OBJECT ORIENTED
PROGRAMMING

(download slides and .py files to follow along!)

6.0001 LECTURE 7

If you missed last lecture,
FREDO DURAND come grab a duck on

Wednesday to help you debug

6.0001 LECTURE 8 1

So far

=Basics of programming, variables, control flow

=Use simple and complex datatypes
(int, string, lists, dictionaries, etc.)

=Define new computation via functions
* Abstraction

6.0001 LECTURE 8 2

Motivation for creating new
datatypes

* Fractional numbers

* Mathematical vectors, matrices
e Student record

* DNA

* Algebraic formula

* Neural network

* 3D shape

* Photograph

* Magical electronic white board

6.0001 LECTURE 8 3

What are object and classes?

=Datatypes that bundle
* Storage
* Computation (behavior)

OBJECTS

= Python supports many different kinds of data

1234 3.14159 "Hello" (1, 5, 7, 11, 13]

{"CA": "California", "MA": "Massachusetts"}

= Each is an object, and every object has:
* An internal data representation (primitive or composite)

* A set of procedures for interaction with the object

= An object is an instance of a type (class)
e 1234 isaninstance ofan int
e "hello" is aninstance of a string

6.0001 LECTURE 8 o)

CLASSES vs. Objects

=A Class is a type
e.g. int, string, list

"An object is a value, i.e. an instance of a class
e.g. 3, “object”, [1, 2, 3]

"But the term object is sometimes used to refer to
anything related to objects and classes

6.0001 LECTURE 8 6

OBJECTS

= EVERYTHING IN PYTHON IS AN OBJECT
(and has a type, aka class)

= Can create new objects of some type
= Can manipulate objects

= Can destroy objects
* Explicitly using del or just “forget” about them

* Python system will reclaim destroyed or inaccessible
objects — called “garbage collection”

6.0001 LECTURE 8 8

OBJECT ORIENTED
PROGRAMMING (OOP)

= Objects are a data abstraction
that captures...

(1) An interface for
interacting with object

* Through methods
(aka procedures/functions)

BEEP BEfp
Sep

(©]

* Defines behaviors but
(ideally) hides implementation

7
N

|

OBJECT ORIENTED
PROGRAMMING (OOP)

= Objects are a data abstraction
that captures...

(1) An interface for
interacting with object
* Through methods
(aka procedures/functions)

* Defines behaviors but
(ideally) hides implementation

(2) An internal representation
* Through data attributes

(3) An internal implementation
* Through methods body

6.0001 LECTURE 8

- XAMPLE of ABST
1,2,3,4] has type

RACTION:

IST

"How to manipulate lists?
* L[i], L[i:3], +

+ len(), min(), max(), del(L[i])
* L.append(),L.extend(),L.count(),L.index(),

L.insert(),L.pop(),L.remove(),L.reverse(),

L.sort ()

" Internal representation and implementation should
(ideally) be private

ADVANTAGES OF OBJECT

ORIEN

ED PROGRAMMING (OOP)

= Bundle data into packages together with procedures
that work on them through well-defined interfaces

= Divide-and-conquer development
* Implement and test behavior of each class separately

* Increased modularity reduces complexity

= Classes make it easy to reuse code
* Many Python modules define new classes

* Each class has a separate environment (no collision on
function names)

* Inheritance allows subclasses to redefine or extend a
selected subset of a superclass’ behavior

6.0001 LECTURE 8

CREATING AND USING YOUR
OWN TYPES WITH CLASSES

= Make a distinction between creating a class and
using an instance of the class

= Creating the class involves
* Defining the class name
* Defining class attributes
* for example, someone wrote code to implement a list class

= Using the class involves
* Creating new instances of the class
* Doing operations on the instances
* forexample, L=[1,2] and 1len(L)

6.0001 LECTURE 8

Implementing the class

DEFINE YOUR OWN TYPES

" Use the class keyword to define a new type

class Coordinate(object):

#define attributes here

Implementing the class

DEFINE YOUR OWN TYPES

" Use the class keyword to define a new type

S L Q0 Q¢ o
AR> X0 o™ A7«
de’\\(\ 06((\ Qa(e(\

class Coordinatedobject):

#define attributes here

= Similar to def, indent code to indicate which statements are
part of the class definition

" The word object means that Coordinate is a Python
object and inherits all its attributes (inheritance next lecture)

* Coordinate is a subclass of object

* object is asuperclass of Coordinate

6.0001 LECTURE 8

WHAT ARE ATTRIBUTES?

= Data and procedures that “belong” to the class

= Data attributes
* Think of data as other objects that make up the class
* for example, a coordinate is made up of two numbers

= Methods (procedural attributes)
* Think of methods as functions that only work with this class
* How to interact with the object

* for example you can define a distance between two
coordinate objects but there is no meaning to a distance
between two list objects

6.0001 LECTURE 8

Implementing the class

D

“FINING ROW TO CREATE AN

NSTANCE OF A CLASS

= First have to define how to create an instance of
class

= Use a special method called init to
initialize some data attributes or perform
initialization operations

class Coordinate(object):

def init (self, x, y):

self.x = X

self.y =y

DEFINING HOW TO CREATE AN
NSTANCE OF A CLASS

= First have to define how to create an instance of
class

= Use a special method called init to
initialize some data attributes or perform

initialization operations A
W o
. . o ‘3\ e
class Coordinate(object): /«“ ‘6’2\/0 2%
def init (self,| x, y): COO o O
— X
06&0 7/ _) I TS
\ «\e&‘“ ’@(\ce self.x|= X 0 \)’Qec’ Qo e xO O;‘\,‘(\
.) \
. Qec\a o 1f 3 " S ot (? 5’@006
e’d"e \)\O\e Se ° Y - Y Ao 0\0\ \\ :

6.0001 LECTURE 8

Using the class

ACTUALLY CREATING
AN INSTANCE OF A CLASS

c = Coordinate(3,4)

print(c.x)

= Data attributes of an instance are called instance
variables

" Don’t provide argument for self, Python does
this automatically

Using the class

ACTUALLY CREATING
AN INSTANCE OF A CLASS

. ~CL
QQ0\3\6"
c =|Coordinate(3,4) A o
e : -\ ?
origin = Coordinate(0,0) C‘i,&\\oe&ﬂ 6““0
: 505 5 o0
print(|c.Xx) xO e CO” o X _~
. . . 60‘ &('\\0 > Q’dss Y >
print(origin.x) \)Se’d\e 2 e —
S
390663&6(\06
§ A

= Data attributes of an instance are called instance
variables

= Don’t provide argument for sel £, Python does this
automatically

WHAT IS A METHOD?

= Procedural attribute, like a function that works only
with this class

= Python always passes the object as the first argument

 Convention is to use self as the name of the first
argument of all methods

= The “.” operator is used to access any attribute
* A data attribute of an object
* A method of an object

6.0001 LECTURE 8

self

=Refers to the object instance upon which a method is
called

= Always first argument when defining method

=Never provide when using method

6.0001 LECTURE 8

Implementing the class

DEFINE A METHOD
-OR THE Coordinate CLASS

class Coordinate(object):
def init (self, x, y):

self.x = x

y
def distance(self, other):

self.y

x diff sq = (self.x-other.x)**2
y diff sq = (self.y-other.y)**2

return (x diff sq + y diff sq)**0.5
= Other than self and dot notation, methods behave

just like functions (take params, do operations, return)

6.0001 LECTURE 8 25

Implementing the class

DEFINE A METHOD
-OR THE Coordinate CLASS

class Coordinate(object):

e (o)
o) A
def init (self, x, y): (N«6 o ¢
< e e
self.x = x N o <5
'\\"'O 3 Qa(3(’06
self.y =y ° ,@ﬁ@ o
o) O’@‘\
def distance(jself|, |other]|): &ﬁﬁ

x diff sq = (self|.xrother.x)**2

y diff sq = (self.y-other.y)**2
return (x diff sq + y diff sq)**0.5

= Other than self and dot notation, methods behave

just like functions (take params, do operations, return)

6.0001 LECTURE 8 26

Using the class

HOW TO USE A METRHOD

def distance(self, other):
code from prev slide here

c = Coordinate(3,4)

zero = Coordinate(0,0)

Using the class

HOW TO USEA M

- THOD

def distance(self, other):
code from prev slide here

Using the class:
= Conventional way
c = Coordinate(3,4) c =

zero = Coordinate(0,0)

Zzero =

" Equivalent to

Coordinate(3,4)

Coordinate(0,0)

print(. distance((zero|)) print (Coordinatelldistancel|(c, zerol))
\\ \¥ 20
o < 0 \ < A0S
o) o S o \\ o)
L \ GX’%’ o) ‘\<\O

6.0001 LECTURE 8

PRINT AN OBJECT

>>> ¢ = Coordinate(3,4)
>>> print(c)
< main .Coordinate object at 0x7f£fa918510488>

= Uninformative print representation by default

PRINT AN OBJECT

>>> ¢ = Coordinate(3,4)
>>> print(c)
< main .Coordinate object at 0x7f£fa918510488>

= Uninformative print representation by default

= Definea str method for a class

= Python callsthe str method when used with
print on your class object

= You choose what it does! Say that when we print a
Coordinate object, want to show

>>> print(c)
<3,4>

6.0001 LECTURE 8

CONTROLLING HOW YOUR OBJECT

PRIN

S OR CASTS TO STRING

class Coordinate(object):

def

def

def

init (self, x, y):

self.x = x

y

distance(self, other):

x diff sq = (self.x-other.x)**2
y diff sq = (self.y-other.y)**2

self.y

return (x diff sq + y diff sq)**0.5
__str (self):
return "<"+str(self.x)+","+str(self.y)+">"

6.0001 LECTURE 8

Implementing the class

CONTROLLING HOW YOUR OBJECT
PRINTS OR CASTS TO STRING

class Coordinate(object):
def 1init (self, x, y):

self.x = x
self.y = vy
def distance(self, other):
x diff sq = (self.x-other.x)**2
y diff sq = (self.y-other.y)**2
return (x diff sq + y diff sq)**0.5
def str (self):

return| "<"+str(self.x)+","+str(self.y)+">"

6.0001 LECTURE 8

WRAPPING YOUR HEAD
AROUND TYPES AND CLASSES

= Can ask for the type of an object instance
>>> ¢ = Coordinate(3,4)
>>> print(c)
<3,4>
>>> print(type(c))
<class _ main .Coordinate>

" This makes sense since
>>> print(Coordinate)
<class _ main .Coordinate>
>>> print(type(Coordinate))
<type 'type'>

" Use isinstance() tocheckifan objectisaCoordinate
>>> print(isinstance(c, Coordinate))
True

WRAPP
AROUN

Using the class

NG YOUR F

D TYPES AN

EAD

D CLASSES

= Can ask for the type of an object instance &8~
>>> ¢ = Coordinate(3,4) cﬁﬁﬁ’/
>>> print(c) (ew‘i‘\od ‘C\Sa
<3,4> e &&ﬁ*
>>> print(type(c)) QWGO@Nd@
<class _ main .Coordinate> Qfgﬁcpo - &
= This makes sense since ’ &e-\s’é& o oo¥
>>> print(Coordinate) &&@a 63“W
<class _ main .Coordinate> 2 eo@S
>>> print(type(Coordinate)) &&@§
<type 'type'> 2 °

" Use isinstance() tocheckifan objectisaCoordinate
>>> print(isinstance(c, Coordinate))
True

6.0001 LECTURE 8

SPECIAL OPERATORS

SPECIAL OPERATORS

"+, -, =5, <, >, len(), print, and many others

https://docs.python.org/3/reference/datamodel.html#basic-customization

" Like print, can override these to work with your class

= Define them with double underscores before/after

__add (self, other) - self + other
__sub (self, other) =2 self - other
eq (self, other) - self == other
1t (self, other) - self < other
__len (self) - len(self)
str (self) - print self

... and others

6.0001 LECTURE 8

https://docs.python.org/3/reference/datamodel.html

EXAMPLE: FRACTIONS

= Create a new type to represent a number as a fraction

" Internal representation is two integers
* Numerator
* Denominator

= Interface a.k.a. methods a.k.a how to interact with
Fraction objects

* Add, sub, mult, div to work with +, -, *, /
* Print representation, convert to a float
* Invert the fraction

= Let’s write it together!

6.0001 LECTURE 8

THE POWER OF OBJECT
ORIENTED PROGRAMMING

= Bundle together objects that share
e Common attributes and

* Procedures that operate on those attributes

= Use abstraction to make a distinction between how to
implement an object vs how to use the object

= Build layers of object abstractions that inherit
behaviors from other classes of objects

= Create our own classes of objects on top of Python’s
basic classes

5 Min Break, then Quiz Time!

= Sit at a seat, not on the floor

= No aids allowed, only MITx and your IDE

" |f you finish early, stay in your seat (no phones,
external websites, etc)

" Checkout password given in the last 2 mins of
exam

Exam link:

http://bit.ly/60001-mqg2-s20

http://bit.ly/60001-mq2-s20

