PROGRAM EFFICIENCY

(download slides and .py files to follow along!)
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TODAY

" Formally evaluate programs

= Efficiency in time
= Orders of growth, big Oh notation

= Examples of different complexity cases
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Assigned Reading

"Chapter 9 ”ﬁhtroduction to
" Computation
" «and Programming

sing Python

With Application _tor'Undgrfsédirig Data

second edition ,jt-'"

/ P A
John V. Guttag

£

https://mitpress.mit.edu/sites/default/files/Guttag _errata_revised 083117.pdf
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PROGRAM
cFFICIENCY




WRITING EFFICIENT
PROGRAMS

= So far, we have emphasized correctness. It is the first thing
to worry about!

" But sometimes that is not enough

" Problems can be very complex (as we shall see when we
get to optimization in 6.0002)

gi&l Twitter users send out 2 7 7,000 B30 A7 10112

tweets

= But data sets can be

very large: in 2014 |
n Facebook processes 350GE of data I

Google served e B
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6.0001 LECTURE 8 5



EFFICIENCY IS IMPORTANT

= Separate time and space efficiency of a program

" Tradeoff between them: can use up a bit more
memory to store values for quicker lookup later

" Challenges in understanding efficiency

o A program can be implemented in many different ways

> You can solve a problem using only a handful of different
algorithms

= Want to separate choice of implementation from
choice of more abstract algorithm
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EVALUATING PROGRAMS

= Measure with a timer

" Count the operations

= Abstract notion of order of growth




Aside: MODULES

"A module is a set of python definitions and statements
stored in a file

"You first need to “import” the module

scall functions inside the module using the module’s
name and dot notation

*module.function()
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TIMING A PROGRAM :

= Use time module import time

" Recall that
importing means to def convert to km(m):
bring in that class return m * 1.609

into your own file

= Start clock —_— tO = time.perf counter ()

\

—wa )
= Call function — GMHOOOOO)

—— tl1 = time.perf counter () - t0
L

= Stop clock

print ("t =", t1, "s,")
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Example: Convert, compound

def convert_to_km(m):
return m x 1.609

def compound(invest, interest, n_months):
total=0
for i in range(n_months):
total = total * interest + invest
return total
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Measure time: convert

LN = [1]
for i in range(7):
L_N.append(L_N[-1]%10)

for N in L_N:
= time.perf_counter()
km = convert_to_km(N)
dt = time.perf_counter()-t
print ("convert(", N, ") took ", dt, "seconds")
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Measure time: convert
multiple samples

n_samples = 50

for N in L_N:
t = time.perf_counter()
for i in range(n_samples):
km = convert_to_km(N)
dt = (time.perf_counter()-t)/n_samples
print ("convert(", N, ") took ", dt, "seconds")

convert( 1 ) took 2.1178973838686943e—-07 seconds
convert( 10 ) took 2.1529034711420535e-07 seconds
convert( 100 ) took 2.0069011952728033e—-07 seconds
convert( 1000 ) took 2.1399988327175378e—-07 seconds
convert( 10000 ) took 2.2487947717308999e-07 seconds
convert( 100000 ) took 1.9868952222168446e—-07 seconds
convert( 1000000 ) took 2.4397042579948903e-07 seconds
convert( 10000000 ) took 2.021400723606348e—07 seconds
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Measure time: compound

def compound(invest, interest, n_months):
total=0
for i in range(n_months):
total = total *x interest + invest
return total

WA

_ : _ ld
compound( 1 ) took 1.2168078683316707e-06 seconds Y ‘}taf
compound( 10 ) took 2.0174076780676843e-06 seconds v
compound( 100 ) took 6.968004163354635e-06 seconds

compound( 1000 ) took 6.973260315135121e-05 seconds
compound( 10000 ) took ©0.000683364795986563 seconds
compound( 100000 ) took 0.006051766208838671 seconds
compound( (1000000 ) took ©0.04472687559900805 seconds
compound(110000000 ) took 0.429290418792516 seconds >l0"

(0 T
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Measure time: sum

def sum_of(L):
total = 0.0
for elt in L:
total = total + elt
return total

= [1]
for i in range(8):
L_N.append(L_N[-1]%10)

N in L_N:

L = range(N)

t = time.perf_counter()

s = sum_of(L)

print ("sum of ", N, "elements took ", time.perf_counter()-t, "seconds")
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Measure time: IS In

def is_in(L, Xx):
for elt in L:
if elt==x: return True
return False

def binary_search(L, x):
""" returns True 1f x 1s 1in L
L must be sorted """
lo 0
hi = len(L)
while hi-1o > 1:
mid = (hi+lo) // 2
if L[mid] <= x:
lo = mid
else:
hi = mid
return L[lo] == x
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Measure time: diameter

def diameter(L):

" assumes that L is a list of pairs of Cartesian coordinates

compares all pairs of points and returns the largest distance
farthest_dist = 0

for i in range(len(L)):

for j in range(i+1, len(L)):

pl = L[i]
p2 = LI[j]
dist = math.sqrt( (pl[0]-p2[0])**2

+ (p1l[1]1-p2[1])%%2 )
if dist > farthest_dist:
farthest_dist = dist
return farthest_dist
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Measure time: diameter

def diameter(L):

" assumes that L is a list of pairs of Cartesian coordinates

compares all pairs of points and returns the largest distance """
farthest_dist = 0

for i in range(len(L)):

for j in range(i+1, len(L)):
pl = L[i]
p2 = LI[j]
dist = math.sqrt( (p1[@]-p2[0])x*x*2
+ (p1[1]1-p2[1])**2 )
if dist > farthest_dist:
farthest_dist = dist
return farthest_dist

diameter of 10 points took 7.76359811425209e-05 seconds

diameter of 100 points took 0.0028979270136915147 seconds
diameter of 1000 points took 0.18294400698505342 seconds
diameter of 10000 points took 15.902969222981483 seconds
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Measure time:
binary numbers

def all_binary_numbers(N):
def helper (prefix, N):

if N==0:

return [prefix]

return helper(prefix+'0', N-1) + helper(prefix+'1', N-1)

return helper('', N)

binary numbers of
binary numbers of
binary numbers of
binary numbers of
binary numbers of

5 diéits took 3.0381022952497005e-05 s

10 digits took
15 digits took
20 digits took
25 digits took
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0.0007962230010889471 s
0.019941627979278564 s
0.4996888790046796 s
19.526876593008637 s
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Two different machines

Fredo’s laptop

convert (
convert (
convert (
convert (
convert (
convert (
convert (
convert (
convert (
convert (
compound (
compound (
compound (
compound (
compound (
compound (
compound (
compound (
compound (
compound (

0.0919969081879 seconds
0.0812351703644 seconds
0.0810060501099 seconds
0.0786969661713 seconds
0.0776309967041 seconds
0.0800149440765 seconds
0.0772659778595 seconds
0.0839469432831 seconds
100000000 ) toock 0.0B026909B2819 seconds
1000000000 ) took 0.0796220302582 seconds
l ) took 0.0781879425049 seconds
10 ) tock 0.0791871547699 seconds
100 ) took 0.08B02779197693 seconds
1000 ) took 0.0B11159610748 seconds
10000 ) took 0.0797948B83728 seconds
100000 ) took 0.0803499221802 seconds
1000000 ) took 0.180749B93188 seconds
10000000 ) toock 0.7138B26179504 seconds
100000000 ) tock 6.48052787781 seconds
1000000000 ) took 63.5682651997 seconds

1 ) took

10 ) took
100 ) took
1000 ) tock
10000 ) teook
100000 ) took

1000000 ) took
10000000 ) took

Fredo’s (old) desktop

convert (
convert (
convert (
convert (
convert (
convert (
convert (
convert (
convert (
convert (
compound (
compound (
compound (
compound (
compound (
compound (
compound (
compound (
compound (
comppund(

0.0651700496674 seconds
0.0838208198547 seconds
0.0830719470978 seconds
0.0816540718079 seconds
0.0824558734894 seconds
0.0837979316711 seconds
0.0837349891663 seconds
0.0843281745911 seconds
100000000 ) took 0.0838270187378 seconds
1000000000 ) took 0.0844709873199 seconds
1l ) took 0.083487033844 seconds
10 ) took 0.0834701061249 seconds
100 ) took 0.083163022995 seconds
1000 ) took 0.0843181610107 seconds
10000 ) took 0.0845410823822 seconds
100000 ) took 0.099858045578 seconds
1000000 ) took 0.183917045593 seconds
10000000 ) took 1.38667988777 seconds
100000000 ) took 12.7653880119 seconds
1000000000 ) took 126.978576899 seconds

1 ) took

10 ) took
100 ) took
1000 ) took
10000 ) took
100000 ) took

1000000 ) took
10000000 ) took




TIMING PROGRAMS IS
INCONSISTENT

= GOAL: to evaluate different algorithms

= Running time varies between algorithms Vg
= Running time varies between implementations ) ¢
" Running time varies between computers X

" Running time is not predictable for small inputs %

" Time varies for different inputs but
cannot really express a relationship
between inputs and time

X
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Don’t get me wrong

"Timing is a critical tool to assess the performance of
programs

o At the end of the day, it is is unreplaceable for real-world
assessment

"But we will learn a complementary tool (asymptotic
complexity) that has other advantages

o A priori evaluation (before writing or running code)

> Assesses algorithm independently of machine and
implementation

o Provides direct insight to the design of efficient
algorithms
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= Assume these steps take def ¢ to f(c):
constant time return|c*9.0/5 + 32
. . S
* Mathematical operations 2 OF
def mysum(x) :
* Comparisons 0 total = 0 |
e Assignments > o for |1 1n range (x+1) :
. . . \OOF o total += i 0
° O O
Accessing objects in S SoEataT \

memory 2 0%

" Count number of
operations executed as
function of size of input

mysum =2 1+3(x+1) ops
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(gtobal) count
Oorelt in L:

count += 1

if elt==x:
return False

return True

6.0001 LECTURE 9
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Count operations, binary
search

def binary_search_counter(L, x):
""" returns True if x is in L
L must be sorted """
global count

10 - 0 for 10000 element, brute-force took on average 5000 ops
h — -l. ( L) 9.988015978695074 times more than for 10 times fewer elements
1 en for 10000 element, binary search took on average 67 ops
1.4195804195804198 times more than for 10 times fewer elements
Wh lle h_']_ -l_o > 1 for 100000 element, brute-force took on average 50000 ops
9.998800159978668 times more than for 10 times fewer elements
— for 100000 element, binary search took on average 82 ops
count + 1 1.2216748768475907 times more than for 10 times fewer elements
. — . for 1000000 element, brute-force took on average 500000 ops
mld — (hl+ 10) // 2 9,99988000159998 times more than for 10 times fewer elements
for 1000000 element, binary search took on average 97 ops
count += 2 1.1814516129032258 times more than for 10 times fewer elements
if LImid] <= x:
lo = mid
else:
hi = mid
count += 1
count += 1

return L[lo] == x
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COUNTING OPERATIONS IS
BETTER, BUT ...

= GOAL: to evaluate different algorithms

" Count depends on algorithm v
" Count depends on implementations X
= Count independent of computers v
= No real definition of which operations to count ¥

v

" Count varies for different inputs and
can come up with a relationship
between inputs and the count




.. STILL NEED A BETTER WAY

* Timing and counting evaluate implementations

* Timing and counting evaluate machines

* Want to evaluate algorithm

* Want to evaluate scalability

* Want to evaluate in terms of input size







WHAT IFITOLD YOU

A
A BETTER WAY THERE IS A BETTER WAY

" Focus on idea of counting operations in an algorithm, but
not worry about small variations in implementation

" Focus on how algorithm performs when size of problem
gets arbitrarily large

= Want to relate time needed to complete a computation,
measured this way, against the size of the input to the
problem

" Need to decide what to measure, given that actual
number of steps may depend on specifics of trial
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HOW TO CHOOSE WHICH INPUT TO
USE TO EVALUATE A FUNCTION

" Want to express efficiency in terms of input, so need
to decide what is your input

" Could be an integer
--mysum (x)

" Could be length of list
- 1list sum (L)

" You decide when multiple parameters to a function
--search for elmt (L, e)
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DIFFERENT INPUTS CHANGE
HOW THE PROGRAM RUNS

= A function that searches for an element in a list
def search for elmt (L, e):
for 1 1n L:
1f 1 == e:
return True
return False

= When e is first element in the list 2 BEST CASE
= When e is not in list > WORST CASE

= When look through about half of the elements in
list > AVERAGE CASE

= Want to measure this behavior in a general way




BEST, AVERAGE, WORST CASES

" Consider that you are given a list L. of some length 1en (L)

" Best case: minimum running time over all possible inputs of
a given size, 1len (L)

* Constant for search for elmt

* First element in any list

= Average case: average running time over all possible inputs
of a given size, 1en (L)
* Practical measure

= Worst case: maximum running time over all possible inputs
of a given size, 1en (L)

* Linearin length of list for search for elmt

* Must search entire list and not find it

* Focus on worst case in this class
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ORDERS OF GROWTH

" Want to evaluate programs when input is very big

" Want to express the growth of program’s run time
" Want to put an upper bound on growth
" Do not need to be precise: “order of” not “exact” growth

" We will look at largest factors in run time (which section
of the program will take the longest to run?)
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MEASURING ORDER OF hid
GROWTH: BIG O() NOTATION

= Big Oh notation measures an upper bound on the
asymptotic growth, often called order of growth

" Big Oh or O() is used to describe worst case

 Worst case tends to occur often and is the bottleneck when a
program runs

* Express rate of growth of program relative to the input
* Evaluate algorithm not machine or implementation

* A technicality

* When we say that the complexity of f is O(n), we mean that its
asymptotic growth is not worse than linear in n.

* It is an upper bound, not necessarily a tight bound

* In practice, we are usually looking for something close to a
tight bound
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EXACT STEPS vs O()

def fact 1ter(n):
"""3ssumes n an int >= Oo"""

answer = 1

while n > 1: “k
answer *= n z
n —=1 \,6((1 »@«\Q

(\/
return answer

= Computes factorial - ) (n\

= Number of steps: x1°

= Worst case asymptotic complexity: o™
* |gnore additive constants
* |gnore multiplicative constants

32
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WHAT DOES O(N) MEASURE?

" Interested in describing how amount of time needed
grows as size of (input to) problem grows

" Given an expression for the number of operations
needed to compute an algorithm, want to know
asymptotic behavior as size of problem gets large

= Will focus on term that grows most rapidly

" |gnore multiplicative constants, since want to know
how rapidly time required increases as increase size of
input

6.0001 LECTURE 8
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SIMPLIFICATION EXAMPLES

" Drop constants and multiplicative factors

= Focus on dominant term

:®+ 2n + 2

- n4_+ 100000n + 310900

/
: log(n) +@+ 4




SIMPLIFICATION EXAMPLES

" Drop constants and multiplicative factors

= Focus on dominant term

. A2
Ow\.n + 2n + 2

o) : n? + 100000n + 31000

om : log(n) + n + 4




ANALYZING PROGRAMS AND
THEIR COMPLEXITY

" Combine complexity classes
* Analyze statements inside functions
* Apply some rules, focus on dominant term

Law of Addition for O():
* Used with sequential statements
* O(f(n)) + O(g(n)) is O( f(n) + g(n) )
* For example,

for 1 1n range (n) : OUﬂ

print('a'")

for 3 1n range(n*n) :
print ('b") OUF\

is O(n) + O(n*n) = O(n+n?%) = O(n?%) because of dominant term




ANALYZING PROGRAMS AND
THEIR COMPLEXITY

" Combine complexity classes
* Analyze statements inside functions
* Apply some rules, focus on dominant term

Law of Multiplication for O():
* Used with nested statements/loops

* O(f(n)) * O(g(n)) is O( f(n) * g(n) )
* For example,
for 1 in range (n) : o(n)
for jJ 1n range(n):
print 'a' oln
is O(n)*O(n) = O(n*n) = O(n?) because the outer loop goes n
times and the inner loop goes n times for every outer loop iter.
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COMPLEXITY CLASSES

" O(1) denotes constant running time

" O(log n) denotes logarithmic running time
" O(n) denotes linear running time
" O(n log n) denotes log-linear running time

" O(n¢) denotes polynomial running time (cis a
constant)

" O(c") denotes exponential running time (c is a
constant being raised to a power based on size of
input)
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COMPLEXITY CLASSES
ORDERED LOW TO RHIGH

O (1) : constant — |
O(log n) : /<— logarithmic
o

O (n) : linear — |
O(n log n): — loglinear
O (n°) : polynompl — |

RGN Cqualbratic

C X2

(\5
@ O (ch) : «— exponential







