
OBJECT ORIENTED
PROGRAMMING
(download slides and .py files to follow along!)
6.0001 LECTURE 7

FREDO DURAND

6.0001 LECTURE 8 1

If you missed last lecture,
come grab a duck on
Wednesday to help you debug

So far
§Basics of programming, variables, control flow

§Use simple and complex datatypes
(int, string, lists, dictionaries, etc.)

§Define new computation via functions
• Abstraction

6.0001 LECTURE 8 2

Motivation for creating new
datatypes
• Fractional numbers
• Mathematical vectors, matrices
• Student record
• DNA
• Algebraic formula
• Neural network
• 3D shape
• Photograph
• Magical electronic white board

6.0001 LECTURE 8 3

What are object and classes?
§Datatypes that bundle
• Storage
• Computation (behavior)

6.0001 LECTURE 8 4

OBJECTS
§ Python supports many different kinds of data
1234 3.14159 "Hello" [1, 5, 7, 11, 13]

{"CA": "California", "MA": "Massachusetts"}

§ Each is an object, and every object has:
• An internal data representation (primitive or composite)
• A set of procedures for interaction with the object

§ An object is an instance of a type (class)
• 1234 is an instance of an int
• "hello" is an instance of a string

6.0001 LECTURE 8 5

CLASSES vs. Objects
§A Class is a type
e.g. int, string, list

§An object is a value, i.e. an instance of a class
e.g. 3, “object”, [1, 2, 3]

§But the term object is sometimes used to refer to
anything related to objects and classes

6.0001 LECTURE 8 6

OBJECTS
§ EVERYTHING IN PYTHON IS AN OBJECT
(and has a type, aka class)

§ Can create new objects of some type

§ Can manipulate objects
§ Can destroy objects
• Explicitly using del or just “forget” about them
• Python system will reclaim destroyed or inaccessible

objects – called “garbage collection”

6.0001 LECTURE 8 8

OBJECT ORIENTED
PROGRAMMING (OOP)

§ Objects are a data abstraction
that captures…

(1) An interface for
interacting with object

• Through methods
(aka procedures/functions)
• Defines behaviors but

(ideally) hides implementation

6.0001 LECTURE 8 10

OBJECT ORIENTED
PROGRAMMING (OOP)

§ Objects are a data abstraction
that captures…

(1) An interface for
interacting with object

• Through methods
(aka procedures/functions)
• Defines behaviors but

(ideally) hides implementation

(2) An internal representation
• Through data attributes

(3) An internal implementation
• Through methods body

6.0001 LECTURE 8 11

§How to manipulate lists?
• L[i], L[i:j], +
• len(), min(), max(), del(L[i])
• L.append(),L.extend(),L.count(),L.index(),
L.insert(),L.pop(),L.remove(),L.reverse(),
L.sort()

§ Internal representation and implementation should
(ideally) be private

EXAMPLE of ABSTRACTION:
[1,2,3,4] has type list

6.0001 LECTURE 8 12

ADVANTAGES OF OBJECT
ORIENTED PROGRAMMING (OOP)
§ Bundle data into packages together with procedures
that work on them through well-defined interfaces
§ Divide-and-conquer development
• Implement and test behavior of each class separately
• Increased modularity reduces complexity

§ Classes make it easy to reuse code
• Many Python modules define new classes
• Each class has a separate environment (no collision on

function names)
• Inheritance allows subclasses to redefine or extend a

selected subset of a superclass’ behavior

6.0001 LECTURE 8 13

§ Make a distinction between creating a class and
using an instance of the class
§ Creating the class involves
• Defining the class name
• Defining class attributes
• for example, someone wrote code to implement a list class

§ Using the class involves
• Creating new instances of the class
• Doing operations on the instances
• for example, L=[1,2] and len(L)

6.0001 LECTURE 8 14

Implementing the class Using the class

CREATING AND USING YOUR
OWN TYPES WITH CLASSES

DEFINE YOUR OWN TYPES
§ Use the class keyword to define a new type

class Coordinate(object):
#define attributes here

6.0001 LECTURE 8 16

Implementing the class Using the class

DEFINE YOUR OWN TYPES
§ Use the class keyword to define a new type

class Coordinate(object):
#define attributes here

§ Similar to def, indent code to indicate which statements are
part of the class definition
§ The word object means that Coordinate is a Python
object and inherits all its attributes (inheritance next lecture)
• Coordinate is a subclass of object
• object is a superclass of Coordinate

6.0001 LECTURE 8 17

class

definition
name/type

class

parent

Implementing the class Using the class

WHAT ARE ATTRIBUTES?
§ Data and procedures that “belong” to the class
§ Data attributes
• Think of data as other objects that make up the class
• for example, a coordinate is made up of two numbers

§ Methods (procedural attributes)
• Think of methods as functions that only work with this class
• How to interact with the object
• for example you can define a distance between two

coordinate objects but there is no meaning to a distance
between two list objects

6.0001 LECTURE 8 18

DEFINING HOW TO CREATE AN
INSTANCE OF A CLASS
§ First have to define how to create an instance of
class
§ Use a special method called __init__ to
initialize some data attributes or perform
initialization operations
class Coordinate(object):

def __init__(self, x, y):
self.x = x
self.y = y

6.0001 LECTURE 8 19

Implementing the class Using the class

DEFINING HOW TO CREATE AN
INSTANCE OF A CLASS
§ First have to define how to create an instance of
class
§ Use a special method called __init__ to
initialize some data attributes or perform
initialization operations
class Coordinate(object):

def __init__(self, x, y):
self.x = x
self.y = y

6.0001 LECTURE 8 20

special method to

create an instance

__ is double

underscore

parameter to

refer to an

instance of the

class

what data initializes a

Coo
rdi

nat
e object

two data attrib
utes

for every

Coo
rdi

nat
e object

Implementing the class Using the class

ACTUALLY CREATING
AN INSTANCE OF A CLASS

c = Coordinate(3,4)
print(c.x)

§ Data attributes of an instance are called instance
variables
§ Don’t provide argument for self, Python does
this automatically

6.0001 LECTURE 8 21

Implementing the class Using the class

ACTUALLY CREATING
AN INSTANCE OF A CLASS

c = Coordinate(3,4)
origin = Coordinate(0,0)
print(c.x)
print(origin.x)

§ Data attributes of an instance are called instance
variables
§ Don’t provide argument for self, Python does this
automatically

6.0001 LECTURE 8 22

create a new object

of type

Coo
rdi

nat
e and

pass in 3 and 4 to

the __i
nit

__

use the dot to

access an attrib
ute

of instance c

Implementing the class Using the class

WHAT IS A METHOD?
§ Procedural attribute, like a function that works only
with this class
§ Python always passes the object as the first argument
• Convention is to use self as the name of the first

argument of all methods

§ The “.” operator is used to access any attribute
• A data attribute of an object
• A method of an object

6.0001 LECTURE 8 23

self
§Refers to the object instance upon which a method is
called

§Always first argument when defining method
§Never provide when using method

6.0001 LECTURE 8 24

DEFINE A METHOD
FOR THE Coordinate CLASS

class Coordinate(object):
def __init__(self, x, y):

self.x = x
self.y = y

def distance(self, other):
x_diff_sq = (self.x-other.x)**2
y_diff_sq = (self.y-other.y)**2
return (x_diff_sq + y_diff_sq)**0.5

§ Other than self and dot notation, methods behave

just like functions (take params, do operations, return)
6.0001 LECTURE 8 25

Implementing the class Using the class

DEFINE A METHOD
FOR THE Coordinate CLASS

class Coordinate(object):
def __init__(self, x, y):

self.x = x
self.y = y

def distance(self, other):
x_diff_sq = (self.x-other.x)**2
y_diff_sq = (self.y-other.y)**2
return (x_diff_sq + y_diff_sq)**0.5

§ Other than self and dot notation, methods behave

just like functions (take params, do operations, return)
6.0001 LECTURE 8 26

use it t
o refer to

 any instance

another parameter to
 method

dot notation to access data

Implementing the class Using the class

HOW TO USE A METHOD
def distance(self, other):

code from prev slide here

c = Coordinate(3,4)

zero = Coordinate(0,0)

6.0001 LECTURE 8 27

Implementing the class Using the class

method def

HOW TO USE A METHOD
def distance(self, other):

code from prev slide here

Using the class:

§ Conventional way

c = Coordinate(3,4)

zero = Coordinate(0,0)

print(c.distance(zero))

6.0001 LECTURE 8 28

object t
o call

meth
od on

name of

meth
od

parameters not

including sel
f

(sel
f is

im
plie

d to
 be c)

§ Equivalent to

c = Coordinate(3,4)

zero = Coordinate(0,0)

print(Coordinate.distance(c, zero))

name of

class name of

meth
od

parameters, in
cluding an

object t
o call t

he m
eth

od

on, re
pre

sentin
g sel

f

Implementing the class Using the class

meth
od def

PRINT AN OBJECT
>>> c = Coordinate(3,4)
>>> print(c)
<__main__.Coordinate object at 0x7fa918510488>

§ Uninformative print representation by default

6.0001 LECTURE 8 30

PRINT AN OBJECT
>>> c = Coordinate(3,4)
>>> print(c)
<__main__.Coordinate object at 0x7fa918510488>

§ Uninformative print representation by default
§ Define a __str__ method for a class
§ Python calls the __str__ method when used with
print on your class object
§ You choose what it does! Say that when we print a
Coordinate object, want to show
>>> print(c)
<3,4>

6.0001 LECTURE 8 31

CONTROLLING HOW YOUR OBJECT
PRINTS OR CASTS TO STRING
class Coordinate(object):

def __init__(self, x, y):
self.x = x
self.y = y

def distance(self, other):
x_diff_sq = (self.x-other.x)**2
y_diff_sq = (self.y-other.y)**2
return (x_diff_sq + y_diff_sq)**0.5

def __str__(self):
return "<"+str(self.x)+","+str(self.y)+">"

6.0001 LECTURE 8 32

Implementing the class Using the class

CONTROLLING HOW YOUR OBJECT
PRINTS OR CASTS TO STRING
class Coordinate(object):

def __init__(self, x, y):
self.x = x
self.y = y

def distance(self, other):
x_diff_sq = (self.x-other.x)**2
y_diff_sq = (self.y-other.y)**2
return (x_diff_sq + y_diff_sq)**0.5

def __str__(self):
return "<"+str(self.x)+","+str(self.y)+">"

6.0001 LECTURE 8 33

name of

special

method must re
turn

a stri
ng

Implementing the class Using the class

WRAPPING YOUR HEAD
AROUND TYPES AND CLASSES
§ Can ask for the type of an object instance

>>> c = Coordinate(3,4)
>>> print(c)
<3,4>
>>> print(type(c))
<class __main__.Coordinate>

§ This makes sense since
>>> print(Coordinate)
<class __main__.Coordinate>
>>> print(type(Coordinate))
<type 'type'>

§ Use isinstance() to check if an object is a Coordinate
>>> print(isinstance(c, Coordinate))
True

6.0001 LECTURE 8 34

Implementing the class Using the class

WRAPPING YOUR HEAD
AROUND TYPES AND CLASSES
§ Can ask for the type of an object instance

>>> c = Coordinate(3,4)
>>> print(c)
<3,4>
>>> print(type(c))
<class __main__.Coordinate>

§ This makes sense since
>>> print(Coordinate)
<class __main__.Coordinate>
>>> print(type(Coordinate))
<type 'type'>

§ Use isinstance() to check if an object is a Coordinate
>>> print(isinstance(c, Coordinate))
True

6.0001 LECTURE 8 35

Implementing the class Using the class

return of the __str_
_

method

the type of object c is a

class Coordinate

a Coordinate is a class

a Coordinate class is a type of object

SPECIAL OPERATORS

6.0001 LECTURE 8 36

SPECIAL OPERATORS
§ +, -, ==, <, >, len(), print, and many others
https://docs.python.org/3/reference/datamodel.html#basic-customization

§ Like print, can override these to work with your class

§ Define them with double underscores before/after
__add__(self, other) à self + other
__sub__(self, other) à self - other
__eq__(self, other) à self == other
__lt__(self, other) à self < other
__len__(self) à len(self)
__str__(self) à print self
... and others

6.0001 LECTURE 8 37

EXAMPLE: FRACTIONS
§ Create a new type to represent a number as a fraction

§ Internal representation is two integers
• Numerator
• Denominator

§ Interface a.k.a. methods a.k.a how to interact with
Fraction objects
• Add, sub, mult, div to work with +, -, *, /
• Print representation, convert to a float
• Invert the fraction

§ Let’s write it together!

6.0001 LECTURE 8 38

THE POWER OF OBJECT
ORIENTED PROGRAMMING
§ Bundle together objects that share
• Common attributes and
• Procedures that operate on those attributes

§ Use abstraction to make a distinction between how to
implement an object vs how to use the object
§ Build layers of object abstractions that inherit
behaviors from other classes of objects
§ Create our own classes of objects on top of Python’s
basic classes

6.0001 LECTURE 8 39

5 Min Break, then Quiz Time!
§ Sit at a seat, not on the floor
§ No aids allowed, only MITx and your IDE
§ If you finish early, stay in your seat (no phones,
external websites, etc)

§ Checkout password given in the last 2 mins of
exam

6.0001 LECTURE 1 40

Exam link:

http://bit.ly/60001-mq2-s20

