
PROGRAM EFFICIENCY
(download slides and .py files to follow along!)

6.0001 LECTURE 9

6.0001 LECTURE 9 1

PROGRAM EFFICIENCY
(download slides and .py files to follow along!)

6.0001 LECTURE 9

6.0001 LECTURE 9 1

TODAY
§ Formally evaluate programs
§ Efficiency in time
§ Orders of growth, big Oh notation
§ Examples of different complexity cases

6.0001 LECTURE 9 2

Assigned Reading
§Chapter 9

6.0001 LECTURE 1 3

https://mitpress.mit.edu/sites/default/files/Guttag_errata_revised_083117.pdf

PROGRAM
EFFICIENCY

6.0001 LECTURE 8 4

WRITING EFFICIENT
PROGRAMS
§ So far, we have emphasized correctness. It is the first thing
to worry about!
§ But sometimes that is not enough
§ Problems can be very complex (as we shall see when we
get to optimization in 6.0002)

§ But data sets can be
very large: in 2014
Google served
30,000,000,000,000
pages covering
100,000,000 GB of data

6.0001 LECTURE 8 5

EFFICIENCY IS IMPORTANT
§ Separate time and space efficiency of a program

§ Tradeoff between them: can use up a bit more
memory to store values for quicker lookup later

§ Challenges in understanding efficiency
◦ A program can be implemented in many different ways
◦ You can solve a problem using only a handful of different

algorithms

§ Want to separate choice of implementation from
choice of more abstract algorithm

6.0001 LECTURE 8 6

EVALUATING PROGRAMS
§ Measure with a timer
§ Count the operations
§ Abstract notion of order of growth

6.0001 LECTURE 8 7

Aside: MODULES
§A module is a set of python definitions and statements
stored in a file

§You first need to “import” the module

§call functions inside the module using the module’s
name and dot notation

§module.function()

6.0001 LECTURE 9 8

TIMING A PROGRAM
§ Use time module
§ Recall that
importing means to
bring in that class
into your own file
§ Start clock
§ Call function
§ Stop clock

import time

def convert_to_km(m):
return m * 1.609

t0 = time.perf_counter()

c_to_f(100000)

t1 = time.perf_counter() - t0

print("t =", t1, "s,")

6.0001 LECTURE 8 9

Example: Convert, compound

6.0001 LECTURE 9 10

Measure time: convert

6.0001 LECTURE 9 11

Measure time: convert
multiple samples

6.0001 LECTURE 9 12

Measure time: compound

6.0001 LECTURE 9 13

Measure time: sum

6.0001 LECTURE 9 14

Measure time: is_in

6.0001 LECTURE 9 15

Measure time: diameter

6.0001 LECTURE 9 16

Measure time: diameter

6.0001 LECTURE 9 16

Measure time: diameter

6.0001 LECTURE 9 16

Measure time:
binary numbers

6.0001 LECTURE 9 17

Two different machines
Fredo’s laptop Fredo’s (old) desktop

TIMING PROGRAMS IS
INCONSISTENT
§ GOAL: to evaluate different algorithms
§ Running time varies between algorithms
§ Running time varies between implementations
§ Running time varies between computers
§ Running time is not predictable for small inputs

§ Time varies for different inputs but
cannot really express a relationship
between inputs and time

§Can only be measured a-posteriori
6.0001 LECTURE 8 19

Don’t get me wrong
§Timing is a critical tool to assess the performance of
programs
◦ At the end of the day, it is is unreplaceable for real-world

assessment

§But we will learn a complementary tool (asymptotic
complexity) that has other advantages
◦ A priori evaluation (before writing or running code)
◦ Assesses algorithm independently of machine and

implementation
◦ Provides direct insight to the design of efficient

algorithms

6.0001 LECTURE 9 20

COUNTING OPERATIONS
§ Assume these steps take
constant time:
• Mathematical operations
• Comparisons
• Assignments
• Accessing objects in

memory

§ Count number of
operations executed as
function of size of input

def c_to_f(c):
return c*9.0/5 + 32

def mysum(x):
total = 0
for i in range(x+1):

total += i
return total

6.0001 LECTURE 8 21

3 ops

1 op

1 op

2 ops

mysum à 1+3(x+1) ops

loop

x tim
es

Count oeprations

6.0001 LECTURE 9 22

Count operations, binary
search

6.0001 LECTURE 9 23

COUNTING OPERATIONS IS
BETTER, BUT …
§ GOAL: to evaluate different algorithms
§ Count depends on algorithm
§ Count depends on implementations
§ Count independent of computers
§ No real definition of which operations to count

§ Count varies for different inputs and
can come up with a relationship
between inputs and the count

6.0001 LECTURE 8 24

… STILL NEED A BETTER WAY
• Timing and counting evaluate implementations
• Timing and counting evaluate machines

•Want to evaluate algorithm
•Want to evaluate scalability
•Want to evaluate in terms of input size

6.0001 LECTURE 8 25

A BETTER WAY
§ Focus on idea of counting operations in an algorithm, but
not worry about small variations in implementation

§ Focus on how algorithm performs when size of problem
gets arbitrarily large

§ Want to relate time needed to complete a computation,
measured this way, against the size of the input to the
problem

§ Need to decide what to measure, given that actual
number of steps may depend on specifics of trial

6.0001 LECTURE 8 26

HOW TO CHOOSE WHICH INPUT TO
USE TO EVALUATE A FUNCTION
§ Want to express efficiency in terms of input, so need
to decide what is your input
§ Could be an integer

-- mysum(x)
§ Could be length of list

-- list_sum(L)
§ You decide when multiple parameters to a function

-- search_for_elmt(L, e)

6.0001 LECTURE 8 27

DIFFERENT INPUTS CHANGE
HOW THE PROGRAM RUNS
§ A function that searches for an element in a list
def search_for_elmt(L, e):

for i in L:
if i == e:

return True
return False

§ When e is first element in the list à BEST CASE
§ When e is not in list à WORST CASE
§ When look through about half of the elements in
list à AVERAGE CASE
§ Want to measure this behavior in a general way

6.0001 LECTURE 8 28

BEST, AVERAGE, WORST CASES
§ Consider that you are given a list L of some length len(L)
§ Best case: minimum running time over all possible inputs of
a given size, len(L)
• Constant for search_for_elmt
• First element in any list

§ Average case: average running time over all possible inputs
of a given size, len(L)
• Practical measure

§ Worst case: maximum running time over all possible inputs
of a given size, len(L)
• Linear in length of list for search_for_elmt
• Must search entire list and not find it
• Focus on worst case in this class

6.0001 LECTURE 8 29

ORDERS OF GROWTH
§ Want to evaluate programs when input is very big
§ Want to express the growth of program’s run time
§ Want to put an upper bound on growth

§ Do not need to be precise: “order of” not “exact” growth

§ We will look at largest factors in run time (which section
of the program will take the longest to run?)

6.0001 LECTURE 8 30

MEASURING ORDER OF
GROWTH: BIG O() NOTATION
§ Big Oh notation measures an upper bound on the
asymptotic growth, often called order of growth
§ Big Oh or O() is used to describe worst case
• Worst case tends to occur often and is the bottleneck when a

program runs
• Express rate of growth of program relative to the input
• Evaluate algorithm not machine or implementation

• A technicality
• When we say that the complexity of f is O(n), we mean that its

asymptotic growth is not worse than linear in n.
• It is an upper bound, not necessarily a tight bound
• In practice, we are usually looking for something close to a

tight bound

6.0001 LECTURE 8 31

EXACT STEPS vs O()
def fact_iter(n):

"""assumes n an int >= 0"""
answer = 1
while n > 1:

answer *= n
n -= 1

return answer

§ Computes factorial
§ Number of steps:
§ Worst case asymptotic complexity:
• Ignore additive constants
• Ignore multiplicative constants

1 + 7n + 1

O(n)

temp = n-1

n = temp

6.0001 LECTURE 8 32

WHAT DOES O(N) MEASURE?
§ Interested in describing how amount of time needed
grows as size of (input to) problem grows

§ Given an expression for the number of operations
needed to compute an algorithm, want to know
asymptotic behavior as size of problem gets large

§ Will focus on term that grows most rapidly

§ Ignore multiplicative constants, since want to know
how rapidly time required increases as increase size of
input

6.0001 LECTURE 8 33

SIMPLIFICATION EXAMPLES
§ Drop constants and multiplicative factors
§ Focus on dominant term

: n2 + 2n + 2

: n2 + 100000n + 31000

: log(n) + n + 4

6.0001 LECTURE 8 34

SIMPLIFICATION EXAMPLES
§ Drop constants and multiplicative factors
§ Focus on dominant term

: n2 + 2n + 2

: n2 + 100000n + 31000

: log(n) + n + 4

O(n2)

O(n2)

O(n)

6.0001 LECTURE 8 35

ANALYZING PROGRAMS AND
THEIR COMPLEXITY
§ Combine complexity classes
• Analyze statements inside functions
• Apply some rules, focus on dominant term

Law of Addition for O():
• Used with sequential statements
• O(f(n)) + O(g(n)) is O(f(n) + g(n))
• For example,

for i in range(n):
print('a')

for j in range(n*n):
print('b')

is O(n) + O(n*n) = O(n+n2) = O(n2) because of dominant term
6.0001 LECTURE 8 36

O(n)

O(n2)

ANALYZING PROGRAMS AND
THEIR COMPLEXITY
§ Combine complexity classes
• Analyze statements inside functions
• Apply some rules, focus on dominant term

Law of Multiplication for O():
• Used with nested statements/loops
• O(f(n)) * O(g(n)) is O(f(n) * g(n))
• For example,

for i in range(n):
for j in range(n):

print 'a'

is O(n)*O(n) = O(n*n) = O(n2) because the outer loop goes n
times and the inner loop goes n times for every outer loop iter.

6.0001 LECTURE 8 37

O(n)

O(n) for each outer loop iteration

COMPLEXITY CLASSES
§ O(1) denotes constant running time
§ O(log n) denotes logarithmic running time
§ O(n) denotes linear running time
§ O(n log n) denotes log-linear running time
§ O(nc) denotes polynomial running time (c is a
constant)
§ O(cn) denotes exponential running time (c is a
constant being raised to a power based on size of
input)

6.0001 LECTURE 8 38

COMPLEXITY CLASSES
ORDERED LOW TO HIGH

O(1) : constant

O(log n) : logarithmic

O(n) : linear

O(n log n): log linear

O(nc) : polynomial

O(cn) : exponential

6.0001 LECTURE 8 39

c is a

constant

