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Assigned	Reading

§Today:
◦ Chapter	17

§Next	lecture:
◦ Chapter	18
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§Make	an	inference	about	some	property	of	a	population	
by	examining	one	or	more	random	samples	drawn	from	
that	population
◦ infer	property	of	population	based	on	statistics	of	sub-
population

◦ avoid	cost	of	having	to	look	at	entire	population,	if	very	large
◦ handle	cases	where	not	feasible	to	examine	whole	
population

§With	Monte	Carlo	simulation,	generate	lots	of	random	
samples	and	use	them	to	make	inferences	and	to	compute	
confidence	intervals	for	the	inferences	using	empirical	rule
◦ allows	us	to	estimate	likelihood	of	inference
◦ useful	when	variation	in	value	due	to	noise	or	random	effects

Recall	Inferential	Statistics
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§The	mean	estimation	error	is	zero

§The	errors	in	the	estimates	follow	a	normal	(or	
Gaussian)	distribution	– also	called	a	bell	curve

Recall	Assumptions	 for	Empirical	Rule
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Carl	Friedrich	Gauss:	 1777-1855

Note:	not	that	estimate	of	mean	is	zero,	
but	mean	of	errors	of	estimate	is	zero

What	does	this	mean?		We’ll	 get	to	that	
shortly



§If	we	assume	that	
◦ Mean	estimation	error	is	zero
◦ Distribution	of	the	errors	in	the	estimates	is	normal	
(Gaussian)	

§Then	by	computing	mean	(𝜇) and	standard	deviation	
(𝜎) of	estimates,	can	set	confidence	intervals:
◦ ~68%	of	data	within	one	standard	deviation	of	mean
◦ ~95%	of	data	within	1.96	standard	deviations	of	mean
◦ ~99.7%	of	data	within	3	standard	deviations	of	mean

§Common	to	use	95%	confidence	interval	– state	that	
value	is	in	range:

𝜇 ± 1.96𝜎

Empirical	Rule	(recap)
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with	95%	confidence
Poll



Generating	Normally	Distributed	Data

6.0002	LECTURE	7 7

Sampling	 from	random.gauss
will	 return	a	value	along	x	axis,	
based	 on	relative	 probability	
graph	below

Taking	 1M	samples	 gives	an	
approximation	 to	Gaussian	
distribution

What	is	a	Gaussian	(or	normal)	distribution?

First,	what	does	it	look	like?



Output
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• This	is	a	discrete	approximation	of	a	Gaussian	distribution	– histogram	of	1M	
samples	from	a	Gaussian	function	with	standard	deviation	of	1,	split	into	100	
buckets	along	x	axis	(each	bucket	roughly	0.1	units	wide)

• Ideally,	for	given	resolution	of	values	along	x	axis,	this	describes	probability	of	
seeing	that	value	(e.g.,	divide	each	histogram	value	by	1M)

• But	want	to	define	probability,	independent	of	resolution	of	values



§Probability	distribution	captures	notion	of	relative	
frequency	with	which	a	random	variable	takes	on	
certain	values
◦ Discrete	random	variables	drawn	from	finite	set	of	values
◦ Continuous	random	variables	drawn	from	real	numbers	
between	two	numbers	(i.e.,	infinite	set	of	values)

§For	discrete	variable,	simply	list	the	probability	of	each	
value;	all	probabilities	must	add	up	to	1

§Case	for	continuous	variable	trickier,	can’t	enumerate	
probability	for	each	of	an	infinite	set	of	values
◦ Could	select	some	resolution	for	values	on	x	axis,	and	use	
histogram	to	find	discrete	probabilities,	but	this	limits	
accuracy	of	estimate	of	variable

Defining	Distributions
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§Distributions	defined	by	probability	 density	functions	
(PDFs)	– aka	probability	 distribution	 functions

§PDF	at	a	point	describes	relative	likelihood	of	that	
sample;	more	typically	used	to	describe	probability	
that	a	random	variable’s	value	lies	between	two	points
§Defines	a	curve	where	the	values	on	the	x-axis	lie	
between	minimum	and	maximum	value	of	the	variable
◦ Area	under	curve	between	two	points	is	probability	of	
variable’s	value	falling	between	those	two	points

§For	small	range,	PDF	can	be	thought	of	as	defining	
probability	at	a	point

PDFs
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§ Area	under	curve	over	small	span	of	x	defines	
probability	of	value	lying	in	that	range

PDF’s	define	probabilities
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Limit	 as	ε tends	to	zero	defines	 probability

Area	in	red	is	
probability	 that	
value	 lies	
between	 1-ε 
and	1+ε

εε



§Let	f(x)	denote	the	probability	density	function
◦ E.g.	for	a	normal	distribution

𝑓 𝑥 =
1

𝜎 2𝜋
𝑒
/(1/2)3
453

§Probability	of	value	lying	in	range	near	x:

𝑃 𝑥 = 7 𝑓 𝑡 𝑑𝑡
1:;

1/;
§Cumulative	distribution	function	(probability	that	random	
variable	is	less	than	or	equal	to	x):	

𝐹 𝑥 =	7 𝑓 𝑡 𝑑𝑡
1

/>

§Note,	integral	over	full	range	of	values	is	1,	but	value	of	PDF	at	a	
point	can	be	greater	than	1	(which	is	why	we	want	integral	over	a	
range,	or	area	under	the	curve)

PDF’s	More	Formally
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PDF	for	Normal	Distribution
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𝑃 𝑥 =
1

𝜎 2𝜋
∗ 𝑒/

(1/2)3
453



Output
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Are	values	on	y-axis	
probabilities?
They	are	densities;
i.e.,	derivative	of	
cumulative	
distribution	function

Hence	we	use	
integration	to	
interpret	a	PDF

This	gives	us	a	sense	of	the	mathematical	definition	of	a	distribution

Our	goal	is	to	use	Empirical	Rule,	but	it	only	applies	if	we	have	a	
normal	distribution	of	errors	in	our	estimate	of	the	mean

Are	distributions	of	errors	in	an	estimate	typically	normal?	



§They	occur	a	lot!

Everybody	 Likes	Normal	Distributions
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MIT	students



§They	occur	a	lot!

§Nice	mathematical	 properties
◦ Symmetric	around	mean
◦ Mean	is	also	mode	and	median
◦ Area	under	curve	is	1
◦ Its	density	is	infinitely	
differentiable

◦ It	is	unimodal – its	first	
derivative	is	positive	to	the	left	
of	the	mean,	negative	to	the	
right	of	the	mean	and	zero	only	
at	the	mean

Everybody	 Likes	Normal	Distributions
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§Uniform	distributions

§Binomial	distributions
§Exponential	distributions

§Other,	more	esoteric,	distributions
◦ Log-normal
◦ Pareto
◦ Bernoulli	
◦ Poisson
◦ many	others

But	There	Are	Other	Distributions!
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§All	intervals	of	the	same	length	have	the	same	probability
§Probability	that	a	value	falls	between	x	and	y	(where	total	range	
of	possible	values	is	a	to	b)	is:

𝑃 𝑥, 𝑦 = 	B
𝑦 − 𝑥
𝑏 − 𝑎 					𝑖𝑓	𝑥 ≥ a𝑎𝑛𝑑	𝑦 ≤ 𝑏
0																													𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

§random.uniform(min, max) will	draw	an	element	within	
range	with	uniform	probability
§Discrete	version	

𝑃 𝑥 = B
1
|𝑆| 			𝑖𝑓	𝑥	𝜖	𝑆

0. 		𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
§random.choice(S) will	select	an	element	from	set	with	
uniform	probability

Uniform	Distributions
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§Coin	flipping

§Dice	rolling
§Roulette

§Waiting	times,	e.g.,	arrival	
of	bus

§Spacing	of	territorial	
animals
◦ Social	distancing?

Uniform	Distributions:	Examples
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§What	is	the	probability	that	a	test	succeeds	exactly	k	
times	out	of	n	independent	trials	(e.g.,	flip	a	coin	n	
times,	probability	of	exactly	k	heads)?		
§If	p	is	probability	of	success	on	one	trial,	then	desired	
probability	is:

𝑃 𝑘 =
𝑛
𝑘
𝑝V(1 − 𝑝)W/V

where
𝑛
𝑘

= 	
𝑛!

𝑘! 𝑛 − 𝑘 !
§Multinomial	distribution	generalizes	to	case	of	more	
than	two,	but	a	discrete,	number	of	outcomes	on	each	
trial

Binomial	Distributions
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aka	“n	choose	k”



§Mean:		𝑛𝑝
§Variance:	𝑛𝑝 1− 𝑝
§If	𝑛 is	large	enough,	then	binomial	distribution	is	
approximated	by	a	normal	distribution,	with	mean	𝑛𝑝
and	variance	𝑛𝑝(1 − 𝑝)

Binomial	Distributions
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n	=	10 n	=	100



§Any	problem	where	have	two	outcomes	on	
each	trial,	and	want	to	know	probability	of	
exactly	k	trials	succeeding	out	of	n
◦ If	probability	of	a	false	positive	on	test	of	
equipment	is	known,	how	many	independent	
tests	are	needed	to	ensure	equipment	is	
reliable	with	given	probability

◦ Probability	of	exactly	k	“heads”	in	n	flips
◦ Suppose	individuals	with	a	specific	gene	have	
a	known	probability	of	eventually	contracting	
a	certain	disease.	Run	a	lifetime	study	on	a	
set	of	individuals,	and	determine	probability	
of	number	of	individuals	who	will	contract	
the	disease

Binomial	Distributions:	Examples
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§Suppose	p	is	probability	of	an	event	occurring	(e.g.,	a	
molecule	of	a	drug	being	cleared	from	the	body)

§Probability	event	has	not	occurred	after	t	time	steps	
(e.g.,	molecule	still	in	body):

(1 − 𝑝)Y

Exponential	 Distributions
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§Probability	density	function

𝑓 𝑥 = Z𝜆𝑒
/\1		𝑖𝑓	𝑥	 ≥ 0

0. 							𝑖𝑓	𝑥 < 0

§Mean:	^\
§Variance:	 ^\3
§Cumulative	distribution	function

𝐹 𝑥 = Z1 − 𝑒
/\1	𝑖𝑓	𝑥 ≥ 0	

0													𝑖𝑓	𝑥	 < 0

§Can	generate	exponential	distributions	using	
random.expovariate(lambd),	 where	lambd is	1	divided	by	
mean	of	distribution
§Discrete	version	called	the	geometric	distribution

Exponential	 Distributions
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§Modeling	inter-arrival	times	(time	
between	events),	e.g.:
◦ cars	entering	a	highway,	
◦ or	requests	for	a	Web	page,	
◦ or	job	requests	on	a	server

§Time	for	a	radioactive	particle	to	
decay	(clicks	on	a	Geiger	counter)
§Time	until	default	on	payment	to	
debt	holders
§Service	time	of	agents	in	a	system	
(how	long	a	bank	teller	takes	to	serve	
a	customer;	or	waiting	times	for	an	
airline	call	center)

Exponential	 Distributions:	Examples
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§If	we	assume	that	
◦ Mean	estimation	error	is	zero
◦ Distribution	of	the	errors	in	the	estimates	is	normal	
(Gaussian)	

§Then	by	computing	mean	(𝜇) and	standard	deviation	
(𝜎)	of	estimates,	can	set	confidence	intervals:
◦ ~68%	of	data	within	one	standard	deviation	of	mean
◦ ~95%	of	data	within	1.96	standard	deviations	of	mean
◦ ~99.7%	of	data	within	3	standard	deviations	of	mean

§Common	to	use	95%	confidence	interval	– state	that	
value	is	in	range:

𝜇 ± 1.96𝜎

Back	to	our	Empirical	Rule
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with	95%	confidence
Now	know	what	a	normal	distribution	looks	like,	and	
appears	that	they	occur	frequently



§So	if	we	have	a	set	of	samples	of	a	parameter	where:
◦ The	distribution	of	errors	from	the	estimate	has	zero	
mean	and	is	normally	(or	Gaussian)	distributed,

§Then:
◦ The	Empirical	Rule	applies	and	we	can	state	a	range	of	
values	within	which	we	are	confident	the	actual	value	
lies,	with	a	95%	certainty	(or	some	other	certainty).

§Can	we	check	that	Empirical	Rule	actually	works?
§How	do	we	know	distribution	is	normal?
◦ Could	measure	it	empirically	and	see	how	well	a	Gaussian	
fits	to	it?	– Expensive!

◦ May	know	from	first	principles	that	distribution	is	normal

Where	are	we?
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§SciPy library	contains	many	useful	mathematical	
functions	used	by	scientists	and	engineers

§scipy.integrate.quad has	up	to	four	arguments
◦ a	function	or	method	to	be	integrated,	
◦ a	number	representing	the	lower	limit	of	the	integration,
◦ a	number	representing	the	upper	limit	of	the	integration,	
and

◦ an	optional	tuple	supplying	values	for	all	arguments,	
except	the	first,	of	the	function	to	be	integrated

§scipy.integrate.quad returns	a	tuple
◦ Approximation	to	result
◦ Estimate	of	absolute	error

A	Digression
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Checking	the	Empirical	Rule
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Checking	Empirical	Rule
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§Empirical	rule	really	applies	to	normal	distributions

§But	if	binomial	distribution	approaches	normal,	is	
empirical	rule	a	decent	approximation	 if	errors	follow	a	
binomial	distribution?

Checking	Empirical	Rule
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Normal	
distribution:
• 68%
• 95%
• 99.7%



§So	if	we	have	a	set	of	samples	of	a	parameter	where:
◦ The	distribution	of	errors	from	the	estimate	has	zero	mean	and	
is	normally	(or	Gaussian)	distributed,

§Then:
◦ The	Empirical	Rule	applies	and	we	can	state	a	range	of	values	
within	which	we	are	confident	the	actual	value	lies,	with	a	95%	
certainty	(or	some	other	certainty).

§Can	we	check	that	Empirical	Rule	actually	works?
◦ “Yes”	for	normal	distribution	of	errors
◦ Roughly	“yes”	for	binomial	distribution	of	errors

§How	do	we	know	distribution	is	normal?
◦ Could	measure	it	empirically	and	see	how	well	a	Gaussian	fits	
to	it?	– Expensive!

◦ Might	know	from	first	principles	that	distribution	is	normal

Where	are	we?
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§Occur	a	lot	in	real	world!

Good	News:	Lots	of	Normal	Distributions
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§Empirical	rule	works	for	normal	distributions

§While	many	distributions	in	real	life	are	normal,	should	
not	just	assume	everything	is

§For	example,	are	the	outcomes	of	spins	of	a	roulette	
wheel	normally	distributed?

§No,	they	are	uniformly	distributed
◦ Each	outcome	is	equally	probable

§So,	why	did	the	empirical	rule	work	when	we	analyzed	
betting	on	roulette?

But:	Not	All	Distributions	Are	Normal
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§Because	we	are	reasoning	not	
about	a	single	spin,	but	about	the	
mean of	a	set	of	spins

§And	the	Central	Limit	Theorem	
applies	to	that	mean	of	the	set
◦ This	suggests	that	we	can	use	the	
empirical	rule	even	if	the	
distribution	of	events	is	not	
normal,	provided	the	distribution	
of	errors	over	many	trials	is	normal

§We’ll	come	back	to	the	CLT	and	
what	it	implies	shortly

§But	first,	let’s	think	about	what	to	
do	if	we	can’t	run	multiple	
simulation	trials

Why	Did	the	Empirical	Rule	Work?
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§Make	an	inference	about	some	property	of	a	population	by	
examining	one	or	more	random	samples	drawn	from	that	
population
◦ infer	property	of	population	based	on	statistics	of	sub-population
◦ avoid	cost	of	having	to	look	at	entire	population,	if	very	large
◦ handle	cases	where	not	feasible	to	sample	whole	population

§With	Monte	Carlo	simulation,	generate	lots	of	random	samples	
and	use	them	to	make	inferences	and	to	compute	confidence	
intervals	for	the	inferences	using	empirical	rule
◦ allows	us	to	estimate	likelihood	of	inference
◦ useful	when	variation	in	value	due	to	noise	or	random	effects

§But	suppose	we	can’t	create	samples	by	simulation?
◦ “In	a	new	poll,	42%	of	voters	approve	of	the	job	Trump	is	doing	as	
president,	while	53%	disapprove.	The	poll	surveyed	1,972	
registered	voters	and	has	a	margin	of	error	of	plus	or	minus	2	
percentage	points.”	– August	2017

◦ need	different	approach	when	can’t	simulate	randomness

Recall	Inferential	Statistics
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§Alternative	to	simulation	 is	to	directly	sample	
from	population
§Assume	each	member	of	population	has	
nonzero	probability	of	being	included	in	sample
◦ Select	subpopulation	by	sampling	at	random

§Simple	random	sampling:	each	member	of	
whole	population	has	equal	chance	of	selection
§Not	always	appropriate
◦ Popular	myth:	all	MIT	undergrads	are	CS	majors
◦ Take	a	simple	random	sample	of	100	students
◦ What	might	you	conclude	about	MIT	student	majors	from	
such	a	sample?

◦ What	might	you	conclude	about	interests	of	MIT	students	
based	on	such	a	sample?

Probability	Sampling
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But	in	simple	sampling	over	10,000	trials
◦ 26%	of	trials	have	no	SAP,	7%	no	SHASS,	6%	no	SLOAN
◦ 0.14%	with	only	SOE	and	SOS	and	CompSci
◦ so	2	of	1000	times,	would	conclude	only	Engineering	&	Science	&	
Computation,	but	might	conclude	no	SAP	a	quarter	of	time

Probability	Sampling
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In	random	sample	of	100,	expect:
• 1	Architecture	&	Planning
• 33	Engineering
• 42	Computer	Science
• 3 HASS
• 3 Management
• 18	Science
In	simple	sampling	over	10,000	
trials,	saw	that	on	average



Suppose	I	sample	1%	(or	33)	of	the	UG	population	over	10,000	trials
◦ 64%	of	trials	have	no	SAP,	42%	no	SHASS,	40%	no	SLOAN
◦ 10.3%	with	only	SOE	and	SOS	and	Computation
◦ so	1 of	10	times,	would	conclude	only	Engineering	&	Science	&	
Computation;	might	conclude	no	SAP	2/3rds	of	time

Probability	Sampling
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In	random	sample	of	100,	expect:
• 1	Architecture	&	Planning
• 33	Engineering
• 42	Computer	Science
• 3 HASS
• 3 Management
• 18	Science
In	simple	sampling	over	10,000	
trials,	saw	that	on	average



§Stratified	sampling
◦ Partition	population	into	subgroups
◦ Take	simple	random	sample	from	each	subgroup	(size	of	sample	reflects	
subgroup’s	relative	size)

§Useful	when	there	are	small	subgroups	that	should	be	represented	(e.g.,	
political	polls)
§Useful	when	subgroups	should	be	represented	proportional	to	their	share	of	
population
◦ E.g.	if	want	to	get	opinions	from	MIT	UG	population,	for	sample	of	size	100	
randomly	pick	1	A&P	student,	3	HASS	students,	3	Sloan	students,	etc.

§Can	be	used	to	reduce	the	needed	size	of	sample
◦ Variability	within	subgroups	often	less	than	variability	in	entire	population

§Requires	care	to	do	properly
◦ How	many	samples	to	draw	from	each	subgroup?
◦ What	are	appropriate	subgroups?
◦ Why	do	we	think	subgroups’	variability	is	smaller?

§We’ll	stick	to	simple	random	samples

Stratified	Sampling
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Note:	 to	sample	 1%	of	eligible	
voters	in	the	US,	you	would	
need	 ~2.35M	opinions!
This	size	 is	why	good	pollsters	
use	stratified	 sampling

Poll



Sampling	to	Estimate	Mean	Temperature
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§From	U.S.	National	Centers	for	Environmental	
Information	(NCEI)

§Daily	high	and	low	temperatures	1961-2015
◦ 21	different	US	cities
◦ ALBUQUERQUE,	BALTIMORE,	BOSTON,	CHARLOTTE,	CHICAGO,	
DALLAS,	DETROIT,	LAS	VEGAS,	LOS	ANGELES,	MIAMI,	NEW	ORLEANS,	
NEW	YORK,	PHILADELPHIA,	PHOENIX,	PORTLAND,	SAN	DIEGO,	SAN	
FRANCISCO,	SAN	JUAN,	SEATTLE,	ST	LOUIS,	TAMPA

◦ 421,848	data	points	(examples)

§Let’s	use	some	code	to	look	at	the	data

Data
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§Code	getHighs extracts	high	temperatures	from	file,	
code	getMeansAndSDs computes	mean	and	standard	
deviation	for	entire	population	and	sample	from	
population
§numpy.std is	function	in	the	numpymodule	that	
returns	the	standard	deviation
§random.sample(population, sampleSize) returns	a	list	
containing	sampleSize randomly	chosen	distinct	
elements of	population
◦ Sampling	without	replacement

§Going	to	plot	using	histogram	– count	number	of	times	
a	particular	value	occurs

New	in	Code
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Histogram	of	Entire	Population
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Why	is
σ	so	large?

Is	this	really	a	
normal	
distribution?

Or	in	oF:	
61.3	+/-17.0

Would	like	to	infer	average	temperature	with	some	level	of	confidence.			Empirical	
rule	would	help,	but	if	this	distribution	is	not	normal,	then	errors	about	mean	not	
normal?



§Why	large	standard	deviation:

§Could	look	at	data	by	month	or	location	
or	year.		But	for	now,	let’s	just	focus	on	
mean	temperature.
§Can	we	get	a	good	approximation	
without	looking	at	all	the	data?	
§And	this	doesn’t	really	look	like	a	normal	
distribution.		Can	we	infer	something	
with	confidence	if	this	is	not	a	normal	
distribution?
◦ Remember	that	we	use	empirical	rule	to	
estimate	confidence,	and	that	assumes	a	
normal	distribution	of	errors

Some	Observations
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Poll



Histogram	of	Random	Sample	of	Size	100
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Looks	even	less	like	a	normal	distribution



§Population	mean	=	16.3

§Sample	mean	=	17.1
§Standard	deviation	of	population	=	9.44

§Standard	deviation	of	sample	=	10.4
§A	happy	accident,	or	something	we	should	expect?

§Let’s	take	a	different	subsample	of	100	temperatures,	
compute	their	mean,	and	do	this	1000	times.		What	do	
those	means	look	like?	

Means	and	Standard	Deviations
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500 × 375 



§Code	in	handout	extracts	sample	of	size	sampleSize,	
computes	mean,	then	repeats	this	for	numSamples
trials	and	computes	the	mean	of	those	means

§pylab.axvline(x = popMean, color = 'r') 
draws	a	red	vertical	line	at	popMean on	the	x-axis

§There’s	also	a	pylab.axhline function

New	in	Code
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§Draw	a	sample	of	100	measurements	from	entire	set	
of	measurements

§Compute	mean	of	that	sample

§Repeat	this	sampling	process	1000	times	(each	trial	
with	a	different	sample	of	100	data	points)
◦ Record	the	mean	of	each	sample	trial

§Compute	the	mean	of	the	means		

Try	It	1000	Times

6.0002	LECTURE	8 54



Mean	of	1000	Means
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Mean	of	sample	Means	=	16.3
Standard	deviation	of	sample	means	=	0.94

±±

Mean	 of	mean	 high	temperatures,	
100	samples,	 1000	trials

Mean	 high	temperature	 over	
entire	 population

In	comparison

Looks	pretty	normal!



Mean	of	1000	Means
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Mean	of	sample	Means	=	16.3
Standard	deviation	of	sample	means	=	0.94

What’s	the	95%	
confidence	interval?

±±

16.28	+/- 1.96*0.94
Or	14.5	- 18.1

Suppose	we	want	a	
tighter	bound?

Includes	population	
mean,	but	still	
pretty	wide	interval



§Will	drawing	more	samples	help?
◦ Let’s	try	increasing	from	1000	to	2000	trials
◦ Standard	deviation	of	estimated	mean	
temperature	goes	from	0.943 to	0.946

§How	about	larger	samples?
◦ Let’s	try	increasing	sample	size	from	100	to	200,	
but	sticking	with	1000	trials

◦ Standard	deviation	of	estimated	mean	
temperature	goes	from	0.943 to	0.662

§This	suggests	that	if	we	want	reasonable	
confidence	in	our	result,	we	need	to	think	about	
how	big	a	sample	size	to	use

Getting	a	Tighter	Bound
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§Graphical	representation	of	the	
variability	of	data

§Way	to	visualize	uncertainty
◦ Plot	mean	value	and	size	of	variance

Error	Bars,	a	Digression
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https://upload.wikimedia.org/wikipedia/commons/1/1d/Pulse_Rate_Error_Bar_By_Exercise_Level.png

When	confidence	
intervals	don’t	overlap,	
we	can	conclude	that	
means	are	statistically	
significantly	different	at	
some	level of	confidence	
(e.g.,	95%).
Overlapping	confidence	
intervals	does	not
imply	lack	of	significance.



Let’s	Look	at	Error	Bars	for	Temperatures
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Empirical	 rule:	
Using	1.96	*	STD	accounts	for	
95%	of	normal	distribution

For	given	
sample	size,	
run	set	of	trials	
and	compute	
mean	of	each	
trial

Record	mean	and	std of	trials	for	
a	size;
Repeat	for	different	sample	sizes



Sample	Size	and	Standard	Deviation
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Note	how	means	of	
sample	means	are	
close	to	actual	mean	
of	entire	population

Note	how	size	of	error	
bars	stabilizes	after	
about	500	samples	(or	
even	200	samples)

Does	this	help	decide	
sample	size?



§Going	from	a	sample	size	of	50	to	600	reduced	the	
standard	deviation	from	1.36C	to	0.39C

§But	we	are	now	looking	at	600*1000	=	600,000	examples

§Sampling	– what	is	it	good	for?	(what	has	it	bought	us?)
◦ “Absolutely	Nothing!”
◦ Entire	population	contained	~422,000	samples

Larger	Samples	Seem	to	Be	Better
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§Mean	of	means	suggests	can	draw	
inference	with	some	level	of	
confidence	about	population	from	set	
of	samples

§But	would	like	to	avoid	taking	lots	of	
samples

§What	if	we	just	took	one sample?		
What	can	we	conclude?	

§More	than	you	might	think,	thanks	to	
the	Central	Limit	Theorem!

What	Can	We	Conclude	 from	1	Sample?

6.0002	LECTURE	8 63



§Given	a	sufficiently	large	sample:
1)	The	means	of	the	samples	in	a	set	
of	independent	samples	(the	sample	
means)	will	be	approximately	normally	
distributed,
2)	This	normal	distribution	will	have	a	
mean	close	to	the	mean	of	the	
population,	and
3)	The	variance	of	the	sample	means	
will	be	close	to	the	variance	of	the	
population	divided	by	the	sample	size.

The	Central	Limit	Theorem	(CLT)
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Recall	 temperature	 example

Mean	 of	means:	 16.294
Population	mean:	 16.299

Variance	 of	sample	 means:	 0.889
Population	 variance:	 89.068
Sample	 size:	100

If	sample	size	is	large	enough,	variance	of	sample	means	is	small;	
hence	mean	of	one	sample	will	be	close	to	mean	of	means,	and	
thus	to	population	mean



§Central	Limit	Theorem	appears	to	work	for	mean	high	
temperature	data

§What	about	other	cases	where	we	know	the	
distribution	of	events	is	not	normal?
◦ Rolling	a	set	of	dice

◦ Betting	on	roulette

So	let’s	check	this	out
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Checking	CLT	for	a	Continuous	Die
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Using	continuous	 values	 between	 1	
and	6

Compute	 average	over	set	of	dice

Roll	different	groups	of	dice,	and	measure	mean	value	across	group

Plot	histogram	
of	means

Run	
multiple	
trials



Output
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Mean	of	rolling	1	die	=	3.49759575528,	Std =	1.4439045633
Mean	of	rolling	50	dice	=	3.49985051798,	Std =	0.204887274645

Distribution	 of	mean	values	 of	1	die	-- uniform

Distribution	 of	mean	values	 of	25	dice	-- normal

Single	 event

Set	of	events



Try	It	for	Roulette
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Betting	a	Pocket	in	Fair	Roulette
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Sure	looks	like	
a	normal	
distribution



§It	doesn’t	matter	what	the	shape	of	the	distribution	of	
values	happens	to	be,	we	can	use	the	Central	Limit	
Theorem	to	estimate	the	mean	of	a	population	using	
sufficiently	large	samples	
§The	Central	Limit	Theorem	also	allows	us	to	use	the	
empirical	rule	when	computing	confidence	intervals	
associated	with	an	estimated	mean

Moral
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5	Minute	Break
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§Goal:	given	a	population,	want	to	infer	properties	of	mean	
of	population
◦ Take	a	single	sample	(of	large	enough	size)	of	population
◦ Can	measure	mean	of	sample,	but	is	it	close	to	mean	of	
population,	and	with	what	confidence?

◦ Central	Limit	Theorem	says	mean	of	set	of	samples	is	close	to	
population	mean,	and	single	sample	mean	is	close	to	mean	of	
set	of	samples	if	large	enough	sample	size

◦ Empirical	rule	says	if	error	estimates	are	normally	distributed,	
then	standard	deviation	lets	us	set	confidence	level
◦ e.g.,	values	in	[µ − 1.96	*	σ, µ + 1.96	*	σ] account	for	95%	of	values

◦ Central	Limit	Theorem	implies	empirical	rule	can	work	even	if	
population	not	normally	distributed,	because	errors	are	
normally	distributed.		Just	need	to	estimate	standard	deviation	
of	population	

Where	are	we?
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§Given	a	sufficiently	large	sample:
◦1)	The	means	of	the	samples	in	a	set	of	samples	(the	sample	
means)	will	be	approximately	normally	distributed,
◦2)	This	normal	distribution	will	have	a	mean	close	to	the	
mean	the	population,	and
◦3)	The	variance	of	the	sample	means	will	be	close	to	the	
variance	of	the	population	divided	by	the	sample	size.

§Mean	of	sufficiently	large	sample	close	to	sample	mean
§But	don’t	know	variance	of	sample	means	because	don’t	
know	variance	of	population.		So	can’t	set	confidence	level
§Time	to	use	the	3rd feature
§Compute	standard	error	of	the	mean	(SEM	or	SE)

Using	the	Central	Limit	Theorem
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§Standard	error	of	a	statistic	(e.g.,	a	mean)	based	on	a	
sample	is	the	deviation	of	the	statistic	for	the	whole	
population	divided	by	the	root	of	the	sample	size

§This	should	measure	standard	deviation	in	estimating	
the	mean	of	sub-population
§Does	it	work?

Standard	Error	of	the	Mean
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SE = σ
n



Testing	the	SEM
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Compute	 SEM	for	given	
sample	 size

Estimate	 SD	
for	50	trials	
of	give	
sample	 size



Standard	Error	of	the	Mean
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SE = σ
n

But,	we	don’t
know	standard
deviation	of	
population

How	might	we	
approximate	it?

Poll:	why	is	the	
SEM	smoother?

What	about	just	using	standard	
deviation	of	sample?



Sample	SD	vs.	Population	SD
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Looks	like	with	
large	enough	
sample	size,	we	
might	be	able	to	
just	use	the	
sample	SD	to	
compute	SEM

For	different	sample	 sizes,	compare	sample	 SD	to	population	 SD
Find	mean	%	difference	 over	100	trials	 for	each	sample	 size



§Once	sample	reaches	a	
reasonable	size,	sample	
standard	deviation	is	a	pretty	
good	approximation	to	
population	standard	deviation
§True	only	for	this	example?
◦ Does	this	depend	on	
distribution	of	population?

◦ Does	this	depend	on	size	of	
population?

The	Point
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Looking	at	Distributions
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Three	Different	Distributions
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random.random()

random.gauss(0,	1)

random.expovariate(0.5)



Does	Distribution	Matter?
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Skew, a	measure	
of	the	asymmetry	
of	a	probability	
distribution,	
matters

All	show	same	
convergence,	but	
not	equally	good	
at	using	sample	SD	
for	population	SD

The	more	skewed	
a	distribution,	the	
more	samples	you	
need	for	SD	to	
become	similar

For	different	sample	 sizes,	compare	sample	 SD	to	population	 SD

Find	mean	%	difference	 over	100	trials	 for	each	sample	 size



Does	Size	Matter?
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Does	Population	Size	Matter?
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For	different	sample	 sizes	from	exponential	 distribution,	 compare	sample	 SD	to	
population	 SD

Find	mean	%	difference	 over	100	trials	 for	each	sample	 size



1)	Choose	sample	size	(based	on	estimate	of	skew	in	
population	or	by	some	other	means)

2)	Chose	a	simple	random	sample	of	that	size	from	the	
population

3)	Compute	the	mean	and	standard	deviation	of	that	
sample

4)	Use	the	standard	deviation	of	that	sample	as	
estimate	of	the	standard	deviation	of	the	population

5)	Compute	the	SE	and	use	Empiricalrule to	generate	
confidence	intervals	around	the	sample	mean	for	whole	
population	

To	Estimate	Mean	from	a	Single	Sample
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Works	great	when	we	choose	independent	random	samples
Not	always	so	easy	to	do,	as	political	polls	demonstrate



Are	200	Samples	Enough?
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Fraction	outside	95%	confidence	interval	=	0.0511



§Using	Monte	Carlo	simulation	to	build	models
◦ The	world	is	mostly	stochastic
◦ But	useful	tool	even	when	randomness	not	present

◦ Estimating	reliability	of	simulation	results
◦ Don’t	confuse	statistical	assertions	with	factual	assertions

§Understanding	populations
◦ Cannot	examine	all	members
◦ Rely	on	sampling
◦ Estimating	validity	of	conclusions	based	on	samples
◦ Central	Limit	Theorem	lets	us	use	a	single	sample,	and	still	
assert	inferences	with	specific	confidence	levels

§Some	math,	but	goal	was	to	use	computation	to	help	develop	
intuition
§Next	unit:	building	models	of	data

Recapping	Last	Few	Lectures
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§ Galton	Board
◦ Also	known	as	a	quincunx	or	a	bean	machine
◦ Demonstration	that	a	binomial	distribution	approximates	
a	normal	one

“Live”	Demo	of	Central	 Limit	Theorem
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