OBJECT ORIENTED
PROGRAMMING

(download slides and .py files to follow along!)

6.0001 LECTURE 7/

If you missed last lecture,
FREDO DURAND come grab a duck on

Wednesday to help you debug

6.0001 LECTURE 8

So far

"Basics of programming, variables, control flow

=Use simple and complex datatypes
(int, string, lists, dictionaries, etc.)

"Define new computation via functions
* Abstraction

6.0001 LECTURE 8 2

Motivation for creating new
datatypes

* Fractional numbers

* Mathematical vectors, matrices
* Student record

* DNA

* Algebraic formula

* Neural network

* 3D shape

* Photograph

* Magical electronic white board

6.0001 LECTURE 8 3

What are object and classes?

"Datatypes that bundle
* Storage
* Computation (behavior)

OBJECTS

" Python supports many different kinds of data

1234 3.14159 "Hello" (1, 5, 7, 11, 13]

{"CA": "California", "MA": "Massachusetts"}

= Each is an object, and every object has:
* An internal data representation (primitive or composite)

* A set of procedures for interaction with the object

" An object is an instance of a type (class)
e 1234 isaninstance of an 1int
* "hello" is aninstance of a string

6.0001 LECTURE 8 5

CLASSES vs. Objects

"A Class is a type
e.g. int, string, list

"An object is a value, i.e. an instance of a class
e.g. 3, “object”, [1, 2, 3]

"But the term object is sometimes used to refer to
anything related to objects and classes

6.0001 LECTURE 8 6

OBJECTS

= EVERYTHING IN PYTHON IS AN OBJECT
(and has a type, aka class)

" Can create new objects of some type
= Can manipulate objects

= Can destroy objects
* Explicitly using del or just “forget” about them

* Python system will reclaim destroyed or inaccessible
objects — called “garbage collection”

6.0001 LECTURE 8 8

OBJECT ORIENTED
PROGRAMMING (OOP)

" Objects are a data abstraction
that captures...

(1) An interface for
interacting with object

* Through methods
(aka procedures/functions)

* Defines behaviors but
(ideally) hides implementation

BEE? BE&p
S&p

OBJECT ORIENTED
PROGRAMMING (OOP)

" Objects are a data abstraction
that captures...

(1) An interface for
interacting with object

* Through methods
(aka procedures/functions)

* Defines behaviors but
(ideally) hides implementation

(2) An internal representation
* Through data attributes

(3) An internal implementation
* Through methods body

6.0001 LECTURE 8

EXAMPLE of ABSTRACTION:
11,2,3,4] has type list

"How to manipulate lists?
« L[i], L[i:j], +
* len(), min(), max(), del(L[1])
* L.append(),L.extend(),L.count(),L.1index(),

L.insert(),L.pop(),L.remove(),L.reverse(),
L.sort ()

" Internal representation and implementation should
(ideally) be private

ADVANTAGES OF OBJECT
ORIENTED PROGRAMMING (OOP)

" Bundle data into packages together with procedures
that work on them through well-defined interfaces

" Divide-and-conquer development
* Implement and test behavior of each class separately

* Increased modularity reduces complexity

" Classes make it easy to reuse code
* Many Python modules define new classes

* Each class has a separate environment (no collision on
function names)

* |Inheritance allows subclasses to redefine or extend a
selected subset of a superclass’ behavior

6.0001 LECTURE 8

13

CREATING AND USING YOUR
OWN TYPES WITH CLASSES

" Make a distinction between creating a class and
using an instance of the class

" Creating the class involves
* Defining the class name
* Defining class attributes
* for example, someone wrote code to implement a list class

= Using the class involves
* Creating new instances of the class

* Doing operations on the instances
* forexample, L=[1,2] and 1len (L)

Implementing the class

DEFINE YOUR OWN TYPES

" Use the class keyword to define a new type
canl T \Meve Mose ~
V, Qgt m7/ 0\455

class Coordinate(object):

S$— Forﬁr)’ 4[.‘15)

#define attributes here I\ sk scosc
nev" \ec\'.’fé

Implementing the class

DEFINE YOUR OWN TYPES

" Usethe class key\/\e/ord to define a new type

S . S
C\zz&-\((\‘\o(\ 2 (‘\G\‘\\Q C\as(e(\’ﬁ
\\! Qo

class Coordinate(bbject):

#define attributes here

= Similar to def, indent code to indicate which statements are
part of the class definition

" The word object means that Coordinate is a Python
object and inherits all its attributes (inheritance next lecture)

* Coordinate isasubclass of object
* object is a superclass of Coordinate

6.0001 LECTURE 8 17

WHAT ARE ATTRIBUTES?

" Data and procedures that “belong” to the class

= Data attributes gy Nlee 5
* Think of data as other objects that make up the%ss
* for example, a coordinate is made up of two numbers

" Methods (procedural attributes)
* Think of methods as functions that only work with this class

* How to interact with the object

* for example you can define a distance between two
coordinate objects but there is no meaning to a distance

between two list objects

6.0001 LECTURE 8 18

DEFINING HOW TO CREATE AN
INSTANCE OF A CLASS

= First have to define how to create an instance of
class

= Use a special method called _init to
initialize some data attributes or perform
initialization operations

\
class Coordinate(objecili/// i >

def __init__(selff’x, y):

7 R 7

acloa valves Qg/
self.y =Yy a C‘g()’cﬁd“‘ .OC

self.x = x

J:A é“z)

DEFINING HOW TO CREATE AN
INSTANCE OF A CLASS

= First have to define how to create an instance of
class

= Use a special method called _init to
initialize some data attributes or perform

initialization operations R
AN \S
. . W 00
class Coordinate(object): 3 x@
~ «\\a‘ e
.. <
def init Hself, X, y)‘: ¢o° EC
— — X
6‘0 — ((\e
e’&Y\O e 4 self . x|= X x> % xO ¢ Q0©
QO AN 7 ¢ <
@ @ e 3’(&‘\\0 X @© ac® ©
SQee?“e a“\)\o\e self@y|= Y 6’5‘3 K s
~ 68(6 , AL "\ \7\ \ e ‘\ {’6”»

N\ o
6.0001 LECTURE 8 20

ACTUALLY CREATING

AN INSTANCE OF A CLASS

\
) P
c = Coordinate(3,4) > | x - 3
print(c.x) .

= Data attributes of an instance are called instance
variables

-

" Don’t provide argument for self, Python does
this automatically

Using the class

ACTUALLY CREATING
AN INSTANCE OF A CLASS

C-ﬂl\> -— 34:!'

/ -
L RS
c =|Coordinate(3,4) eaoe“ &
. = . 2\ 2
origin = Coordinate(0,0) dix\\\’e&o&’:u’&o
. o « QO
print(|c.X) 60@0 o ® cooss.\(\}i\\/n/
. . . (o) Y
print(origlin.x) \)Se’&\e A0 ‘“\C Q‘\\e -
S
2 0666‘6(\06
0
] [] O []
= Data attributes of an instance are called instance
variables

" Don’t provide argument for self, Python does this
automatically

WHAT ISAMETHOD?

" Procedural attribute, like a function that works only
with this class

" Python always passes the object as the first argument

* Conventionis to use self as the name of the first
argument of all methods

" The “.” operator is used to access any attribute
* A data attribute of an object
* A method of an object

6.0001 LECTURE 8 23

self

=Refers to the object instance upon which a method is
called

"Always first argument when defining method

"Never provide when using method

6.0001 LECTURE 8

24

DEFINE A METHOD

FOR THE Coordinate CLASS

class Coordinate(object):

def 1nit (self, x, y):

def distance(self, other):
x diff sq = (self.x-other.x)**2

y diff sq = (self.y-other.y)**2
return (x diff sqg + y diff sq)**0.5

= Other than self and dotnotation, methods behave

just like functions (take params, do operations, return)

6.0001 LECTURE 8 25

DEFINE A METHOD

FOR THE Coordinate CLASS

class Coordinate(object):
def _ init_ (self, x, y): "
o)

self.x = x

el
self.y y ws© 2\(\0&\\

def distance(%elf, other|): aot

x diff sq = (selfl.x+other.x)**2

y diff sq = (self.y-other.y)**2

return (x diff sqg + y diff sq)**0.5

= Other than self and dot notation, methods behave

just like functions (take params, do operations, return)

6.0001 LECTURE 8 26

Using the class

HOW TO USE AMETHOD

def distance(self, other): 6&§
code from prev slide here «@&0

c = Coordinate(3,4)

zero = Coordinate(0,0)
()ri«\/ (C . C&‘A>\’“"c€ (ZZ(D\B

Using the class

HOW TO USE AMETHOD

def distance(self, other): 6&§
code from prev slide here «@&0
“u

sing the class:
= Conventional way

c = Coordinate(3,4)

= Equivalent to
c = Coordinate(3,4)

zero = Coordinate(0,0) zero = Coordinate(0,0)

Coordinat#Jdistance(c, zero|))

printhWdistancekzero

print

Py

\ 20
o K \ O‘\ (\% 6
RS e© K€ e e SO 0
dw@i@QOQ “ﬁsGQQ gﬁwg@% «ﬁiﬁ @§§«©6 ﬁﬁwoeﬁﬂgp&
((\e‘ (.(\e Q C\ \)6\ < (J\’b (.(\6 (06&@ a\\ &\(\ 66'\«
W 6’\& | " x0¢ \'\(\%

6.0001 LECTURE 8 28

PRINT AN OBJECT

>>> ¢ = Coordinate(3,4)
>>> print(c)
< main .Coordinate object at 0x7fa918510488>

" Uninformative print representation by default

PRINT AN OBJECT

>>> ¢ = Coordinate(3,4)
>>> print(c)
< main .Coordinate object at 0x7fa918510488>

" Uninformative print representation by default

= Definea str method for a class

= Python callsthe str method when used with
print on your class object

" You choose what it does! Say that when we print a
Coordinate object, want to show

>>> print(c)
<3,4>

—e

6.0001 LECTURE 8

31

Implementing the class

CONTROLLING HOW YOUR OBJECT
PRINTS OR CASTS TO STRING

class Coordinate(object):
def 1init (self, x, y):

self.x = X

self.y = vy
def distance(self, other):

x diff sq = (self.x-other.x)**2

y diff sq = (self.y-other.y)**2
~diff sq + y diff sqg)**0.5

def str (self):
return "<"+str(self.x)+","+str(self.y)+">"

return (X

I

6.0001 LECTURE 8 32

Implementing the class

CONTROLLING HOW YOUR OBJECT
PRINTS OR CASTS TO STRING

class Coordinate(object):

def 1nit (self, x, y):
self.x = X
self.y = vy
def distance(self, other):
x diff sq = (self.x-other.x)**2
y diff sq = (self.y-other.y)**2
return (x diff sqg + y diff sq)**0.5
def __str_:jself):

return(“<"+str(self.x)+","+str(self.y)+">"

&ﬁw’

© o®
6206&\\0 « s‘(\(\% - > < 3/ LI >

()

6.0001 LECTURE 8 33

WRAPPING YOUR HEAD
AROUND TYPES AND CLASSES

" Can ask for the type of an object instance
>>> ¢ = Coordinate(3,4)
>>> print(c)
<3,4>
>>> print(type(c))
<class main .Coordinate>

" This makes sense since
>>> print(Coordinate)
<class @ main .Coordinate>
>>> print(type(Coordinate))
<type 'type’'>

" Use isinstance() tocheckifan objectisa Coordinate
>>> print(isinstance(c, Coordinate))
True

WRAPPING YOUR HEAD
AROUND TYPES AND CLASSES

" Can ask for the type of an object instance X~
>>> ¢ = Coordinate(3,4) (ﬁﬁﬁ’/
>>> print(c) <ew((\<\\od &C-\c,’&
<3,4> ((\e‘ : O\d\ec,
>>> print(type(c)) w92 e
<class main .Coordinate> &\\3665600 . X
= This makes sense since) &e‘\sad’d o oo
>>> print(Coordinate) &ﬂﬁa .630W
<class main .Coordinate> A% edﬁﬁ
>>> print(type(Coordinate)) &3®§'
<type 'type'> 2P

" Use isinstance() tocheckifan objectisa Coordinate
>>> print(isinstance(c, Coordinate))
True

6.0001 LECTURE 8 35

SPECIAL OPERATORS

SPECIAL OPERATORS

"+, -, ==, <, >, len(), print, and many others

https://docs.python.org/3/reference/datamodel.html#tbasic-customization

" Like print, can override these to work with your class

= Define them with double underscores before/after

~_add (self, other) > self + other
~ _sub (self, other) > self - other
__eq (self, other) > self == other
1t (self, other) > self < other
len (self) > len (self)
9

str (self)

... and others

print self

6.0001 LECTURE 8 37

EXAMPLE: FRACTIONS

= Create a new type to represent a number as a fraction

" Internal representation is two integers
°* Numerator
* Denominator

= Interface a.k.a. methods a.k.a how to interact with
Fraction objects

* Add, sub, mult, div to work with +, -, *, /
* Print representation, convert to a float
* |nvert the fraction

" Let’s write it together!

6.0001 LECTURE 8 38

THE POWER OF OBJECT
ORIENTED PROGRAMMING

" Bundle together objects that share
* Common attributes and

* Procedures that operate on those attributes

= Use abstraction to make a distinction between how to
implement an object vs how to use the object

" Build layers of object abstractions that inherit
behaviors from other classes of objects

" Create our own classes of objects on top of Python’s
basic classes

5 Min Break, then Quiz Time!

= Sit at a seat, not on the floor

= No aids allowed, only MITx and your IDE

" If you finish early, stay in your seat (no phones,
external websites, etc)

" Checkout password given in the last 2 mins of
exam

Exam link:

http://bit.ly/60001-mqg2-s20

