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TODAY
§ Formally evaluate programs
§ Efficiency in time
§ Orders of growth, big Oh notation
§ Examples of different complexity cases
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Assigned Reading
§Chapter 9
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https://mitpress.mit.edu/sites/default/files/Guttag_errata_revised_083117.pdf



PROGRAM 
EFFICIENCY
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WRITING EFFICIENT 
PROGRAMS
§ So far, we have emphasized correctness. It is the first thing 
to worry about!
§ But sometimes that is not enough
§ Problems can be very complex (as we shall see when we 
get to optimization in 6.0002)

§ But data sets can be 
very large: in 2014 
Google served 
30,000,000,000,000 
pages covering 
100,000,000 GB of data
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EFFICIENCY IS IMPORTANT
§ Separate time and space efficiency of a program

§ Tradeoff between them: can use up a bit more 
memory to store values for quicker lookup later

§ Challenges in understanding efficiency
◦ A program can be implemented in many different ways
◦ You can solve a problem using only a handful of different 

algorithms

§ Want to separate choice of implementation from 
choice of more abstract algorithm
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EVALUATING PROGRAMS
§ Measure with a timer
§ Count the operations
§ Abstract notion of order of growth
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Aside: MODULES
§A module is a set of python definitions and statements 
stored in a file

§You first need to “import” the module

§call functions inside the module using the module’s 
name and dot notation

§module.function()
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TIMING A PROGRAM
§ Use time module
§ Recall that 
importing means to 
bring in that class 
into your own file
§ Start clock
§ Call function
§ Stop clock

import time

def convert_to_km(m):
return m * 1.609 

t0 = time.perf_counter()

c_to_f(100000)

t1 = time.perf_counter() - t0

print("t =", t1, "s,")
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Example: Convert, compound
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Measure time: convert
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Measure time: convert
multiple samples
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Measure time: compound
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Measure time: sum
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Measure time: is_in
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Measure time: diameter
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Measure time: diameter
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Measure time: diameter
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Measure time: 
binary numbers
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Two different machines
Fredo’s laptop Fredo’s (old) desktop



TIMING PROGRAMS IS 
INCONSISTENT
§ GOAL: to evaluate different algorithms
§ Running time varies between algorithms
§ Running time varies between implementations
§ Running time varies between computers
§ Running time is not predictable for small inputs

§ Time varies for different inputs but 
cannot really express a relationship 
between inputs and time

§Can only be measured a-posteriori
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Don’t get me wrong
§Timing is a critical tool to assess the performance of 
programs
◦ At the end of the day, it is is unreplaceable for real-world 

assessment

§But we will learn a complementary tool (asymptotic 
complexity) that has other advantages
◦ A priori evaluation (before writing or running code)
◦ Assesses algorithm independently of machine and 

implementation
◦ Provides direct insight to the design of efficient 

algorithms
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COUNTING OPERATIONS
§ Assume these steps take 
constant time:
• Mathematical operations
• Comparisons
• Assignments
• Accessing objects in 

memory

§ Count number of 
operations executed as 
function of size of input

def c_to_f(c):
return c*9.0/5 + 32 

def mysum(x):
total = 0
for i in range(x+1):

total += i
return total
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1 op

1 op

2 ops

mysum à 1+3(x+1) ops

loop 

x tim
es



Count oeprations
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Count operations, binary 
search
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COUNTING OPERATIONS IS 
BETTER, BUT …
§ GOAL: to evaluate different algorithms
§ Count depends on algorithm
§ Count depends on implementations
§ Count independent of computers
§ No real definition of which operations to count

§ Count varies for different inputs and  
can come up with a relationship 
between inputs and the count
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… STILL NEED A BETTER WAY
• Timing and counting evaluate implementations
• Timing and counting evaluate machines

•Want to evaluate algorithm
•Want to evaluate scalability
•Want to evaluate in terms of input size
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A BETTER WAY
§ Focus on idea of counting operations in an algorithm, but 
not worry about small variations in implementation

§ Focus on how algorithm performs when size of problem 
gets arbitrarily large

§ Want to relate time needed to complete a computation, 
measured this way, against the size of the input to the 
problem

§ Need to decide what to measure, given that actual 
number of steps may depend on specifics of trial
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HOW TO CHOOSE WHICH INPUT TO 
USE TO EVALUATE A FUNCTION
§ Want to express efficiency in terms of input, so need 
to decide what is your input
§ Could be an integer 

-- mysum(x)
§ Could be length of list 

-- list_sum(L)
§ You decide when multiple parameters to a function

-- search_for_elmt(L, e)

6.0001 LECTURE 8 27



DIFFERENT INPUTS CHANGE 
HOW THE PROGRAM RUNS
§ A function that searches for an element in a list
def search_for_elmt(L, e):

for i in L:
if i == e:

return True
return False

§ When e is first element in the list à BEST CASE
§ When e is not in list à WORST CASE
§ When look through about half of the elements in 
list à AVERAGE CASE
§ Want to measure this behavior in a general way

6.0001 LECTURE 8 28



BEST, AVERAGE, WORST CASES
§ Consider that you are given a list L of some length len(L)
§ Best case: minimum running time over all possible inputs of 
a given size, len(L)
• Constant for search_for_elmt
• First element in any list

§ Average case: average running time over all possible inputs 
of a given size, len(L)
• Practical measure

§ Worst case: maximum running time over all possible inputs 
of a given size, len(L)
• Linear in length of list for search_for_elmt
• Must search entire list and not find it
• Focus on worst case in this class
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ORDERS OF GROWTH
§ Want to evaluate programs when input is very big
§ Want to express the growth of program’s run time
§ Want to put an upper bound on growth

§ Do not need to be precise: “order of” not “exact” growth

§ We will look at largest factors in run time (which section 
of the program will take the longest to run?)

6.0001 LECTURE 8 30



MEASURING ORDER OF 
GROWTH: BIG O() NOTATION
§ Big Oh notation measures an upper bound on the 
asymptotic growth, often called order of growth
§ Big Oh or O() is used to describe worst case
• Worst case tends to occur often and is the bottleneck when a 

program runs
• Express rate of growth of program relative to the input
• Evaluate algorithm not machine or implementation

• A technicality
• When we say that the complexity of f is O(n), we mean that its 

asymptotic growth is not worse than linear in n.
• It is an upper bound, not necessarily a tight bound
• In practice, we are usually looking for something close to a 

tight bound
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EXACT STEPS vs O()
def fact_iter(n):

"""assumes n an int >= 0"""
answer = 1
while n > 1:

answer *= n
n -= 1

return answer

§ Computes factorial
§ Number of steps: 
§ Worst case asymptotic complexity: 
• Ignore additive constants
• Ignore multiplicative constants

1 + 7n + 1

O(n)

temp = n-1

n = temp
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WHAT DOES O(N) MEASURE?
§ Interested in describing how amount of time needed 
grows as size of (input to) problem grows

§ Given an expression for the number of operations 
needed to compute an algorithm, want to know 
asymptotic behavior as size of problem gets large

§ Will focus on term that grows most rapidly

§ Ignore multiplicative constants, since want to know 
how rapidly time required increases as increase size of 
input
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SIMPLIFICATION EXAMPLES
§ Drop constants and multiplicative factors
§ Focus on dominant term

: n2 + 2n + 2

: n2 + 100000n + 31000 

: log(n) + n + 4
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SIMPLIFICATION EXAMPLES
§ Drop constants and multiplicative factors
§ Focus on dominant term

: n2 + 2n + 2

: n2 + 100000n + 31000 

: log(n) + n + 4

O(n2)

O(n2)

O(n)
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ANALYZING PROGRAMS AND 
THEIR COMPLEXITY
§ Combine complexity classes
• Analyze statements inside functions
• Apply some rules, focus on dominant term

Law of Addition for O(): 
• Used with sequential statements
• O(f(n)) + O(g(n)) is O( f(n) + g(n) )
• For example, 

for i in range(n):
print('a')

for j in range(n*n):
print('b')

is O(n) + O(n*n) = O(n+n2) = O(n2) because of dominant term
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ANALYZING PROGRAMS AND 
THEIR COMPLEXITY
§ Combine complexity classes
• Analyze statements inside functions
• Apply some rules, focus on dominant term

Law of Multiplication for O(): 
• Used with nested statements/loops
• O(f(n)) * O(g(n)) is O( f(n) * g(n) )
• For example, 

for i in range(n):
for j in range(n):

print 'a'

is O(n)*O(n) = O(n*n) = O(n2) because the outer loop goes n 
times and the inner loop goes n times for every outer loop iter.
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COMPLEXITY CLASSES
§ O(1) denotes constant running time
§ O(log n) denotes logarithmic running time
§ O(n) denotes linear running time
§ O(n log n) denotes log-linear running time
§ O(nc) denotes polynomial running time (c is a 
constant)
§ O(cn) denotes exponential running time (c is a 
constant being raised to a power based on size of 
input)
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COMPLEXITY CLASSES 
ORDERED LOW TO HIGH

O(1) : constant

O(log n) : logarithmic

O(n) : linear

O(n log n): log linear

O(nc) : polynomial

O(cn) : exponential
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c is a 

constant




