PROGRAM EFFICIENCY

(download slides and .py files to follow along!)

6.0001 LECTURE 9

TODAY

= Formally evaluate programs

= Efficiency in time
= Orders of growth, big Oh notation

= Examples of different complexity cases

6.0001 LECTURE 9 2

Assigned Reading

= Today “Introduction to

> Chapter 9 : |

©10.1-10.2 1d Programming
= Monday . smg Pﬁ’thﬁ“ ,_

o 10.3 , W!FhA,IlcatlontorUnQe anding Data

o Chapter 11

secon edig{gn
/ £
JohnV. Ge

https://mitpress.mit.edu/sites/default/files/Guttag_errata_revised 083117.pdf

6.0001 LECTURE 1 3

PROGRAM
EFFICIENCY

WRITING EFFICIENT
PROGRAMS

= So far, we have emphasized correctness. It is the first thing
to worry about!

= But sometimes that is not enough

" Problems can be very complex (as we shall see when we
get to optimization in 6.0002)

§, Twitter users send out 2 7 7,000 20 AT 10552

tweets

very large: in 2014
GOO |e serv d n Facebook processes 350GE of data -
g © - -

30,000,000,000,000 100 hours of new video are uploadedV
. on YouTube ;
pages covering

100’000’000 GB Of data LJ‘ Google processes more than 2 MIIIION seach

queries

= But data sets can be

6.0001 LECTURE 8 o)

EFFICIENCY IS IMPORTANT

= Separate time and space efficiency of a program

= Tradeoff between them: can use up a bit more
memory to store values for quicker lookup later

= Challenges in understanding efficiency

o A program can be implemented in many different ways

> You can solve a problem using only a handful of different
algorithms

= Want to separate choice of implementation from
choice of more abstract algorithm

6.0001 LECTURE 8 6

EVALUATING PROGRAMS

= Measure with a timer

= Count the operations

= Abstract notion of order of growth

Aside: MODULES

=*A module is a set of python definitions and statements
stored in a file

=You first need to “import” the module

=call functions inside the module using the module’s
name and dot notation

*module.function()

6.0001 LECTURE 9 8

TIMING APROGRAM |

= Use time module import time

= Recall that
importing means to def convert to km(m):
bring in that class return m * 1.609

into your own file

= Startclock —— t0 = time.perf counter()

= Call function —— ¢_to_£(100000)

= Stop clock — tl = time.perf counter() - t0

print("t :", tl, "S,")

6.0001 LECTURE 8 9

Example: Convert, compound

def convert_to_km(m):
return m x 1.609

def compound(invest, interest, n_months):
total=0

for i in range(n_months):

total = total x interest + invest
return total

6.0001 LECTURE 9

Measure time: convert

LN = [1]
for i in range(7):
L_N.append(L_N[-1]%10)

for N in L_N:
t = time.perf_counter()
km = convert_to_km(N)
dt = time.perf_counter()-t
print ("convert(", N, ") took ", dt, "seconds")

6.0001 LECTURE 9

Measure time: convert
multiple samples

n_samples = 50

for N in L_N:
t = time.perf_counter()
for i in range(n_samples):
km = convert_to_km(N)
dt = (time.perf_counter()-t)/n_samples
print ("convert(", N, ") took ", dt, "seconds")

6.0001 LECTURE 9

Measure time: compound

def compound(invest, interest, n_months):
total=0

for i in range(n_months):

total = total *x interest + invest
return total

6.0001 LECTURE 9

Measure time: sum

def sum_of(L):
total = 0.0
for elt in L:
total = total + elt
return total

= [1]
for i in range(8):
L_N.append(L_N[-1]%10)

for N in L_N:
L = range(N)
t = time.perf_counter()
s = sum_of(L)
print ("sum of ", N, "elements took ", time.perf_counter()-t, "seconds")

6.0001 LECTURE 9

Measure time: 1s In

def is_in(L, x):
for elt in L:

if elt==x: return True
return False

def binary_search(L, x):
""" returns True if x is in L
L must be sorted """
lo =0
hi = len(L)
while hi-lo > 1:
mid = (hi+lo) // 2
if L[mid] <= x:
lo = mid
else:
hi = mid
return L[lo] ==

6.0001 LECTURE 9

VMeasure time: diameter

def diameter(L):
"t assumes that L is a list of pairs of Cartesian coordinates
compares all pairs of points and returns the largest distance """
farthest_dist = 0
for i in range(len(L)):

for j in range(i+1, len(L)):
pl = L[i]
p2 = L[j]
dist = math.sqrt((pl[0]-p2[0])x*x*2
+ (p1l[1]-p2[1])**2)
if dist > farthest_dist:
farthest_dist = dist
return farthest_dist

6.0001 LECTURE 9

Measure time:
binary numbers

def all_binary_numbers(N):
def helper (prefix, N):
if N==0:
return [prefix]
return helper(prefix+'0', N-1) + helper(prefix+'1', N-1)
return helper('', N)

6.0001 LECTURE 9

Two different machines

Fredo’s laptop

convert (
convert (
convert (
convert (
convert (
convert (
convert (
convert (
convert (
convert (
compound (
compound|(
compound (
compound|(
compound|(
compound (
compound|(
compound (
compound|(
compound|(

0.0919969081879 seconds
0.0812351703644 seconds
0.0810060501099 seconds
0.0786969661713 seconds
0.0776309967041 seconds
0.0800149440765 seconds
0.0772659778595 seconds
0.0839469432831 seconds
100000000) toock 0.08B02690982819 seconds
1000000000) took 0.0796220302582 seconds
1) toock 0.0781879425049 seconds
10) toock 0.0791871547699 seconds
100) toock 0.0802779197693 seconds
1000) took 0.0811159610748 seconds
10000) took 0.079794883728 seconds
100000) took 0.0803499221802 seconds
1000000) took 0.180749893188 seconds
10000000) took 0.713826179504 seconds
100000000) took 6.48052787781 seconds
1000000000) tock 63.5682651997 seconds

1) took

10) took
100) took
1000) toock
10000) took
100000) tock

1000000) took
10000000) took

Fredo’s (old) desktop

convert (
convert (
convert (
convert (
convert (
convert (
convert(
convert (
convert (
convert (
compound (
compound (
compound (
compound (
compound (
compound (
compound (
compound (
compound (
comppund(

0.0651700496674 seconds
0.0838208198547 seconds
0.0830719470978 seconds
0.0816540718079 seconds
0.0824558734894 seconds
0.0837979316711 seconds
0.0837349891663 seconds
0.0843281745911 seconds
100000000) took 0.0838270187378 seconds
1000000000) took 0.0844709873199 seconds
1) took 0.083487033844 seconds
10) took 0.0834701061249 seconds
100) took 0.083163022995 seconds
1000) took 0.0843181610107 seconds
10000) took 0.0845410823822 seconds
100000) took 0.099858045578 seconds
1000000) took 0.183917045593 seconds
10000000) took 1.38667988777 seconds
100000000) took 12.7653880119 seconds
1000000000) took 126.978576899 seconds

1) took

10) took
100) took
1000) took
10000) took
100000) took

1000000) took
10000000) took

TIMING PROGRAMS IS
INCONSISTENT

= GOAL: to evaluate different algorithms

= Running time varies between algorithms v
= Running time varies between implementations) 4

= Running time varies between computers X

= Running time is not predictable for small inputs %

= Time varies for different inputs but
cannot really express a relationship
between inputs and time

=Can only be measured a-posteriori

6.0001 LECTURE 8

Don’t get me wrong

*Timing is a critical tool to assess the performance of
programs

o At the end of the day, it is is unreplaceable for real-world
assessment

=*But we will learn a complementary tool (asymptotic
complexity) that has other advantages

o A priori evaluation (before writing or running code)

o Assesses algorithm independently of machine and
implementation

> Provides direct insight to the design of efficient
algorithms

6.0001 LECTURE 9

= Assume these steps take def c_to_f(c):
constant time: return C*9.0/5 + 32
. . S
* Mathematical operations 200
def mysum(x) :
* Comparisons 0 total = 0
° Ass|gnments > o for |1 in range(x-l—l) :
: : : \OOY o5 total += 1 Q
° O o)
Accessing objects in S S ToraT . g’
memory L, o0

= Count number of
operations executed as
function of size of input

mysum = 1+3(x+1) ops

6.0001 LECTURE 8

Count oeprations

def is_in_counter(L, x):
global count
for elt in L:
count += 1

if elt==x: return True
return False

6.0001 LECTURE 9

Count operations, binary
search

def binary_search_counter(L, x):
""" returns True if x is in L
L must be sorted """
global count

lo =0

hi = len(L)

while hi-1lo > 1:
count +=1

mid = (hi+lo) // 2
count += 2
if L[mid] <= x:

lo = mid
else:
hi = mid
count += 1
count += 1

return L[lo] == x

6.0001 LECTURE 9

COUNTING OPERATIONS IS
BETTER, BUT ...

= GOAL: to evaluate different algorithms

= Count depends on algorithm v
= Count depends on implementations X
= Count independent of computers v
= No real definition of which operations to count ¥

v

= Count varies for different inputs and
can come up with a relationship
between inputs and the count

.. STILL NEED A BETTER WAY

* Timing and counting evaluate implementations

* Timing and counting evaluate machines

* Want to evaluate algorithm

* Want to evaluate scalability

* Want to evaluate in terms of input size

WHATIFI'TOLD YOU

NS
A BETTER WAY THERE IS A BETTER WAY

= Focus on idea of counting operations in an algorithm, but
not worry about small variations in implementation

= Focus on how algorithm performs when size of problem
gets arbitrarily large

= Want to relate time needed to complete a computation,
measured this way, against the size of the input to the
problem

= Need to decide what to measure, given that actual
number of steps may depend on specifics of trial

6.0001 LECTURE 8

HOW TO CHOOSE WHICH INPUT TO
USE TO EVALUATE A FUNCTION

= Want to express efficiency in terms of input, so need
to decide what is your input

= Could be an integer
--mysum (X)

= Could be length of list
- 1list sum(L)

" You decide when multiple parameters to a function
--search for elmt(L, e)

6.0001 LECTURE 8

DIFFERENT INPUTS CHANGE
HOW THE PROGRAM RUNS

= A function that searches for an element in a list
def search for elmt(L, e):
for 1 in L:
1f 1 == e:
return True
return False

= When e is first element in the list 2 BEST CASE
= When e is not in list 2> WORST CASE

= When look through about half of the elements in
list > AVERAGE CASE

= Want to measure this behavior in a general way

BEST, AVERAGE, WORST CASES

" Consider that you are given a list L. of some length 1en (L)

" Best case: minimum running time over all possible inputs of
a given size, 1en (L)

* Constant for search for elmt

* First element in any list

= Average case: average running time over all possible inputs
of a given size, len (L)
* Practical measure

= Worst case: maximum running time over all possible inputs
of a given size, len (L)

* Linearin length of list for search for elmt

* Must search entire list and not find it

* Focus on worst case in this class

6.0001 LECTURE 8

ORDERS OF GROWTH

= Want to evaluate programs when input is very big

= Want to express the growth of program’s run time
= Want to put an upper bound on growth
= Do not need to be precise: “order of” not “exact” growth

= We will look at largest factors in run time (which section
of the program will take the longest to run?)

6.0001 LECTURE 8

MEASURING ORDER OF Y
GROWTH: BIG O() NOTATION Ks=<s

= Big Oh notation measures an upper bound on the
asymptotic growth, often called order of growth

= Big Oh or O() is used to describe worst case

e Worst case tends to occur often and is the bottleneck when a
program runs

* Express rate of growth of program relative to the input
* Evaluate algorithm not machine or implementation

* A technicality

* When we say that the complexity of f is O(n), we mean that its
asymptotic growth is not worse than linear in n.

* It is an upper bound, not necessarily a tight bound

* In practice, we are usually looking for something close to a
tight bound

6.0001 LECTURE 8

EXACT STEPS vs Of)

def fact iter (n):
"""3ssumes n an int >= Oo"""

answer = 1
while n > 1: “k
answer *= n 0~
n —=1 ‘e’(t&ew()
return answer ©
= Computes factorial
\
Xx

= Number of steps: ¢

= Worst case asymptotic complexity: o
* Ignore additive constants
* Ignore multiplicative constants

6.0001 LECTURE 8

WHAT DOES O(N) MEASURE?

" Interested in describing how amount of time needed
grows as size of (input to) problem grows

= Given an expression for the number of operations
needed to compute an algorithm, want to know
asymptotic behavior as size of problem gets large

= Will focus on term that grows most rapidly

= |lgnore multiplicative constants, since want to know
how rapidly time required increases as increase size of
input

6.0001 LECTURE 8

SIMPLIFICATION EXAMPLES

= Drop constants and multiplicative factors

= Focus on dominant term

: n® + 2n + 2
- n? + 100000n + 31000

: log(n) + n + 4

SIMPLIFICATION EXAMPLES

= Drop constants and multiplicative factors

= Focus on dominant term

. 2
Ow\.n + 2n + 2

o) : n? + 100000n + 31000

onm : log(n) + n + 4

ANALYZING PROGRAMS AND
THEIR COMPLEXITY

= Combine complexity classes
* Analyze statements inside functions
* Apply some rules, focus on dominant term

Law of Addition for O():
* Used with sequential statements
* O(f(n)) + O(g(n)) is O(f(n) + g(n))
* For example,

for 1 1in range(n) :

o(n)

print('a'")

for jJ in range(n*n) :
print ('b"'") OUF)

is O(n) + O(n*n) = O(n+n?2) = O(n?) because of dominant term

ANALYZING PROGRAMS AND
THEIR COMPLEXITY

= Combine complexity classes
* Analyze statements inside functions

* Apply some rules, focus on dominant term

Law of Multiplication for O():
* Used with nested statements/loops
* O(f(n)) * O(g(n)) is O(f(n) * g(n))
* For example,
for 1 in range (n): o(n)

iteration
for J in range(n) : outer 100P

ch
print 'a' oln) for €2

is O(n)*O(n) = O(n*n) = O(n?) because the outer loop goes n
times and the inner loop goes n times for every outer loop iter.

6.0001 LECTURE 8 37

Big-O Complexity Chart

e (i)) R

o)

COMPLEXITY CLASSES

= 0(1) denotes constant running time

" O(log n) denotes logarithmic running time
= O(n) denotes linear running time
= O(n log n) denotes log-linear running time

= O(n°) denotes polynomial running time (cis a
constant)

= O(c") denotes exponential running time (cis a
constant being raised to a power based on size of
input)

6.0001 LECTURE 8

COMPLEXITY CLASSES

OR

-RED LOW TO HIGH

O (1) constant — |
O(log n) y <— logarithmic
T
O(n) linear — |
|
O(n log n): y « loglinear
v
O (n°) polynomial — |
O(cm)

r i «— exponential
6.0001 LCTURE8

Big-O Complexity Chart

[Horrible IBad] [Fairj lGood] [Excellent]

O(n!) | 0@7n)

O(n"2)

Operations

Elements

6.0001 LECTURE 9

COMPLEXITY GROWTH

O(1)

O(log n) 1 2 3 6

O(n) 10 100 1000 1000000

O(n log n) 10 200 3000 6000000

O(n?) 100 10000 1000000 1000000000000
O(Zn) 1024 12676506 1071508607186267320948425 GOOd LUCk”

0490600018105614048117055

00228229 3360744375038837035105112
4936122493198378815695858

40149670 1575946729175531468251871

3205376 4528569231404359845775746
9857480393456777482423098
5421074605062371141877954
1821530464749835819412673
9876755916554394607706291
4571196477686542167660429
8316526243868372056680693
76

6.0001 LECTURE 8

CONSTANT
COMPLEXITY

CONSTANT COMPLEXITY

= Complexity independent of inputs

= Very few interesting algorithms in this class, but can
often have pieces that fit this class

= Can have loops or recursive calls, but number of
iterations or calls independent of size of input

6.0001 LECTURE 10

CONSTANT COMPLEXITY:
EXAMPLE 1

® def convert_to_km(m):
return m x 1.609

CONSTANT COMPLEXITY:
EXAMPLE 2 (with a twist)

= Multiply x by y

def mul(x, vy):
tot = 0
for 1 in range(y):
tot += X

return tot

= complexity in terms of x: O(1)

= complexity in terms of y: O(y)

LINEAR
COMPLEXITY

LINEAR COMPLEXITY

def compound(invest, interest, n_months):
total=0
for i in range(n_months):
total = total x interest + invest
return total

compound (
compound (
compound (
compound (
compound (
compound (
compound (
compound (

1) took 2.1050000214017928e-06 seconds

10) took 2.3679986043134704e-06 seconds
100) took 5.580001015914604e-06 seconds
1000) took 5.0598000598256476e-05 seconds
10000) took 0.0005178840001462959 seconds
100000) took ©0.0051936260006186785 seconds
1000000) took 0.051874884999051574 seconds
10000000) took 0.46471583300080965 seconds

6.0001 LECTURE 9

LINEAR COMPLEXITY

= Simple iterative loop algorithms

= Loops must be a function of input
" Linear search a list to see if an element is present

= Recursive functions with one recursive call and
constant overhead for call

6.0001 LECTURE 10

INEAR COMPLEXITY:
-XAMPLE 1

= Add characters of a string, assumed to be composed
of decimal digits

def add digits(s):
val = 0
for ¢ in s:

val += int(c)

return val
= O(len(s))

= O(n) where n is len(s)

INEAR COMPLEXITY:
- XAMPLE 2

" Loop to find the factorial of a number
def fact iter(n):
prod = 1

for i in range(l, n+l):
prod *= 1
return prod
= Number of times around loop is n
= Number of operations inside loop is a constant

= Overall just O(n)

INEAR COMPLEXITY:
-XAMPLE 3

def fact recur(n):
""" 3ssume n >= 0 """
1f n <= 1:
return 1
else:
return n*fact recur(n - 1)

= Computes factorial recursively

= |f you time it, notice that it runs a bit slower than
iterative version due to function calls

= O(n) because the number of function calls is linear in n

" |terative and recursive factorial implementations are
the same order of growth

6.0001 LECTURE 10

Funny thing about factorial
and python

iterative
iterative
iterative
iterative
iterative
iterative

fact(
fact(
fact (
fact (
fact (
fact (

1) took 1.8179998733103275e-06 seconds

10) took 1.899001290439628e-06 seconds
100) took 8.716999218449928e-06 seconds
1000) took ©0.00029863599957025144 seconds
10000) took 0.022074619000704843 seconds
100000) took 2.2046561570004997 seconds

sEventually grows faster than linear

="Because Python increases the size of integers, which
vields more costly operations

=For this class: ignore such effects

6.0001 LECTURE 9

LINEAR SEARCH
ON UNSORTED LIST

def is_in(L, X):
for elt in L:
if elt==x: return True
return False

Must look through all elements to decide it’s not there
= O(len(L)) for the loop * O(1) to test if e == L][i]

= Overall complexity is O(n) — where n is len(L)

= O(len(L))

LINEAR SEARCH
ON UNSORTED LIST

. . W
def is_in(L, x): € e
for elt in L: o2 e gt
. \\ O
if elt==x: return True @ (& o
return False ““‘Qac““o
.\((\

Must look through all elements to decide it’s not there
= O(len(L)) for the loop * O(1) to test if e == L][i]
= Overall complexity is O(n) — where n is len(L)

= O(len(L))

6.0001 LECTURE 9

POLYNOMIAL
COMPLEXITY

QUADRATIC COMPLEXITY

def diameter(L):
" assumes that L is a list of pairs of Cartesian coordinates

compares all pairs of points and returns the largest distance """
farthest_dist = 0

for i in range(len(L)):

for j in range(i+1, len(L)):
pl = L[i]
p2 = LI[jl
d1 t = math.sqrt((pl[0]-p2[0])x**2
+ (p1[1]-p2[1])*x2)
if dist > farthest_dist:
farthest_dist = dist
return farthest_dist

diameter of 10 points took 3.1518999094259925e-05 seconds
diameter of 100 points took 0.002390421001109644 seconds
diameter of 1000 points took 0.23409131500011426 seconds
diameter of 10000 points took 16.50804504900043 seconds

6.0001 LECTURE 9

Predictable without running

def diameter(L):
"t assumes that L is a list of pairs of Cartesian coordinates
compares all pairs of points and returns the largest distance """
farthest_dist = 0
for i in range(len(L)):

for j in range(i+1, len(L)):
pl = L[i]
p2 = LI[jl
d1 t = math.sqrt((p1[0]-p2[0])x*x*2
+ (p1[1]-p2[1])*x2)
if dist > farthest_dist:
farthest_dist = dist
return farthest_dist

6.0001 LECTURE 9

POLYNOMIAL COMPLEXITY
(OFTEN QUADRATIC)

= Most common polynomial algorithms are quadratic,
i.e., complexity grows with square of size of input

= Commonly occurs when we have nested loops or
some recursive function calls

QUADRATIC COMPLEXITY:
EXAMPLE 1

def g(n):
""" assume n >= 0 """
x =0
for 1 in range(n):
for j in range(n):
X += 1
return X

= Computes n? very inefficiently
* When dealing with nested loops, look at the ranges

" Nested loops, each iterating n times
= O(n?)

QUADRATIC COMPLEXITY:
EXAMPLE 2

= Find if L1 is a subset of L2, if all elements in L1 are in L2
def is subset(Ll, L2):
for el in Ll:
matched = False
for e2 in L2:
1if el == e2:

matched = True
break
1f not matched:
return False

return True

QUAD
EXAM

RATIC COMPLEXITY:

PLE 2

def is subset(Ll, L2): Outer loop executed
for el in L1: len(L1) times
matched = False Each iteration will execute
for e2 in L2: inner loop up to len(L2)
if el == e2: times

if not

matched = True Oflen(L1)*len(L2))

break Worst case when L1 and L2

matched: same length, none of

return False elements of L1 in L2

return True O(Ien(Ll)Z)

6.0001 LECTURE 9

QUADRATIC COMPLEXITY:
EXAMPLE 3

def diameter(L):
"t assumes that L is a list of pairs of Cartesian coordinates
compares all pairs of points and returns the largest distance """
farthest_dist = 0
for i in range(len(L)):

for j in range(i+1, len(L)):
pl = L[i]
p2 = LI[jl
d1 t = math.sqrt((p1[0]-p2[0])x*x*2
+ (p1[1]-p2[1])*x2)
if dist > farthest_dist:
farthest_dist = dist
return farthest_dist

if not(e in unique):
unique.append(e)
return unique

6.0001 LECTURE 9

QUADRATIC COMPLEXITY:

EXAMPLE 3

def intersect(Ll, L2):
tmp = []
for el in Ll:
for e2 in L2:
if el == e2:

tmp.append(el)

unique = []
for e in tmp:

if not(e in unique):
unique.append(e)

return unique

6.0001 LECTURE 9

First nested loop takes
O(len(L1)*len(L2)) steps.

Second loop takes at most
O(len(L1)*len(L2)) steps.
Typically not this bad.

Overall O(len(L1)*len(L2))

Cubic complexity

= Matrix-Matrix multiply

=Cubic in matrix length N

> N*N output coefficients,
each coefficient is a sum over N values

6.0001 LECTURE 9

EXPONENTIAL
COMPLEXITY

EXPONENTIAL COMPLEXITY

def all_binary_numbers(N):
def helper (prefix, N):
if N==0:
return [prefix]
return helper(prefix+'@', N-1) + helper(prefix+'1', N-1)
return helper('', N)

binary numbers of 5 digits took 3.156400089210365e-05 s
binary numbers of 10 digits took 0.0007744319991616067 s
binary numbers of 15 digits took 0.0165603879995615 s
binary numbers of 20 digits took 0.4674571899995499 s
binary numbers of 25 digits took 18.066407528000127 s

6.0001 LECTURE 9

EXPONENTIAL COMPLEXITY

= Recursive functions where have more than one
recursive call for each size of problem

o (bad algorithm for) Fibonacci, power set

= Many important problems are inherently exponential
o Unfortunate, as cost can be high

> Will lead us to consider approximate solutions more
quickly

6.0001 LECTURE 10

EXPONENTIAL COMPLEXITY

N
GENERATE SUBSETS @
: <93°\<\
def gen_subsets(L): 60\)0&\\ e\"'@eﬂz
if len(L) == 0: .‘\\0\)&\"’5;\@(09“
return [[]] bse&sﬁ*\&_\&;\’o\"
smaller = gen subsets(L[:-1]) 3\\5\;6\\6‘0 &
extra = L[-1:] @ 200’
new = []) ‘i\\:@e“‘
for small in smaller: (o a\\\:,c\:\\\’as" N\‘\(\\a?i R
new.append (small+extra) o“e‘ e‘\\ose«\d’e«\
return smaller+new CO«\‘::;(\&@&
e\

6.0001 LECTURE 10

EXPONENTIAL COMPLEXITY
GENERATE SUBSETS

def gen subsets(L): = Assuming append is
if len(L) == 0: constant time
return [[]]
smaller = gen subsets(L[:-1]) = Time includes time to
extra = L[-1:] solve smaller problem,
new = [] plus time needed to
for small in smaller: make a copy of all

new.append(small+extra) elements in smaller
problem

return smaller+new

EXPONENTIAL COMPLEXITY
GENERATE SUBSETS

def gen subsets(L): " But important to think
if len(L) == 0: about size of smaller
return [[]] -
smaller = gen subsets(L[:-1]) = Know that for a set of size k
extra = L[-1:] there are 2k cases
new = []

= So to solve need 21 + 2n-2
+ ... +20 steps

for small in smaller:
new.append(small+extra)

return smaller+new = Math tells us this is O(2")

COMPLEXITY OF
ITERATIVE FIBONACCI

- -fifb‘iterén) : = Best case:
1 n == :
return O (6ﬁ§6 ()(1)
elif n == 1: CO\'\«\ .
return 1 O = Worst case:
o s 0(1)+0(n) +0(1) > O(n)
fib 1 =0 CO(\,\'\
fib ii = 1 o\
for 1 in range(n-1):
tmp = fib 1 Qpeﬁ
fib i = fib ii oﬁ“

fib ii = tmp + fib ii

return fib i1

COMPLEXITY OF
RECURSIVE FIBONACC]

def fib recur (n) :
""" 3ssumes n oan int >= Q0 """
1f n == 0:
return O
elif n == 1:
return 1
else:
return fib recur(n-1) + fib recur (n-2)

= Worst case:
0(2")

COMPLEXITY OF RECURSIVE
FIBONACCI

N

fib (5)

fib (4) fib (3)
fib (3) fib (2) fib (2) fib (1)
fib(2) fib (1)

= Can do a bit better than 2" since tree thins out to the right

" But complexity is still order exponential

BIG OH SUMMARY

= Compare efficiency of algorithms
* notation that describes growth

* lower order of growth is better
* independent of machine or specific implementation

= Using Big Oh
* describe order of growth
* asymptotic notation
* upper bound
* worst case analysis

6.0001 LECTURE 9

IN SUMMARY

"Empirical Timing is a critical tool to assess the
performance of programs

> Only reliable way to take into account complexities of
machine, implementation, and inputs

"But asymptotic complexity has other advantages
o A priori evaluation (before writing or running code)

> Assesses algorithm independently of machine and
implementation

> Provides direct insight to the design of efficient
algorithms

6.0001 LECTURE 9

