
PYTHON CLASSES
and INHERITANCE
(download slides and .py files from Stellar to follow along!)

6.0001 LECTURE 8

6.0001 LECTURE 8 1

LAST TIME
§ Abstract data types using classes
§ Coordinate example
§ Fraction example

§ Review classes
§ More details on classes, class variables
§ Inheritance and hierarchies of classes

6.0001 LECTURE 8 2

TODAY

Assigned Reading
§ Today
• 8.2
• 9.1 – 9.2

§ Next lecture
• 9.3

6.0001 LECTURE 8 3

https://mitpress.mit.edu/sites/default/files/Guttag_errata_revised_083117.pdf

Why objects
(or structured types)?
§Example: manipulate Geometric circles,
point in circle test

6.0001 LECTURE 8 4

Why objects
(or structured types)?
§Example: manipulate Geometric circles,
point in circle test

6.0001 LECTURE 8 4

Why objects
(or structured types)?
§Example: manipulate Geometric circles

§Note that we can use our own classes (Coordinate) in
the creation of new classes

6.0001 LECTURE 8 5

Why objects
(or structured types)?
§Example: manipulate Geometric circles
• Without structured type:

6.0001 LECTURE 8 6

Why objects and structured
types?
§Example: manipulate Geometric circles
• Without structured type:

is_in_circle(x_c, y_c, r, x_p, y_p)
• Lots of parameters, hard to read

• We could try to package info into lists, but we would have
to remember which index corresponds to coordinates vs.
radius

6.0001 LECTURE 8 7

THE POWER OF OBJECT
ORIENTED PROGRAMMING
§ Bundle together objects that share
• common attributes and
• procedures that operate on those attributes

§ Use abstraction to make a distinction between how to
implement an object versus how to use an object

§ Build layers of object abstractions that inherit
behaviors from other classes of objects

§ Create our own classes of objects on top of Python’s
basic classes (and on top of our own classes)

6.0001 LECTURE 8 8

Another instance of a virtuous cycle – just as defining procedures lets us create new
procedures and treat as if built-in, we can create classes and treat as if built in to Python

IMPLEMENTING USING
THE CLASS vs THE CLASS

Implementing a new
object type with a class
• Define the class
• Define data attributes

(WHAT IS the object)
• Define methods

(HOW TO use the object)

6.0001 LECTURE 8 9

Using the new object
type in code
• Create instances of the

object type
• Do operations with

them

§ Write code from two different perspectives

Class captures common
properties and behaviors

Instances have specific
values for attributes

CLASS DEFINITION INSTANCE
OF AN OBJECT TYPE vs OF A CLASS
§ Class name is the type
class Coordinate(object)

§ Class is defined generically
• Use self to refer to some

instance while defining class
(self.x – self.y)**2
• self is a parameter to

methods in class definition

§ Class defines data and
methods common across all
instances

6.0001 LECTURE 8 10

§ Instance is one specific object
coord = Coordinate(1,2)

§ Data attribute values vary
between instances
c1 = Coordinate(1,2)
c2 = Coordinate(3,4)

• c1 and c2 have different data
attribute values c1.x and c2.x
because they are different
objects

§ Instance has the structure of
the class

Classes & Instances
Classes (~type)
are similar to species
- define a “template”

- can be
hierarchically organized

Instances (a.k.a. members)
are similar to individuals

CREATING INSTANCES (Recap)
§Usually when creating an instance of an object type, we will
want to provide some initial values for the internal data. To
do this, define an __init__ method:
class Coordinate(object):

def __init__(self, x, y):
self.x = x

self.y = y

Method is another name for
a procedural attribute, or a
procedure that “belongs” to
this class

2/26/20 12

CREATING INSTANCES (Recap)
§Usually when creating an instance of an object type, we will
want to provide some initial values for the internal data. To
do this, define an __init__ method:
class Coordinate(object):

def __init__(self, x, y):
self.x = x

self.y = y

When calling a method of an
object, Python always passes
the instance as the first
argument. By convention, we
use self as the name of the
first argument of methods.

2/26/20 13

CREATING INSTANCES (Recap)
§Usually when creating an instance of a type, we will want to
provide some initial values for the internal data. To do this,
define an __init__ method:
class Coordinate(object):

def __init__(self, x, y):
self.x = x

self.y = y

§The “.” operator accesses an attribute of an object, so
__init__ defines two attributes for new object: x and y.

When calling a method of an
object, Python always passes
the instance as the first
argument. By convention, we
use self as the name of the
first argument of methods.

2/26/20 14

CREATING INSTANCES (Recap)
§Usually when creating an instance of a type, we will want to
provide some initial values for the internal data. To do this,
define an __init__ method:
class Coordinate(object):

def __init__(self, x, y):
self.x = x
self.y = y

c = Coordinate(3,4)
origin = Coordinate(0,0)
print(c.x, origin.x)

The expression
classname(values…)

creates a new object of type
classname and then calls its
__init__ method with the new
object and values… as the
arguments. When the method is
finished executing, Python returns
the initialized object as the value.

Note that don’t provide
argument for self, Python does
this automatically

2/26/20 17

Getters and setters
§For good encapsulation and abstraction, it is often
advised to not presume how internal data is encoded
• You should not use directly coord.x = 1.0 from outside the

class
• Instead, implement getters and setters
• Coordinate.set_x
• Coordinate.get_x

6.0001 LECTURE 8 18

Getters and setters
§For good encapsulation and abstraction, it is often
advised to not presume how internal data is encoded
• You should not use directly coord.x = 1.0 from outside the

class
• Instead, implement getters and setters
• Coordinate.set_x
• Coordinate.get_x

6.0001 LECTURE 8 18

Motivation for getters and
setters (aka accessors)
§Information hiding, abstraction

§Adding validation

§Support undo, history tracking

§Debugging insertion point

§Separate control of get vs. set

§Later in this lecture, with inheritance:
change semantics for child class

§For fans of controversy, there are counter arguments
6.0001 LECTURE 8 19

PYTHON NOT GREAT AT
INFORMATION HIDING
§ Allows you to access data from outside class definition in an
instance
print(p.x)

§ Allows you to write to data from outside class definition to an
instance
p.x = 2

§ Allows you to create data attributes for an instance from
outside class definition
a.new_field = ”whatever"

§ It’s usually considered NOT GOOD STYLE to do any of these!

6.0001 LECTURE 8 20

Example of encapsulation and
data hiding
§Credit card class that stores operation history

6.0001 LECTURE 8 21

Default argument
§For any function, including class function attribute

§When argument is not provided, use default

§Can only be done at end of argument list

§Kind of similar to default arguments of range(::)

6.0001 LECTURE 8 22

Default argument examples
§def f(x, y, debug_mode_on=False)

§def f(x, y, z=0.0)

§Class Person(object):
def __init__(first_name, last_name, title=“”)

§def sqrt(x, precision=1e-6)

§Def save_jpeg(image, quality=80)

6.0001 LECTURE 8 23

Careful
§Careful with mutable default arguments
(lists, dictionaries)
• DON’T MUTATE THEM

§They get created only once

6.0001 LECTURE 8 24

CREDIT CARD example
§Operations
• spend(amount)
• pay_bill(amount)
• monthly_update: apply interest rate

§data:
• balance, rate

§Initialize with:
• yearly rate in %, set balance to zero

6.0001 LECTURE 8 25

CREDIT CARD Class

6.0001 LECTURE 8 26

6.0001 LECTURE 8 27

6.0001 LECTURE 8 28

5 Minute Break

6.0001 LECTURE 8 29

Debugging your pset

INHERITANCE
§Idea: “extend” a class with new/different capability

• Reuse code from parent class in child class

• Create sets of classes with similar capabilities

§Motivating examples

• Checking account class

gets extended into saving account class

• Credit card card extends to reward card

• Drawable class

gets extended into various shapes (point, line, circle)

• Clickable User Interface element

parent of buttons, windows, text field

• Output stream gets extended into file, print

6.0001 LECTURE 8 33

REWARDS CARD
§Credit card

§Reward card
• same as credit card
• but also accumulates miles each time we spend money

◦ add more behavior/information (miles)
◦ augments the behavior of the credit card “spend” operator

6.0001 LECTURE 8 34

HOW TO INHERIT
§Define parent class

6.0001 LECTURE 8 35

HOW TO INHERIT
§Define parent class

Define child class:

Automatically inherits all data and function attributes of parent
Can be extended with

new data attributes
new function attributes
Modification of existing behavior

(function overloading)

6.0001 LECTURE 8 36

CONSTRUCTOR
§We still need to initialize balance (or operations) and
monthly_interests_fraction (or yearly)

§We could copy-paste the code from CreditCard
• but it would be dirty and make the code harder to

maintain

§Solution: call the parent function in the child function
• using syntax:
ParentClass.function(self, ...)

6.0001 LECTURE 8 37

CONSTRUCTOR

§Note that here we use self in the call
• yes, Python can be confusing

§Notice the dot notation after CreditCard?
• Yes, classes are objects too!

6.0001 LECTURE 8 38

NEW DATA ATTRIBUTE
§Parent class

§Child class:

RewardCard has all attributes of credit card
(balance, yearly_rate_in_percent)

It has two extra one: miles, miles_per_dollar
6.0001 LECTURE 8 39

NEW BEHAVIOR

6.0001 LECTURE 8 40

MODIFIED BEHAVIOR
§Change spend to increment miles
§In this case, call parent version of spend to preserve
parent behavior
§Augment with extra behavior

6.0001 LECTURE 8 41

SUBSTITUTION PRINCIPLE

§When modifying a method,
make sure that code that works correctly with the
parent method still works with the modified child

6.0001 LECTURE 8 42

How does it work?
§When using dot notation (data, function)
• E.g. card.spend()

§Python tries to find it at level of child class

§If it can’t, it looks for it in parent class
• Potentially recursively if the parent has a parent

§Note: if you want to augment the old behavior, you
have to call it explicitly (here CreditCard.spend())

6.0001 LECTURE 8 43

Good abstraction

Our RewardClass still works if we change the implementation of
CreditCard
- balance vs. operations

- yearly vs. monthly rate

Questions?

6.0001 LECTURE 8 45

POLYMORPHISM
§Functions like spend are called polymorphic
§They can function on different datatypes
§Inheritance and function overloading is one mechanism for
polymorphism
§Other examples:
• Most arithmetic operators
• len()
• min()

• Draw(), area()
• Mouse_up()
• Update_state()

6.0001 LECTURE 8 46

HIERARCHIES Animal

Person

Cat
Rabbit

Student

6.0001 LECTURE 8 47

Animal

Cat RabbitPerson

HIERARCHIES
§ Parent class

(superclass)
§ Child class

(subclass)
• Inherits all data and

behaviors of parent
class
• Add more information
• Add more behaviors
• Override behavior

Student

6.0001 LECTURE 8 48

object

Class variables
§So far we have used instance variables
• Each object instance has a different value for the data

attribute

§New:
class variables are shared for all members of a class
• But not across parents and children
• Declared inside class definition but not in __init__

6.0001 LECTURE 8 49

Example of class variables

6.0001 LECTURE 8 50

INSTANCE CLASS
VARIABLES vs VARIABLES
§ we have seen instance
variables so far in code
§ specific to an instance
§ created for each
instance, belongs to an
instance
§ used the generic variable
name self within the class
definition
self.variable_name

6.0001 LECTURE 8 51

§ introduce class variables
that belong to the class
§ defined inside class but
outside any class methods,
outside __init__
§ shared among all
objects/instances of that
class

THE POWER OF OBJECT
ORIENTED PROGRAMMING
§ Bundle together objects that share
• common attributes and
• procedures that operate on those attributes

§ Use abstraction to make a distinction between how to
implement an object versus how to use an object
§ Build layers of object abstractions that inherit
behaviors from other classes of objects
§ Create our own classes of objects on top of Python’s
basic classes

6.0001 LECTURE 8 59

Predator-Prey Simulation

PREDATOR/PREY SIMULATION
§Animals move on discrete grids
§Reproduce at given rates by parthenogenesis
§Predators need to eat preys to survive

6.0001 LECTURE 8 61

Predator-Prey OOP
§Animals
• Behavior: move, reproduce, eat
• Maintain information:

location, time without eating
• Many instances of the same class
• Hierarchy:

Animal
◦ Prey
◦ Predator
• share properties/behavior,

differ in others

6.0001 LECTURE 8 62

LOOK AT CODE

6.0001 LECTURE 8 63

6.0001 LECTURE 8 64

6.0001 LECTURE 8 65

6.0001 LECTURE 8 66

….

6.0001 LECTURE 8 67

SIMULATE

6.0001 LECTURE 8 68

Lynx vs. hare

Differential equation: Lotka-Volterra

http://labspace.open.ac.uk/mod/oucontent/view.php?id=474950&printable=1
http://mathnathan.com/2010/12/predator-prey-model/

Other applications

Gang territories
- http://www.scientificamerican.com/podcast/episode.cfm?id=predator-prey-
equations-govern-gang-12-07-02

Stock market and bubbles
- http://www.catataxis.com/index.php/the-cultural-theory-of-risk/

- http://en.wikipedia.org/wiki/Competitive_Lotka%E2%80%93Volterra_equations

Object Oriented Programming
(OOP) biggest successes
§Graphical User Interface
• Many types of buttons/window/sliders
• state: on/off, active or not, pushed or not
• some behavior is similar
• some differs

§Agent-based simulation, games
6.0001 LECTURE 8 73

OBJECT ORIENTED
PROGRAMMING LIMITATIONS
§Inheritance can create rigidity and complexity
§Changes to parent classes can still break a lot of things
§The world or your problem cannot always be decomposed
into a hierarchy
§http://wiki.c2.com/?ArgumentsAgainstOop
§https://github.com/raganwald-
deprecated/homoiconic/blob/master/2010/12/oop.md
§https://medium.com/@cscalfani/goodbye-object-oriented-
programming-a59cda4c0e53
§https://cacm.acm.org/magazines/2010/9/98017-objects-
never-well-hardly-ever/fulltext

6.0001 LECTURE 8 74

IN THE END
§Structured types are good

§Object are useful

§Grouping things is useful. OOP is one way of grouping

§Polymorphism is great (but may not need inheritance)

§Inheritance is sometimes useful, sometimes
dangerous, but it’s also used a lot (e.g. for GUIs)

6.0001 LECTURE 8 77

