst case in this class
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ORDERS OF GROWTH
§ Want to evaluate programs when input is very big

§ Want to express the growth of program’s run time

§ Want to put an upper bound on growth

§ Do not need to be precise: “order of” not “exact” growth

§ We will look at largest factors in run time (which section 
of the program will take the longest to run?)
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MEASURING ORDER OF 
GROWTH: BIG O() NOTATION
§ Big Oh notation measures an upper bound on the 
asymptotic growth, often called order of growth
§ Big Oh or O() is used to describe worst case
• Worst case tends to occur often and is the bottleneck when a 

program runs
• Express rate of growth of program relative to the input
• Evaluate algorithm not machine or implementation

• A technicality
• When we say that the complexity of f is O(n), we mean that its 

asymptotic growth is not worse than linear in n.
• It is an upper bound, not necessarily a tight bound
• In practice, we are usually looking for something close to a 

tight bound
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EXACT STEPS vs O()
def fact_iter(n):

"""assumes n an int >= 0"""
answer = 1
while n > 1:

answer *= n
n -= 1

return answer

§ Computes factorial
§ Number of steps: 
§ Worst case asymptotic complexity: 
• Ignore additive constants
• Ignore multiplicative constants

1 + 7n + 1

O(n)

temp = n-1

n = temp
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WHAT DOES O(N) MEASURE?
§ Interested in describing how amount of time needed 
grows as size of (input to) problem grows

§ Given an expression for the number of operations 
needed to compute an algorithm, want to know 
asymptotic behavior as size of problem gets large

§ Will focus on term that grows most rapidly

§ Ignore multiplicative constants, since want to know 
how rapidly time required increases as increase size of 
input
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SIMPLIFICATION EXAMPLES
§ Drop constants and multiplicative factors

§ Focus on dominant term

: n2 + 2n + 2

: n2 + 100000n + 31000 

: log(n) + n + 4
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SIMPLIFICATION EXAMPLES
§ Drop constants and multiplicative factors

§ Focus on dominant term

: n2 + 2n + 2

: n2 + 100000n + 31000 

: log(n) + n + 4

O(n2)

O(n2)

O(n)
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ANALYZING PROGRAMS AND 
THEIR COMPLEXITY
§ Combine complexity classes
• Analyze statements inside functions
• Apply some rules, focus on dominant term

Law of Addition for O(): 
• Used with sequential statements
• O(f(n)) + O(g(n)) is O( f(n) + g(n) )
• For example, 

for i in range(n):

print('a')
for j in range(n*n):

print('b')

is O(n) + O(n*n) = O(n+n2) = O(n2) because of dominant term
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ANALYZING PROGRAMS AND 
THEIR COMPLEXITY
§ Combine complexity classes
• Analyze statements inside functions
• Apply some rules, focus on dominant term

Law of Multiplication for O(): 
• Used with nested statements/loops
• O(f(n)) * O(g(n)) is O( f(n) * g(n) )
• For example, 

for i in range(n):

for j in range(n):
print 'a'

is O(n)*O(n) = O(n*n) = O(n2) because the outer loop goes n 
times and the inner loop goes n times for every outer loop iter.
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COMPLEXITY CLASSES
§ O(1) denotes constant running time
§ O(log n) denotes logarithmic running time
§ O(n) denotes linear running time
§ O(n log n) denotes log-linear running time
§ O(nc) denotes polynomial running time (c is a 
constant)
§ O(cn) denotes exponential running time (c is a 
constant being raised to a power based on size of 
input)
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COMPLEXITY CLASSES 
ORDERED LOW TO HIGH

O(1) : constant

O(log n) : logarithmic

O(n) : linear

O(n log n): log linear

O(nc) : polynomial

O(cn) : exponential
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constant
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COMPLEXITY GROWTH
CLASS N = 10 N = 100 N = 1000 N = 1000000

O(1) 1 1 1 1

O(log n) 1 2 3 6

O(n) 10 100 1000 1000000

O(n log n) 10 200 3000 6000000

O(n2) 100 10000 1000000 1000000000000

O(2n) 1024 12676506
00228229
40149670
3205376

1071508607186267320948425
0490600018105614048117055
3360744375038837035105112
4936122493198378815695858
1275946729175531468251871
4528569231404359845775746
9857480393456777482423098
5421074605062371141877954
1821530464749835819412673
9876755916554394607706291
4571196477686542167660429
8316526243868372056680693
76

Good Luck!!
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CONSTANT 
COMPLEXITY
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CONSTANT COMPLEXITY
§ Complexity independent of inputs

§ Very few interesting algorithms in this class, but can 
often have pieces that fit this class

§ Can have loops or recursive calls, but number of 
iterations or calls independent of size of input
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CONSTANT COMPLEXITY: 
EXAMPLE 1
§
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CONSTANT COMPLEXITY: 
EXAMPLE 2 (with a twist)
§ Multiply x by y
def mul(x, y):

tot = 0

for i in range(y):

tot += x

return tot

§ complexity in terms of x: O(1)

§ complexity in terms of y: O(y)
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LINEAR 
COMPLEXITY
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LINEAR COMPLEXITY
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LINEAR COMPLEXITY
§ Simple iterative loop algorithms

§ Loops must be a function of input 

§ Linear search a list to see if an element is present

§ Recursive functions with one recursive call and 
constant overhead for call
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LINEAR COMPLEXITY: 
EXAMPLE 1
§ Add characters of a string, assumed to be composed 
of decimal digits
def add_digits(s):

val = 0

for c in s:

val += int(c)

return val

§ O(len(s))

§ O(n) where n is len(s)
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LINEAR COMPLEXITY: 
EXAMPLE 2
§ Loop to find the factorial of a number
def fact_iter(n):

prod = 1
for i in range(1, n+1):

prod *= i

return prod

§ Number of times around loop is n
§ Number of operations inside loop is a constant
§ Overall just O(n)

6.0001 LECTURE 9 50



LINEAR COMPLEXITY: 
EXAMPLE 3
def fact_recur(n):

""" assume n >= 0 """
if n <= 1: 

return 1
else: 

return n*fact_recur(n – 1)

§ Computes factorial recursively 

§ If you time it, notice that it runs a bit slower than 
iterative version due to function calls

§ O(n) because the number of function calls is linear in n

§ Iterative and recursive factorial implementations are 
the same order of growth
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Funny thing about factorial 
and python

§Eventually grows faster than linear

§Because Python increases the size of integers, which
yields more costly operations

§For this class: ignore such effects
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LINEAR SEARCH 
ON UNSORTED LIST

Must look through all elements to decide it’s not there
§ O(len(L)) for the loop * O(1) to test if e == L[i]

§ Overall complexity is O(n) – where n is len(L) 

§ O(len(L))
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LINEAR SEARCH 
ON UNSORTED LIST

Must look through all elements to decide it’s not there
§ O(len(L)) for the loop * O(1) to test if e == L[i]

§ Overall complexity is O(n) – where n is len(L) 

§ O(len(L))
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speed up a littl
e by 

returning True here, 

but speed up doesn’t 

impact worst c
ase



POLYNOMIAL 
COMPLEXITY
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QUADRATIC COMPLEXITY
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Predictable without running
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POLYNOMIAL COMPLEXITY
(OFTEN QUADRATIC)
§ Most common polynomial algorithms are quadratic, 
i.e., complexity grows with square of size of input

§ Commonly occurs when we have nested loops or 
some recursive function calls
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QUADRATIC COMPLEXITY: 
EXAMPLE 1
def g(n):

""" assume n >= 0 """
x = 0
for i in range(n):

for j in range(n):
x += 1

return x

§ Computes n2 very inefficiently
§ When dealing with nested loops, look at the ranges
§ Nested loops, each iterating n times
§ O(n2)
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QUADRATIC COMPLEXITY: 
EXAMPLE 2
§ Find if L1 is a subset of L2, if all elements in L1 are in L2
def is_subset(L1, L2):

for e1 in L1:
matched = False
for e2 in L2:

if e1 == e2:
matched = True
break

if not matched:
return False

return True
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QUADRATIC COMPLEXITY: 
EXAMPLE 2
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def is_subset(L1, L2):

for e1 in L1:

matched = False

for e2 in L2:

if e1 == e2:

matched = True

break

if not matched:

return False

return True

Outer loop executed 
len(L1) times

Each iteration will execute 
inner loop up to len(L2) 
times

O(len(L1)*len(L2))

Worst case when L1 and L2 
same length, none of 
elements of L1 in L2

O(len(L1)2)



QUADRATIC COMPLEXITY: 
EXAMPLE 3
§ Find intersection of two lists, return a list with each element 
appearing only once
def intersect(L1, L2):

tmp = []
for e1 in L1:

for e2 in L2:
if e1 == e2:

tmp.append(e1)
unique = []
for e in tmp:

if not(e in unique):
unique.append(e)

return unique
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QUADRATIC COMPLEXITY: 
EXAMPLE 3

6.0001 LECTURE 9 63

def intersect(L1, L2):
tmp = []
for e1 in L1:

for e2 in L2:
if e1 == e2:

tmp.append(e1)
unique = []
for e in tmp:

if not(e in unique):
unique.append(e)

return unique

First nested loop takes 
O(len(L1)*len(L2)) steps.

Second loop takes at most 
O(len(L1)*len(L2)) steps. 
Typically not this bad.

Overall O(len(L1)*len(L2))



Cubic complexity
§Matrix-Matrix multiply

§Cubic in matrix length N
◦ N*N output coefficients, 

each coefficient is a sum over N values
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EXPONENTIAL 
COMPLEXITY
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EXPONENTIAL COMPLEXITY
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EXPONENTIAL COMPLEXITY
§ Recursive functions where have more than one 
recursive call for each size of problem
◦ (bad algorithm for) Fibonacci, power set

§ Many important problems are inherently exponential
◦ Unfortunate, as cost can be high
◦ Will lead us to consider approximate solutions more 

quickly
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EXPONENTIAL COMPLEXITY
GENERATE SUBSETS

def gen_subsets(L):
if len(L) == 0:

return [[]]
smaller = gen_subsets(L[:-1]) 
extra = L[-1:]
new = []
for small in smaller:

new.append(small+extra) 
return smaller+new
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Go until re
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 of empty list

all subsets without last e
lement

create a list
 of just la

st e
lement

for all smaller solutions, add 

one with last e
lement

combine those with last 

element and those without



EXPONENTIAL COMPLEXITY
GENERATE SUBSETS
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def gen_subsets(L):
if len(L) == 0:

return [[]] 
smaller = gen_subsets(L[:-1])
extra = L[-1:]
new = []
for small in smaller:

new.append(small+extra)
return smaller+new

§ Assuming append is 
constant time

§ Time includes time to 
solve smaller problem, 
plus time needed to 
make a copy of all 
elements in smaller 
problem



EXPONENTIAL COMPLEXITY
GENERATE SUBSETS
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§ But important to think 
about size of smaller

§ Know that for a set of size k 
there are 2k cases

§ So to solve need 2n-1 + 2n-2

+ … +20 steps

§ Math tells us this is O(2n)

def gen_subsets(L):
if len(L) == 0:

return [[]] 
smaller = gen_subsets(L[:-1])
extra = L[-1:]
new = []
for small in smaller:

new.append(small+extra)
return smaller+new



COMPLEXITY OF 
ITERATIVE FIBONACCI
def fib_iter(n):

if n == 0:

return 0

elif n == 1:

return 1

else:
fib_i = 0

fib_ii = 1

for i in range(n-1):

tmp = fib_i

fib_i = fib_ii

fib_ii = tmp + fib_ii
return fib_ii

§ Best case:
O(1)

§ Worst case:
O(1) + O(n) + O(1) è O(n)

constant 

O(1)

constant 

O(1)

linear

O(n)

constant 

O(1)
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COMPLEXITY OF 
RECURSIVE FIBONACCI
def fib_recur(n):

""" assumes n an int >= 0 """
if n == 0:

return 0
elif n == 1:

return 1
else:

return fib_recur(n-1) + fib_recur(n-2)

§ Worst case:
O(2n)

1 à
20

2 à
21

4 à
22

8 à
23
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COMPLEXITY OF RECURSIVE 
FIBONACCI

§ Can do a bit better than 2n since tree thins out to the right

§ But complexity is still order exponential 

fib(5)

fib(4) fib(3)

fib(3) fib(2) fib(2) fib(1)

fib(2) fib(1)
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BIG OH SUMMARY
§ Compare efficiency of algorithms
• notation that describes growth
• lower order of growth is better
• independent of machine or specific implementation

§ Using Big Oh
• describe order of growth
• asymptotic notation
• upper bound
• worst case analysis
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IN SUMMARY
§Empirical Timing is a critical tool to assess the 
performance of programs
◦ Only reliable way to take into account complexities of 

machine, implementation, and inputs

§But asymptotic complexity has other advantages
◦ A priori evaluation (before writing or running code)
◦ Assesses algorithm independently of machine and 

implementation
◦ Provides direct insight to the design of efficient 

algorithms
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