PROGRAM EFFICIENCY

(download slides and .py files to follow along!)

6.0001 LECTURE 9

TODAY

" Formally evaluate programs

= Efficiency in time
= Orders of growth, big Oh notation

= Examples of different complexity cases

6.0001 LECTURE 9 2

Assigned Reading

"Chapter 9 ”ﬁhtroduction to
" Computation
" «and Programming

sing Python

With Application _tor'Undgrfsédirig Data

second edition ,jt-'"

/ P A
John V. Guttag

£

https://mitpress.mit.edu/sites/default/files/Guttag _errata_revised 083117.pdf

6.0001 LECTURE 1 3

PROGRAM
cFFICIENCY

WRITING EFFICIENT
PROGRAMS

= So far, we have emphasized correctness. It is the first thing
to worry about!

" But sometimes that is not enough

" Problems can be very complex (as we shall see when we
get to optimization in 6.0002)

gi&l Twitter users send out 2 7 7,000 B30 A7 10112

tweets

= But data sets can be

very large: in 2014 |
n Facebook processes 350GE of data I

Google served e B

30,000,000,000,000 100 hours of new video are upIoadedV _A
. on YouTube e
pages covering

IO0,000,000 GB Of data ;J‘ Google processes more than 2 MINION seach

queries

6.0001 LECTURE 8 5

EFFICIENCY IS IMPORTANT

= Separate time and space efficiency of a program

" Tradeoff between them: can use up a bit more
memory to store values for quicker lookup later

" Challenges in understanding efficiency

o A program can be implemented in many different ways

> You can solve a problem using only a handful of different
algorithms

= Want to separate choice of implementation from
choice of more abstract algorithm

6.0001 LECTURE 8 6

EVALUATING PROGRAMS

= Measure with a timer

" Count the operations

= Abstract notion of order of growth

Aside: MODULES

"A module is a set of python definitions and statements
stored in a file

"You first need to “import” the module

scall functions inside the module using the module’s
name and dot notation

*module.function()

6.0001 LECTURE 9 8

TIMING A PROGRAM :

= Use time module import time

" Recall that
importing means to def convert to km(m):
bring in that class return m * 1.609

into your own file

= Start clock —_— tO = time.perf counter ()

\

—wa)
= Call function — GMHOOOOO)

—— tl1 = time.perf counter () - t0
L

= Stop clock

print ("t =", t1, "s,")

6.0001 LECTURE 8 9

Example: Convert, compound

def convert_to_km(m):
return m x 1.609

def compound(invest, interest, n_months):
total=0
for i in range(n_months):
total = total * interest + invest
return total

6.0001 LECTURE 9

10

Measure time: convert

LN = [1]
for i in range(7):
L_N.append(L_N[-1]%10)

for N in L_N:
= time.perf_counter()
km = convert_to_km(N)
dt = time.perf_counter()-t
print ("convert(", N, ") took ", dt, "seconds")

6.0001 LECTURE 9

Measure time: convert
multiple samples

n_samples = 50

for N in L_N:
t = time.perf_counter()
for i in range(n_samples):
km = convert_to_km(N)
dt = (time.perf_counter()-t)/n_samples
print ("convert(", N, ") took ", dt, "seconds")

convert(1) took 2.1178973838686943e—-07 seconds
convert(10) took 2.1529034711420535e-07 seconds
convert(100) took 2.0069011952728033e—-07 seconds
convert(1000) took 2.1399988327175378e—-07 seconds
convert(10000) took 2.2487947717308999e-07 seconds
convert(100000) took 1.9868952222168446e—-07 seconds
convert(1000000) took 2.4397042579948903e-07 seconds
convert(10000000) took 2.021400723606348e—07 seconds

6.0001 LECTURE 9

12

Measure time: compound

def compound(invest, interest, n_months):
total=0
for i in range(n_months):
total = total *x interest + invest
return total

WA

_ : _ ld
compound(1) took 1.2168078683316707e-06 seconds Y ‘}taf
compound(10) took 2.0174076780676843e-06 seconds v
compound(100) took 6.968004163354635e-06 seconds

compound(1000) took 6.973260315135121e-05 seconds
compound(10000) took ©0.000683364795986563 seconds
compound(100000) took 0.006051766208838671 seconds
compound((1000000) took ©0.04472687559900805 seconds
compound(110000000) took 0.429290418792516 seconds >l0"

(0 T

6.0001 LECTURE 9

Measure time: sum

def sum_of(L):
total = 0.0
for elt in L:
total = total + elt
return total

= [1]
for i in range(8):
L_N.append(L_N[-1]%10)

N in L_N:

L = range(N)

t = time.perf_counter()

s = sum_of(L)

print ("sum of ", N, "elements took ", time.perf_counter()-t, "seconds")

6.0001 LECTURE 9 14

Measure time: IS In

def is_in(L, Xx):
for elt in L:
if elt==x: return True
return False

def binary_search(L, x):
""" returns True 1f x 1s 1in L
L must be sorted """
lo 0
hi = len(L)
while hi-1o > 1:
mid = (hi+lo) // 2
if L[mid] <= x:
lo = mid
else:
hi = mid
return L[lo] == x

6.0001 LECTURE 9

Measure time: diameter

def diameter(L):

" assumes that L is a list of pairs of Cartesian coordinates

compares all pairs of points and returns the largest distance
farthest_dist = 0

for i in range(len(L)):

for j in range(i+1, len(L)):

pl = L[i]
p2 = LI[j]
dist = math.sqrt((pl[0]-p2[0])**2

+ (p1l[1]1-p2[1])%%2)
if dist > farthest_dist:
farthest_dist = dist
return farthest_dist

6.0001 LECTURE 9

16

Measure time: diameter

def diameter(L):

" assumes that L is a list of pairs of Cartesian coordinates

compares all pairs of points and returns the largest distance
farthest_dist = 0

for i in range(len(L)):

for j in range(i+1, len(L)):

pl = L[i]
p2 = LI[j]
dist = math.sqrt((pl[0]-p2[0])**2

+ (p1l[1]1-p2[1])%%2)
if dist > farthest_dist:
farthest_dist = dist
return farthest_dist

6.0001 LECTURE 9

16

Measure time: diameter

def diameter(L):

" assumes that L is a list of pairs of Cartesian coordinates

compares all pairs of points and returns the largest distance """
farthest_dist = 0

for i in range(len(L)):

for j in range(i+1, len(L)):
pl = L[i]
p2 = LI[j]
dist = math.sqrt((p1[@]-p2[0])x*x*2
+ (p1[1]1-p2[1])**2)
if dist > farthest_dist:
farthest_dist = dist
return farthest_dist

diameter of 10 points took 7.76359811425209e-05 seconds

diameter of 100 points took 0.0028979270136915147 seconds
diameter of 1000 points took 0.18294400698505342 seconds
diameter of 10000 points took 15.902969222981483 seconds

6.0001 LECTURE 9 16

Measure time:
binary numbers

def all_binary_numbers(N):
def helper (prefix, N):

if N==0:

return [prefix]

return helper(prefix+'0', N-1) + helper(prefix+'1', N-1)

return helper('', N)

binary numbers of
binary numbers of
binary numbers of
binary numbers of
binary numbers of

5 diéits took 3.0381022952497005e-05 s

10 digits took
15 digits took
20 digits took
25 digits took

6.0001 LECTURE 9

0.0007962230010889471 s
0.019941627979278564 s
0.4996888790046796 s
19.526876593008637 s

17

Two different machines

Fredo’s laptop

convert (
convert (
convert (
convert (
convert (
convert (
convert (
convert (
convert (
convert (
compound (
compound (
compound (
compound (
compound (
compound (
compound (
compound (
compound (
compound (

0.0919969081879 seconds
0.0812351703644 seconds
0.0810060501099 seconds
0.0786969661713 seconds
0.0776309967041 seconds
0.0800149440765 seconds
0.0772659778595 seconds
0.0839469432831 seconds
100000000) toock 0.0B026909B2819 seconds
1000000000) took 0.0796220302582 seconds
l) took 0.0781879425049 seconds
10) tock 0.0791871547699 seconds
100) took 0.08B02779197693 seconds
1000) took 0.0B11159610748 seconds
10000) took 0.0797948B83728 seconds
100000) took 0.0803499221802 seconds
1000000) took 0.180749B93188 seconds
10000000) toock 0.7138B26179504 seconds
100000000) tock 6.48052787781 seconds
1000000000) took 63.5682651997 seconds

1) took

10) took
100) took
1000) tock
10000) teook
100000) took

1000000) took
10000000) took

Fredo’s (old) desktop

convert (
convert (
convert (
convert (
convert (
convert (
convert (
convert (
convert (
convert (
compound (
compound (
compound (
compound (
compound (
compound (
compound (
compound (
compound (
comppund(

0.0651700496674 seconds
0.0838208198547 seconds
0.0830719470978 seconds
0.0816540718079 seconds
0.0824558734894 seconds
0.0837979316711 seconds
0.0837349891663 seconds
0.0843281745911 seconds
100000000) took 0.0838270187378 seconds
1000000000) took 0.0844709873199 seconds
1l) took 0.083487033844 seconds
10) took 0.0834701061249 seconds
100) took 0.083163022995 seconds
1000) took 0.0843181610107 seconds
10000) took 0.0845410823822 seconds
100000) took 0.099858045578 seconds
1000000) took 0.183917045593 seconds
10000000) took 1.38667988777 seconds
100000000) took 12.7653880119 seconds
1000000000) took 126.978576899 seconds

1) took

10) took
100) took
1000) took
10000) took
100000) took

1000000) took
10000000) took

TIMING PROGRAMS IS
INCONSISTENT

= GOAL: to evaluate different algorithms

= Running time varies between algorithms Vg
= Running time varies between implementations) ¢
" Running time varies between computers X

" Running time is not predictable for small inputs %

" Time varies for different inputs but
cannot really express a relationship
between inputs and time

X

6.0001 LECTURE 8 19

"Can only be measured a-posteriori
/——\.

Don’t get me wrong

"Timing is a critical tool to assess the performance of
programs

o At the end of the day, it is is unreplaceable for real-world
assessment

"But we will learn a complementary tool (asymptotic
complexity) that has other advantages

o A priori evaluation (before writing or running code)

> Assesses algorithm independently of machine and
implementation

o Provides direct insight to the design of efficient
algorithms

6.0001 LECTURE 9 20

= Assume these steps take def ¢ to f(c):
constant time return|c*9.0/5 + 32
. . S
* Mathematical operations 2 OF
def mysum(x) :
* Comparisons 0 total = 0 |
e Assignments > o for |1 1n range (x+1) :
. . . \OOF o total += i 0
° O O
Accessing objects in S SoEataT \

memory 2 0%

" Count number of
operations executed as
function of size of input

mysum =2 1+3(x+1) ops

6.0001 LECTURE 8 21

(gtobal) count
Oorelt in L:

count += 1

if elt==x:
return False

return True

6.0001 LECTURE 9

22

Count operations, binary
search

def binary_search_counter(L, x):
""" returns True if x is in L
L must be sorted """
global count

10 - 0 for 10000 element, brute-force took on average 5000 ops
h — -l. (L) 9.988015978695074 times more than for 10 times fewer elements
1 en for 10000 element, binary search took on average 67 ops
1.4195804195804198 times more than for 10 times fewer elements
Wh lle h_']_ -l_o > 1 for 100000 element, brute-force took on average 50000 ops
9.998800159978668 times more than for 10 times fewer elements
— for 100000 element, binary search took on average 82 ops
count + 1 1.2216748768475907 times more than for 10 times fewer elements
. — . for 1000000 element, brute-force took on average 500000 ops
mld — (hl+ 10) // 2 9,99988000159998 times more than for 10 times fewer elements
for 1000000 element, binary search took on average 97 ops
count += 2 1.1814516129032258 times more than for 10 times fewer elements
if LImid] <= x:
lo = mid
else:
hi = mid
count += 1
count += 1

return L[lo] == x

6.0001 LECTURE 9 23

COUNTING OPERATIONS IS
BETTER, BUT ...

= GOAL: to evaluate different algorithms

" Count depends on algorithm v
" Count depends on implementations X
= Count independent of computers v
= No real definition of which operations to count ¥

v

" Count varies for different inputs and
can come up with a relationship
between inputs and the count

.. STILL NEED A BETTER WAY

* Timing and counting evaluate implementations

* Timing and counting evaluate machines

* Want to evaluate algorithm

* Want to evaluate scalability

* Want to evaluate in terms of input size

WHAT IFITOLD YOU

A
A BETTER WAY THERE IS A BETTER WAY

" Focus on idea of counting operations in an algorithm, but
not worry about small variations in implementation

" Focus on how algorithm performs when size of problem
gets arbitrarily large

= Want to relate time needed to complete a computation,
measured this way, against the size of the input to the
problem

" Need to decide what to measure, given that actual
number of steps may depend on specifics of trial

6.0001 LECTURE 8 26

HOW TO CHOOSE WHICH INPUT TO
USE TO EVALUATE A FUNCTION

" Want to express efficiency in terms of input, so need
to decide what is your input

" Could be an integer
--mysum (x)

" Could be length of list
- 1list sum (L)

" You decide when multiple parameters to a function
--search for elmt (L, e)

6.0001 LECTURE 8 27

DIFFERENT INPUTS CHANGE
HOW THE PROGRAM RUNS

= A function that searches for an element in a list
def search for elmt (L, e):
for 1 1n L:
1f 1 == e:
return True
return False

= When e is first element in the list 2 BEST CASE
= When e is not in list > WORST CASE

= When look through about half of the elements in
list > AVERAGE CASE

= Want to measure this behavior in a general way

BEST, AVERAGE, WORST CASES

" Consider that you are given a list L. of some length 1en (L)

" Best case: minimum running time over all possible inputs of
a given size, 1len (L)

* Constant for search for elmt

* First element in any list

= Average case: average running time over all possible inputs
of a given size, 1en (L)
* Practical measure

= Worst case: maximum running time over all possible inputs
of a given size, 1en (L)

* Linearin length of list for search for elmt

* Must search entire list and not find it

* Focus on worst case in this class

6.0001 LECTURE 8 29

ORDERS OF GROWTH

" Want to evaluate programs when input is very big

" Want to express the growth of program’s run time
" Want to put an upper bound on growth
" Do not need to be precise: “order of” not “exact” growth

" We will look at largest factors in run time (which section
of the program will take the longest to run?)

6.0001 LECTURE 8 30

MEASURING ORDER OF hid
GROWTH: BIG O() NOTATION

= Big Oh notation measures an upper bound on the
asymptotic growth, often called order of growth

" Big Oh or O() is used to describe worst case

 Worst case tends to occur often and is the bottleneck when a
program runs

* Express rate of growth of program relative to the input
* Evaluate algorithm not machine or implementation

* A technicality

* When we say that the complexity of f is O(n), we mean that its
asymptotic growth is not worse than linear in n.

* It is an upper bound, not necessarily a tight bound

* In practice, we are usually looking for something close to a
tight bound

6.0001 LECTURE 8 31

EXACT STEPS vs O()

def fact 1ter(n):
"""3ssumes n an int >= Oo"""

answer = 1

while n > 1: “k
answer *= n z
n —=1 \,6((1 »@«\Q

(\/
return answer

= Computes factorial -) (n\

= Number of steps: x1°

= Worst case asymptotic complexity: o™
* |gnore additive constants
* |gnore multiplicative constants

32

6.0001 LECTURE 8

WHAT DOES O(N) MEASURE?

" Interested in describing how amount of time needed
grows as size of (input to) problem grows

" Given an expression for the number of operations
needed to compute an algorithm, want to know
asymptotic behavior as size of problem gets large

= Will focus on term that grows most rapidly

" |gnore multiplicative constants, since want to know
how rapidly time required increases as increase size of
input

6.0001 LECTURE 8

33

SIMPLIFICATION EXAMPLES

" Drop constants and multiplicative factors

= Focus on dominant term

:®+ 2n + 2

- n4_+ 100000n + 310900

/
: log(n) +@+ 4

SIMPLIFICATION EXAMPLES

" Drop constants and multiplicative factors

= Focus on dominant term

. A2
Ow\.n + 2n + 2

o) : n? + 100000n + 31000

om : log(n) + n + 4

ANALYZING PROGRAMS AND
THEIR COMPLEXITY

" Combine complexity classes
* Analyze statements inside functions
* Apply some rules, focus on dominant term

Law of Addition for O():
* Used with sequential statements
* O(f(n)) + O(g(n)) is O(f(n) + g(n))
* For example,

for 1 1n range (n) : OUﬂ

print('a'")

for 3 1n range(n*n) :
print ('b") OUF\

is O(n) + O(n*n) = O(n+n?%) = O(n?%) because of dominant term

ANALYZING PROGRAMS AND
THEIR COMPLEXITY

" Combine complexity classes
* Analyze statements inside functions
* Apply some rules, focus on dominant term

Law of Multiplication for O():
* Used with nested statements/loops

* O(f(n)) * O(g(n)) is O(f(n) * g(n))
* For example,
for 1 in range (n) : o(n)
for jJ 1n range(n):
print 'a' oln
is O(n)*O(n) = O(n*n) = O(n?) because the outer loop goes n
times and the inner loop goes n times for every outer loop iter.

6.0001 LECTURE 8 37

COMPLEXITY CLASSES

" O(1) denotes constant running time

" O(log n) denotes logarithmic running time
" O(n) denotes linear running time
" O(n log n) denotes log-linear running time

" O(n¢) denotes polynomial running time (cis a
constant)

" O(c") denotes exponential running time (c is a
constant being raised to a power based on size of
input)

6.0001 LECTURE 8 38

COMPLEXITY CLASSES
ORDERED LOW TO RHIGH

O (1) : constant — |
O(log n) : /<— logarithmic
o

O (n) : linear — |
O(n log n): — loglinear
O (n°) : polynompl — |

RGN Cqualbratic

C X2

(\5
@ O (ch) : «— exponential

