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Assigned Reading

=Today:
o Chapter 17

=Next lecture:
o Chapter 18

hnd Programming
1 sing P»ython

/ With Application to Undgr»s‘éidirig Data
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Recall Inferential Statistics

*Make an inference about some property of a poplation
by examining one or more random samples drawn from
that population

o infer property of population based on statistics of sub-
population

o avoid cost of having to look at entire population, if very large

o handle cases where not feasible to examine whole
population

=*With Monte Carlo simulation, generate lots of random
samples and use them to make inferences and to compute
confidence intervals for the inferences using empirical rule

o allows us to estimate likelihood of inference
o useful when variation in value due to noise or random effects
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Recall Assumptions for Empirical Rule

Note: not that estimate of mean is zero,

*The mean estimation error is zero but mean of errors of estimate is zero

*The errorsin the estimates follow a normal (or

Gaussian) distribution — also called a bell curve

What does this mean? We'll get to that
shortly
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Empirical Rule (recap)

=|f we assume that
o Mean estimation error is zero

o Distribution of the errors in the estimates is normal
(Gaussian)

*Then by computing mean (1) and standard deviation
(o) of estimates, can set confidence intervals:

o “68% of data within one standard deviation of mean
o ~¥95% of data within 1.96 standard deviations of mean
o ~99.7% of data within 3 standard deviations of mean

=Common to use 95% confidence interval — state that
value is in range:

u + 1.960 with 95% confidence
Poll
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Generating Normally Distributed Data

What is a Gaussian (or normal) distribution?

Sampling from random.gauss
will return a value along x axis,
based on relative probability
graph below

First, what does it look like?

Taking 1M samples gives an
approximation to Gaussian
distribution

dist, numSamples = [], 1000000

for i in range(numSamples):
dist.append(random.gauss(@, 1))

0.4p.Normal Distribution, Mean = 0 and SD = 1

pylab.hist(dist, bins = 100) o2s)
pylab.xlabel('Value') 020
pylab.ylabel('Frequency"')

0.05}

0.00
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Output
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 Thisis a discreteapproximationota Gaussian distribution—histogramof 1M
samples from a Gaussianfunction with standard deviationof 1, splitinto 100
buckets along x axis (each bucket roughly 0.1 units wide)

* |deally, for givenresolution of values alongx axis, this describes probability of
seeing thatvalue (e.g., divide each histogramvalue by 1M)

 Butwantto define probability,independent of resolution of values
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Defining Distributions

"Probability distribution captures notion of relative
frequency with which a random variable takes on
certain values

o Discrete random variables drawn from finite set of values

o Continuous random variables drawn from real numbers
between two numbers (i.e., infinite set of values)

"For discrete variable, simply list the probability of each
value; all probabilities must add up to 1

=Case for continuous variable trickier, can’t enumerate
probability for each of an infinite set of values

o Could select some resolution for values on x axis, and use
histogram to find discrete probabilities, but this limits
accuracy of estimate of variable
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PDFs

=Distributions defined by probability density functions
(PDFs) — aka probability distribution functions

=PDF at a point describes relative likelihood of that
sample; more typically used to describe probability
that a random variable’s value lies between two points

"Defines a curve where the values on the x-axis lie
between minimum and maximum value of the variable

o Area under curve between two pointsis probability of
variable’s value falling between those two points

*For small range, PDF can be thought of as defining
probability at a point
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PDF’s define probabilities

= Area under curve over small span of x defines
probability of value lying in that range
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Normal Distribution, Mean = 0and SD =1

0.35)

0.30+-

0.25

I

0.20

I

o

—

o
|

e

o

w
T

1

£ 2
-

0 €
=

Limit as € tends to zero defines probability
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PDF's More Formally

"Let f(x) denote the probability density function
o E.g. fora normaldistribution

1 —G=w?
fx) = 207
0' 27‘[ :,, Normal Distribution, Nean = 0 and SD = L
"Probability of value lyingin range nearx:
E
P(x) = f (t)dt
X— 5
=Cumulativedistribution function (probabllltythat random
variable is less than or equal to x) S e

F(x)= f f(t)dt

*Note, integral over full range of valuesis 1, but value of PDF at a
pomtcan be greater than 1 (which is why we want integral over a
range, or area under the curve)
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PDF for Normal Distribution

def gaussian(x, mu, sigma):
(Factorl>= (1.0/(sigma*((2*pylab.pi)**0.5)))
(Ffactor2>= pylab.e**-(((x-mu)**2)/(2*sigma**2))

return factorl*factor2

xVals, yvals = [], []
mu, sigma = 0, 1

X = -6 P(X):
step = 0.05
while x <= 6:
xVals.append(x)
yVals.append(gaussian(x, mu, sigma))
X += step
pylab.plot(xVals, yVals)
pylab.title('Normal Distribution, mu = ' + str(mu)\

+ ', sigma = ' + str(sigma))
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Output

0 43|ormal Distribution, mu = 0, sigma = 1 Are values on y-axis

0.35
0.30
0.25
0.20
0.15
0.10
0.05

This

probabilities?

They are densities;
i.e., derivative of
cumulative
distribution function

Hence we use
Integration to

-6 -4 =2 0 2 4 6 Interpreta PDF

gives us a sense of the mathematical definition ofa distribution

Our goal is to use Empirical Rule, but it only applies if we have a
normal distribution of errors in our estimate of the mean

Are distributions of errorsin an estimate typically normal?

6.0002 LECTURE 7 14



Everybody Likes Normal Distributions

*Th lot
ey occur a lot!
MIT students
\
Figure 1 SAT Scores in 2010
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Everybody Likes Normal Distributions

*They occur a lot!

*Nice mathematical properties
o Symmetricaround mean
> Mean is also mode and median

|

00 01 02 03 04

o Area under curveis 1

o |ts density is infinitely
differentiable

° |t is unimodal —its first
derivative is positive to the left
of the mean, negative to the
right of the mean and zero only
at the mean
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But There Are Other Distributions!

=Uniform distributions
="Binomial distributions
sExponential distributions

=Other, more esoteric, distributions
> Log-normal
o Pareto
o Bernoulli
o Poisson

> many others
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Uniform Distributions

sAll intervals of the same length have the same probability

"Probability that a value falls between x and y (where total range
of possible valuesis a to b) is:

fy_x
P(x,y) = {5 _a ifx =2aandy <b
\0 otherwise

*random.uniform(min, max) willdraw an elementwithin
range with uniform probability

="Discrete version
(1 _
P(x) ={ 5] if xeS

0. otherwise

=random.choice(S) will selectan elementfrom set with
uniform probability

6.0002 LECTURE 7
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Uniform Distributions: Examples

=Coin flipping
=Dice rolling
=sRoulette

=Waiting times, e.g., arrival
of bus

=Spacing of territorial
animals

> Social distancing?
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Binomial Distributions

"What is the probability that a test succeeds exactly k
times out of n independent trials (e.g., flip a coin n
times, probability of exactly k heads)?

5If p is probability of success on one trial, then desired
probability is:

P() = () p*(L — )"

where

(n) = n! aka “n choose k”
K/ kl(n—k)!

*Multinomial distribution generalizes to case of more
than two, but a discrete, number of outcomes on each
trial
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Binomial Distributions

*Mean: np
=Variance: np(1 — p)

"If n is large enough, then binomial distribution is
approximated by a normal distribution, with mean np
and variance np(1 — p)

Binomial Distribution, p = 1/2

Binomial Distribution, p = 1/2 0.08 |
l : ] ,
0.07 | n -
. S 0061 -
O Y 0.05|- -
J 8 0.04} .
S 50.03 . -
s L 0.02} .
0.01} J k .
0.005 20 20 60 80 100
Hits
n =100
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Binomial Distributions: Examples

"Any problem where have two outcomes on
each trial, and want to know probability of
exactly k trials succeeding out of n

o If probability of a false positive on test of
equipmentis known, how many independent

tests are needed to ensure equipmentis
reliable with given probability

o Probability of exactly k “heads” in n flips

o Suppose individualswith a specific gene have
a known probability of eventually contracting. =
a certain disease. Run a lifetime study on a |

set of individuals, and determine probability N T
of number of individuals who will contract
the disease
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Exponential Distributions

sSuppose p is probability of an event occurring (e.g., a
molecule of a drug being cleared from the body)

"Probability event has not occurred after t time steps
(e.g., molecule still in body):

(1-p)*

1000 | Cleargnce Of. Drug |

800

600 -

400 |-

200 -

Molecules Remaining

0

0 200 400 600 800 1000
Time
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Exponential Distributions

"Probability density function

e ifx =0
f(x)_{o. if x <0
1
Mean.i
. 1
-Varlance:/,l—z
=Cumulativedistribution function
1—e™ifx>0
F = —
(%) {0 if x <0

=Can generate exponential distributions using
random.expovariate(lambd), where lambd is 1 divided by
mean of distribution

=Discrete version called the geometric distribution
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Exponential Distributions: Examples

*"Modeling inter-arrival times (time
between events), e.g.:

o cars entering a highway,
o or requests for a Web page,
o or job requests on a server

*Time for a radioactive particle to
decay (clicks on a Geiger counter)

=Time until default on payment to
debt holders

sService time of agents in a system
(how long a bank teller takes to serve
a customer; or waiting times for an
airline call center)
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Back to our Empirical Rule

=|f we assume that

o Mean estimation error is zero

o Distribution of the errors in the estimates is normal
(Gaussian)

*Then by computing mean (1) and standard deviation
(o) of estimates, can set confidence intervals:

o v68% of data within one standard deviation of mean

o ~¥95% of data within 1.96 standard deviations of mean

o ~99.7% of data within 3 standard deviations of mean

=Common to use 95% confidence interval — state that
value is in range:

u + 1.960 with 95% confidence

Now know what a normal distribution looks like, and
appears that they occur frequently

6.0002 LECTURE 8
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Where are we?

LS Qs :\I vl ir
=So if we have a set of samples of a parameter where:

o The distribution of errors from the estimate has zero
mean and is normally (or Gaussian) distributed,

*Then:

c The Empirical Rule applies and we can state a range of
values within which we are confident the actual value
lies, with a 95% certainty (or some other certainty).

=Can we check that Empirical Rule actually works?
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A Digression

=SciPy library contains many useful mathematical
functions used by scientists and engineers

sscipy.integrate.quad has up to four arguments
> a function or method to be integrated,

° a number representing the lower limit of the integration,

> a number representing the upper limit of the integration,
and

o an optional tuple supplying values for all arguments,
except the first, of the function to be integrated

sscipy.integrate.quad returns a tuple
o Approximation to result

o Estimate of absolute error
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Checking the Empirical Rule

import scipy.integrate

def checkEmpirical(numTrials):
for t in range(numTrials):
mu = random.randint(-100, 100)
sigma = random.randint(1, 100)
print('For mu ="', mu, 'and sigma =', sigma)
for numStd in (1, 1.96, 3):
area = scipy.integrate.quad(gaussian,
mu-numStd*sigma,
mu+numStd*sigma,
(mu, sigma))[0@]
print(' Fraction within', numStd,
'std =", round(area, 4))

checkEmpirical(5)
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Checking Empirical Rule

For mu = 58 and sigma = 54

Fraction within 1 std = (2.6827
Fraction within 1.96 std =[(0.85
Fraction within 3 std = [@.

For mu = -69 and sigma = 36
Fraction within 1 std = (2.6827
Fraction within 1.96 std =[0.85
Fraction within 3 std = (0.9973

For mu = =22 and sigma = 18
Fraction within 1 std = |2.6827
Fraction within 1.96 std =[0.85
Fraction within 3 std = |0.9973

For mu = -18 and sigma = 53
Fraction within 1 std = |2.6827
Fraction within 1.96 std =i0.95
Fraction within 3 std = |8.9973

For mu = 48 and sigma = 8
Fraction within 1 std = m
Fraction within 1.96 std =[0.85
Fraction within 3 std = (2.8973
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Checking Empirical Rule

=sEmpirical rule really applies to normal distributions

=But if binomial distribution approaches normal, is
empirical rule a decent approximation if errors follow a
binomial distribution?

For n = 50
Fraction within
Fraction within
Fraction within

For n = 200
Fraction within
Fraction within
Fraction within

For n = 1000
Fraction within
Fraction within
Fraction within

1.0 std = 0.7974
1.96 std = 0.9672
3.0 std = 0.9991

1.0 std = 0.7112
1.96 std = 0.96
3.0 std = 0.9977

1.0 std = 0.7033
1.96 std = 0.9537
3.0 std = 0.9974

6.0002 LECTURE 7
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e 99.7%
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Where are we?

=So if we have a set of samples of a parameter where:

o The distribution of errors from the estimate has zero mean and
is normally (or Gaussian) distributed,

*Then:

> The Empirical Rule applies and we can state a range of values
within which we are confidentthe actual value lies, with a 95%
certainty (or some other certainty).

=Can we check that Empirical Rule actually works?
o “Yes” for normal distribution of errors
o Roughly “yes” for binomial distribution of errors

*How do we know distribution is normal?

o Could measure it empiricallyand see how well a Gaussian fits
to it? — Expensive!

> Might know from first principlesthat distributionis normal
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Good News: Lots of Normal Distributions

*"Occur alot in real world!

100, 1,200

i / \ —
a0k \ 1,000 |-

normal distribution curve
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SOMETIMES
I PRETEND
TO BE
NORMAL.

But: Not All Distributions Are Normal © =

TTTTT

"Empirical rule works for normal distributions ﬁ‘

*While many distributions in real life are normal, should
not just assume everything is

"For example, are the outcomes of spins of a roulette
wheel normally distributed?

*No, they are uniformly distributed
o Each outcome is equally probable

=So, why did the empirical rule work when we
betting on roulette?
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Why Did the Empirical Rule Work?

"Because we are reasoning not
about a single spin, but about the
mean of a set of spins

"And the Central Limit Theorem
applies to that mean of the set

o This suggests that we can use the
empirical rule even if the
distribution of eventsis not
normal, provided thedistribution
of errors over many trials is normal

=\We’ll come back to the CLT and
what it implies shortly

=But first, let’s think about what to
do if we can’t run multiple
simulation trials
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Recall Inferential Statistics

"Make an inference about some property of a population by
examining one or more random samples drawn ﬁom that
population

o infer property of population based on statistics of sub-population
o avoid cost of havingto look at entire population, if very large

> handle cases where not feasible to sample whole population

=With Monte Carlo simulation, generate lots of random samples
and use them to make inferences and to compute confidence
intervals for the inferences using empirical rule

o allows us to estimate likelihood of inference
o useful when variation in value due to noise or random effects

"But suppose we can’t create samples by simulation?

> “In a new poll, 42% of voters approve of the job Trump is doing as
president, while 53% disapprove. The poll surveyed 1,972
registered voters and has a margin of error of plus or minus 2
percentage points.” — August 2017

o need different approach when can’t simulate randomness
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AFTER NINETEEN ADDITIONAL]

Probability Sampling

"Alternative to simulation is to directly sample
from population

"Assume each member of population has
nonzero probability of being included in sample

o Select subpopulation by sampling at random

sSimple random sampling: each member of
whole population has equal chance of selection

*Not always appropriate
o Popular myth: all MIT undergrads are CS majors

o Take a simple random sample of 100 students

> What might you conclude about MIT student majorsfrom
sucha sample?

> What might you conclude aboutinterests of MIT students
based onsucha sample?
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Probability Sampling

AFTER NINETEEN ADDITIONAL]

MIT majors by school or college

1 Architecture & Planning
33 Engineering

42 ComputerScience

3 HASS

3 Management

18 Science

In random sample of 100, e>2pect:
.
.
.
.
.
.
_ — - In simple samplingover 10,000

Arch Eng CompSci HASS Mgmt Sci tria |S; Saw th at on avera ge

But in simple sampling over 10,000 trials

o 26% of trials have no SAP, 7% no SHASS, 6% no SLOAN
> 0.14% with only SOE and SOS and CompSci

> s0 2 of 1000 times, would conclude only Engineering & Science &
Computation, but might conclude no SAP a quarter of time
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AFTER NINETEEN ADDITIONAL]

Probability Sampling

MIT majors by school or college
1600

o In random sample of 100 expect
e 1 Architecture & Planning

o * 33 Engineering

| 800 * 42 ComputerScience

3 HASS

* 3 Management

18 Science

In simple samplingover 10,000
Arch Compsci HASS Mgmt sci triaIS, saw thaton average

600

400

200

Suppose | sample 1% (or 33) of the UG population over 10,000 trials
o 64% of trials have no SAP, 42% no SHASS, 40% no SLOAN
> 10.3% with only SOE and SOS and Computation

> s0 1 of 10 times, would conclude only Engineering & Science &
Computation; might conclude no SAP 2/3rds of time
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Stratified Sampling

sStratified sampling
o Partition populationinto subgroups

o Take simple random sample from each subgroup (size of sample reflects
subgroup’s relative size)

=Usefulwhen there are smallsubgroupsthatshould be represented (e.g.,
political polls)

sUsefulwhen subgroupsshouldberepresented proportional to their share of
population

o E.g. if want to get opinions from MIT UG population, for sample of size 100
randomly pick 1 A&P student, 3 HASS students, 3 Sloan students, etc.

="Can be usedto reducethe needed size of sample
o Variability within subgroups often less than variability in entire population

=sRequires careto do properly Note: to sample 1% of eligible
° How many samples to draw from each subgroup? | yoters in the US, you would
o What are appropriate subgroups? need ~2.35M opinions!

> Why do we think subgroups’ variability is smaller? | This size is why good pollsters
use stratified sampling
Poll
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Sampling to Estimate Mean Temperature

Max Air Temperature [F] for US County from 1979-2011

ARRRRRRERRRREND zU
:7‘. :u_;'.-‘v.'.;...j',(.‘ﬁ'vf'.u

Heat Index (1979-
2011)
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Data

*From U.S. National Centers for Environmental
Information (NCEI)

=Daily high and low temperatures 1961-2015

o 21 different US cities

> ALBUQUERQUE, BALTIMORE, BOSTON, CHARLOTTE, CHICAGO,
DALLAS, DETROIT, LAS VEGAS, LOS ANGELES, MIAMI, NEW ORLEANS,
NEW YORK, PHILADELPHIA, PHOENIX, PORTLAND, SAN DIEGO, SAN
FRANCISCO, SAN JUAN, SEATTLE, ST LOUIS, TAMPA

c 421,848 data points (examples)

=l et’s use some code to look at the data
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New in Code

"Code getHighs extracts high temperatures from file,
code getMeansAndSDs computes mean and standard
deviation for entire population and sample from
population

=numpy . std is function in the numpy module that
returns the standard deviation

=random.sample(population, sampleSize) returns a list
containing sampleSize randomly chosen distinct
elements of population

> Sampling without replacement

=Going to plot using histogram — count number of times
a particular value occurs
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Histogram of Entire Population

60000
50000
40000

30000

Number Days
N
o
o
-
o

10000

0

—-30 =20 -10 O 10 20 30 40 50

Daily High 1961-2015, Population
(mean = 16.3, std = 9.44)

Or in °F:
61.3(+/-17.0]

Why is
o so large?

s this really a
normal
distribution?

Degrees C

Would like to infer average temperature with some level of confidence. Empirical
rule would help, but if this distribution is not normal, then errors about mean not
normal?

6.0002 LECTURE 8 48



Some Observations

"Why large standard deviation:

Poll

"Could look at data by month or location
or year. But for now, let’s just focus on
mean temperature.

=Can we get a good approximation
without looking at all the data?

"And this doesn’t really look like a normal Daily High 1961-2015, Population
distribution. Can we infer something soo00 —MEAN = 10.2 S 244
with confidence if this is not a normal 0 %

distribution? g #0000

@ 30000 |-

° Remember that we use empirical ruleto £ 00|
estimate confidence,and that assumesa 2,
normal distribution of errors 0

-30 —20 -10 0 10 20 30 40 50
Degrees C
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Histogram of Random Sample of Size 100

Daily High 1961-2015, Sample
(mean = 17.07, std = 10.39)

=
N

|

-
-

Number Days
(o)}

920 —10 0 10 20 30 40

Degrees C

Looks even less like a normal distribution
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D —

“Mean dgviation?”

Means and Standard Deviations i

74 - ﬂ}d
i l; |

> Yes,

S swervingato run
P swerving

\
k,. ...............

=Population mean =(16.3

sStandard deviation of population = 9.44

sStandard deviation of sample = 10.4

-EA happy accident, or something we should expect?]

" et’s take a different subsample of 100 temperatures,
compute their mean, and do this 1000 times. What do
those means look like?
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New in Code

"Code in handout extracts sample of size sampleSize,
computes mean, then repeats this for numSamples
trials and computes the mean of those means

"pylab.axvline(x = popMean, color = 'r')
draws a red vertical line at popMean on the x-axis

"There’s also a pylab.axhline function
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Try It 1000 Times

*Draw a sample of 100 measurements from entire set
of measurements

sCompute mean of that sample

=Repeat this sampling process 1000 times (each trial
with a different sample of 100 data points)

o Record the mean of each sample trial

"Compute the mean of the means

YOURE Ass
MEAN ONE<
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Mean of 1000 Means

Means of Samples
160 : . : : P :

140

120

Frequency
H (@)} (o] 8
o o o o

N
o

%3 14 15 16 17 18 19
Mean

Mean of sample Means =
Standard deviation of sample means =0.94

1

Looks pretty normal!

In comparison

Mean high temperature over
entire population

I+
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N w
o o
o (@]
o o
(@ o

10000

Mean of mean high temperatures,
100 samples, 1000 trials

0

6.0002 LECTURE 8

<

Daily High 1961-2015, Pp.pqution
(mean =(16.3,)std ={9.44)
| | TN "4

-30 -20 -10 0 10 20 30 40

Degrees C

50




M

ean of 1000 Means

Frequency

Means of Samples
160 . . . mples
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Mean

\ J
1

Mean of sample Means=16.3
Standard deviation of sample means=0.94
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What’s the 95%
confidence interval?

16.28 +/- 1.96*0.94
Or14.5-18.1

Includes population
mean, but still
pretty wide interval

Suppose we want a
tighter bound?
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Getting a Tighter Bound

=*Will drawing more samples help?
o Let’s try increasing from 1000 to 2000 trials

o Standard deviation of estimated mean
temperature goes from 0.943 to 0.946

"How about larger samples?

o Let’s try increasing sample size from 100 to 200,
but sticking with 1000 trials

o Standard deviation of estimated mean [—
temperature goes from 0.943 to 0.662 |

*This suggests that if we want reasonable
confidence in our result, we need to think about
how big a sample size to use

6.0002 LECTURE 8 57




Error Bars, a Digression

="Graphical representation of the
variability of data

=\Way to visualize uncertainty
o Plot mean value and size of variance

55% CI Pulse rate - resting (beats/min)

~J
o0
|

-
(=2}
|
©

-
N
|

-
=)
|

]
=)
|

o
co
|
<

o
&
|

| | | |
rarely or never once a fortrght once a weel: more than weelkly

When confidence
intervals don’t overlap,
we can concludethat
means are statistically
significantly differentat
some level of confidence
(e.g., 95%).

Overlappingconfidence
intervals does not
imply lack of significance.

https://upload.wikimedia.org/wikipedia/commons/1/1d/Pulse_Rate_Error_Bar_By Exercise_Level.png
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Let’s Look at Error Bars for Temperatures

def showErrorBars(population, sizes, numTrials):

xVals = []
sizeMeans, sizeSDs = [], []
for sampleSize in sizes: Record mean and std of trials for
xVals.append(sampleSize) a size;
trialMeans = [ ] Repeat for different sample sizes
For given for t in range(numTrials):
sample size, sample = random.sample(population, sampleSize)
run set of trials popMean, sampleMean, popSD, sampleSD =\
and compute .
mean of each getMeansAndSDs (population, sample)
trial trialMeans.append(sampleMean)

sizeMeans.append(sum(trialMeans)/len(trialMeans))
sizeSDs.append(numpy.std(trialMeans))

pylab.errorbar(xVals, sizeMeans,
yerr =|1.96fpylab.array(sizeSDs),

fmt = "o
label = ' Confidence Interval')

Empirical rule:
Using 1.96 * STD accounts for
95% of normal distribution
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Sample Size and Standard Deviation

population = getHighs()
showErrorBars(population,
(50, 100, 200, 300, 400, 500, 600), 1000)

Mean Temperature (1000 trials) Note how means of
19 - mmmm Population Mean
@ 95% Cenfidence Interval Sample means are
18 - close to actual mean
17 - of entire population

Note how size of error
15 - bars stabilizes after
about 500 samples (or
even 200 samples)

0 200 400 600 : :
Sample Size Does this help decide

sample size?
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Bigser is

Larger Samples Seem to Be Better

"Going from a sample size of 50 to 600 reduced the
standard deviation from 1.36C to 0.39C

"But we are now looking at 600*1000 = 600,000 examples

=sSampling — what is it good for? (what has it bought us?)
o “Absolutely Nothing!”
o Entire population contained ~422,000 samples

EDWIN STARR
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What Can We Conclude from 1 Sample?

*"Mean of means suggests can draw
inference with some level of
confidence about population from set
of samples

*But would like to avoid taking lots of
samples

*What if we just took one sample?
What can we conclude?

*More than you might think, thanks to
the Central Limit Theorem!
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The Central Limit Theorem (CLT)

Recall temperature example

=Given a sufficiently large sample:

1) The means of the samples in a set
of independent samples (the sample
means) will be approximately normally
distributed,

2) This normal distribution will have a
mean close to the mean of the

Means of Samples
T T T T

Frequency

—

S [e)] [e4) o

o o o o
T T

N
o
T

93 14 15 16 17 18 19 20
Mean

Mean of means: 16.294

pOpU|ati0n, and Population mean: 16.299
3) The variance of the sample means | variance of sample means: 0.889
will be close to the variance of the Population variance: 89.068
. . . Sample size: 100
population divided by the sample size.

If sample size is large enough, variance of sample means is small;
hence mean of one sample will be close to mean of means, and
thus to population mean
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So let’s check this out

=Central Limit Theorem appears to work for mean high
temperature data

=\What about other cases where we know the
distribution of events is not normal?

> Rolling a set of dice
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Checking CLT for a Continuous Die

Roll different groups of dice, and measure mean value across group

def plotMeans(numDice, numRolls, numBins, legend, color, style):
means = []

for i in range(numRolls//numDice):

Run ale = 0 Using continuous values between 1
multiple for j in range(numDice): and 6
trials vals += 5xrandom.random() + 1

| means.append(vals/float(numDice)) Compute average over set of dice
pylab.hist means, numBins, color = color, label = legend'rﬂothknogran1
weights = [1/len(means)]xlen(means),

hatch = style) of means
return getMeanAndStd(means)

mean, std = plotMeans(1, 1000000, 19, '1 die', 'b', 'x')

print('Mean of rolling 1 die =', str(mean) + ',', 'Std =', std)
mean, std = plotMeans(50, 1000000, 19, 'Mean of 50 dice', 'r', '//')
print('Mean of rolling 50 dice =', str(mean) + ',', 'Std =', std)
pylab.title('Rolling Continuous Dice')

pylab.xlabel('Value')

pylab.ylabel('Probability")

pylab. legend()
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Output

Mean of rolling 1 die = 3.49759575528, Std = 1.4439045633
Mean of rolling 50 dice = 3.49985051798, Std =0.204887274645

Rolling Continuous Dice
mm Mean of 1 die N I I \°o::°: 4 \'.:::, |||
015— = m::: 2:3;;?& \:.”’I I I I I ‘\:0..°ol \:0.:°o’ "IIII|| I ||II“'
- mmm Mean of 125 dice 1 2 3 4 5 6 Q7 "4 8 12 16 20 24
4
— o. . |
a oy ey Ll ” [ li. +:',, alll [l1n....
N/ N/ %,V ®e,
g ) 2 4 6 8 10 12 -I-"-,, +‘:o,, 5 10 15 20 25 30
S+ il (23 Ml
\ -.;l' -,:" .|| 1. +\'-,: -|-s-,, O 111 e
2 ® / Ny Ny
Q7 3 6 9 12 15 18 \.. % \-. % 6 12 18 24 30 36
/ Value TN
Distribution /of mean values of 1 die --[uniform] Single event
Distribution' of mean values of 25 dice --[normal ] Set of events
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Try It for Roulette

numTrials = 1000000
numSpins = 200
game = FairRoulette()

means = []
for i in range(numTrials):
means.append(findPocketReturn(game, 1, numSpins,
False)[9])

pylab.hist(means, bins = 19,
weights = [1/1len(means)]*len(means))
pylab.xlabel( 'Mean Return')
pylab.ylabel('Probability")
pylab.title( 'Expected Return Betting a Pocket 200 Times')
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0.18
0.16 |
0.14 i
5, Ot 1 Sure looks like
el
EO.lO 1 anormal
(O . . .
9 0.08 | distribution
@)
—
(T

0.06

0.04

0.02

0.00 : :
-1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0

Mean Return
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AND
Moral THE MORAL

OF THE
STORV IS...

"It doesn’t matter what the shape of the distribution of
values happens to be, we can use the Central Limit
Theorem to estimate the mean of a population using
sufficiently large samples

*The Central Limit Theorem also allows us to use the
empirical rule when computing confidence intervals
associated with an estimated mean
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5 Minute Break

[t’s Time For A Break




Where are we?

"Goal: given a population, want to infer properties of mean
of population
o Take a single sample (of large enough size) of population

o Can measure mean of sample, butis it close to mean of
population, and with what confidence?

o Central Limit Theorem says mean of set of samples is close to
populationmean, and single sample mean is close to mean of
set of samples if large enough sample size

o Empirical rule says if error estimates are normally distributed,
then standard deviation lets us set confidencelevel

o e.g., valuesin[u - 1.96 * o, u + 1.96 * o] account for 95% of values

o Central Limit Theorem implies empirical rule can work even if
populationnot normally distributed, because errors are
normally distributed. Just need to estimate standard deviation
of population
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Using the Central Limit Theorem

"Given a sufficiently large sample:

°1) The means of the samples in a set of samples (the sample
means) will be approximately normally distributed,

°2) This normal distribution will have a mean close to the
mean the population, and

°3) The variance of the sample means will be close to the
variance of the population divided by the sample size.

"Mean of sufficiently large sample close to sample mean

"But don’t know variance of sample means because don’t
know variance of population. So can’t set confidence level

=sTime to use the 3" feature

*Compute standard error of the mean (SEM or SE)
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Standard Error of the Mean

sStandard error of a statistic (e.g., a mean) based on a
sample is the deviation of the statistic for the whole
population divided by the root of the sample size

O

Jn

def sem(popSD, sampleSize):
return popSD/sampleSize**0.5

SE =

=This should measure standard deviation in estimating
the mean of sub-population

"Does it work?
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Testing the SEM

sampleSizes = (25, 50, 100, 200, 300, 400, 500, 600)

numTrials = 50

population = getHighs()

popSD = numpy.std(population)

sems = []

sampleSDs = []

for size in sampleSizes:
&ems.append(sem(popSD, size))]

Compute SEM for given

means = [] sample size
(for t in_Fange(numTrials): A\l Estimate SD
sample = random.sample(population, size) (| for 50 trials
means.append(sum(sample)/len(sample)) of give
\§ampleSDs.append(numpy.std(means)) J/sampbshe
pylab.plot(sampleSizes, sampleSDs,
label = 'Std of ' + str(numTrials) + ' means')

pylab.plot(sampleSizes, sems, 'r--', label = 'SEM")
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Standard Error of the Mean

O S SD for 50 Means and SEM
SE —_ T m— Std of 50 means
=== SEM
n 2.0} _
, = sl Poll: why is the ]
But, we don't 2 SEM smoother?
know standard S
deviation of 2 1.0
population
0.5}
How might we
approximateit? l | l | |
pp 0'00 100 200 300 400 500 600

Sample Size

What about just using standard
deviation of sample?
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Sample SD vs. Population SD

For different sample sizes, compare sample SD to population SD
Find mean % difference over 100 trials for each sample size

Sample SD vs Population SD, Temperatures

14 . .
— fightemps|| LOOKs like with
12} large enough
o sample size, we
27 might be able to
o sl just use the
O
§ sample SD to
o °r compute SEM
=
=l
2
0 | | | | |
0 100 200 300 400 500 600

Sample Size
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The Point

"Once sample reaches a
reasonable size, sample
standard deviation is a pretty
good approximation to
population standard deviation

Sample SD vs Population SD, Temperatures
|— High temps |
12 _

*True only for this example?

° Does this depend on
distribution of population?

10+ =

c Does this depend on size of
population?

% Difference in SD

| | | | |
0 100 200 300 400 500 600
Sample Size
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Looking at Distributions

def plotDistributions():

uniform, normal, exp =[], [], []

for i in range(100000):
uniform.append(random.random())
normal.append(random.gauss(0, 1))
exp.append(random.expovariate(0.5))

makeHist(uniform, 'Uniform’, 'Value', 'Frequency")

pylab.figure()

makeHist(normal, "Gaussian', 'Value', 'Frequency')

pylab.figure()

makeHist(exp, 'Exponential’, 'Value', 'Frequency")
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Three Different Distributions

6000 IUnlformI

random.random()

5000

4000

Frequency
w
o
o
o

2000

1000
8. . 0.4 0.6
Value
45000 E}ponenU9I
40000

N

15000l random.expovariate(0.5

30000

Frequency

| |
15 20 25
Value
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Does Distribution Matter?

For different sample sizes, compare sample SD to population SD All show same
convergence, but

Find mean % difference over 100 trials for each sample size
not equally good

»s ISamplg SD vs[PopuIatlion SD ] at using sample SD
 Normal pomutation for population SD
. >0l === Exponential population || Skew, 3 measure
p of the asymmetry
é 151 of a probability
o distribution,
e 10F matters
02 The more skewed
°r a distribution, the
more samples you
0

500 600 heed for SD to
become similar

81

| |
300 400
Sample Size

|
200

|
0 100
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Does Size Matter?

$1.00

SIZE DOESN'T MATTER,

CHARLIE BROWN!

A NEw PEARNUTS BooK

T

DOES
IVIAT TER.

R Nt N 1 M i 4 By CHARLES M. SCHULZ

HOLT, RINEHART AND WINSTON, INC.
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Does Population Size Matter?

For different sample sizes from exponential distribution, compare sample SD to
population SD

Find mean % difference over 100 trials for each sample size

Sample SD vs Population SD, Uniform

30
= Population size = 10000
=== Population size = 100000
25+ === Population size = 1000000 [
()
n
c 20}
)
c
O 15+
—
Q
=
N 10+
X
5
0 | | | | |
0 100 200 300 400 500 600

Sample Size
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To Estimate Mean from a Single Sample

1)[Choose sample size|(based on estimate of skew in
population or by some other means)

2) Chose a simple random sample of that size from the
population

3) Compute the mean and standard deviation of that
sample

4) Use the standard deviation of that sample as
estimate of the standard deviation of the population

5) Compute the SE and use Empiricalrule to generate
confidence intervals around the sample mean for whole

population
Works great when we choose independent random samples

Not always so easy to do, as political polls demonstrate
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Are 200 Samples Enough?

random.seed(0)

temps = getHighs()

sampleSize = 200

numTrials = 10000

popMean = sum(temps)/len(temps)

numBad = 0

for t in range(numTrials):
sample = random.sample(temps, sampleSize)
sampleMean = sum(sample)/sampleSize
SEM = numpy.std(sample)/sampleSize**0.5
if abs(popMean - sampleMean) > 1.96*SEM:

numBad += 1
print('Fraction outside 95% confidence interval =',
numBad/numTrials)

Fraction outside 95% confidence interval = 0.0511
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Recapping Last Few Lectures

=Using Monte Carlo simulation to build models
> The world is mostly stochastic

o But useful tool even when randomness not present
o Estimating reliability of simulation results
o Don’t confuse statistical assertions with factual assertions

sUnderstanding populations
o Cannot examine all members

o Rely on sampling
o Estimating validity of conclusionsbased on samples

o Central Limit Theorem lets us use a single sample, and still
assert inferences with specific confidence levels

sSome math, but goal was to use computationto help develop
intuition

*Next unit: building models of data
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“Live” Demo of Central Limit Theorem

= Galton Board
> Also known as a quincunx or a bean machine

> Demonstration that a binomial distribution approximates
a normal one
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