LA-ROUSSE

Grimaldi Foru Q
ydﬁi’e CARLO
N’ibnaco

Le Palais des
Princes de Monaco

Lecture 6: Monte Carlo
Simulation

(download slides and .py files from Stellar to follow along)

John Guttag

MIT Department of Electrical Engineering and
Computer Science

Next Week

= Monday is a holiday, Patriot’s Day, no lecture

= Wednesday, two lectures + micro quiz
> Micro quiz, open for 12 hours starting at 4PM EDT

= Regular lecture
o Simulation model of spread of infectious disease

= Alternate lecture (recorded only)
o Simulation of stock market THIA O i,

6.0002 LECTURE 6

Relevant Reading

=Today
o Chapter 16

¢ Introduction to

=Next week ~ ;
o Sections 15.3-15.4 g:%srit::;xming

“Using Python

With Application to Understanding Data

/ X :/ : g

'.‘/' >

second edition
John \7téag

6.0002 LECTURE 6 3

But First, 3D Random Walk Question

= Asked (but not answered) in Monday’s lecture

= About a five-minute change to allow 3D locations,
with moves of 0 in two dimensions and 1 in the other.

Mean Distance from Origin (100 trials)

But question was 'g, 300 7§ === Drunk_3D
: f = = sOrt(x)
In response to a O
remark about £ 200-
diffusion. And this §
is not a good way 9 100-
. c
of modeling that. S
n
0 o-

| | | | |
0 20000 40000 60000 80000 100000
Number of Steps

6.0002 LECTURE 6 i

More Realistic Multi-dimensional Walks

= Values between -1 and 1, sum of absolute valuesis 1
°1D: 1 or -1 (only choices)
> 2D: (.3, -.7), (.6, .4)
°3D: (-.1,.7,-.2), (.2, .4., .4)

= Code in walk-3D.py

6.0002 LECTURE 6 5

Diffusion is Indeed Slow

Mean Distance from Origin (1000 trials)

.

W
o
|

N
o
|

weme= Drunk_1D
== = Drunk 2D

Distance from Origin

8] === Drunk_3D
0- — Sqrt(x)
| | | | |
0 500 1000 1500 2000
Number of Steps

6.0002 LECTURE 6 6

Poll 1

6.0002 LECTURE 6

A Little History

= Stanislaw Ulam, recovering
from an illness, was playing a
lot of solitaire

= Tried to figure out probability "_- - —
of winning, and failed a2

" Thought about playing lots of
hands and counting number of
wins

> ~10,000 hands needed

= Asked Von Neumann if he
could build a program to
simulate many hands on
ENIAC

//////

R ==

6.0002 LECTUF

Bill's Solitaire Tester
Probabilities and Odds relating to The Game of (Klondike) Solitaire

Back to results

Results for one hundred million games of Draw 3, 3 times around

.a-' Fast Solitaire.

The Game | The Logic
Times around deck Cards to draw
1 @ 3 1 @ 3

Lots [] Sequential Deck

Random Number Algorithm
Intrinsic Visual Basic Rnd() function

@ Mersenne Twister
Default Sequence I [Randomize

The Play

Warp Speed [Reset Counters

Light Speed

Show End Game only
Show Start Game only
Show Start and End Game only

Show all moves

Delay —
between 1 J
moves

0.0 secs

Animation [_)

Speed Slow

sames 100000000 -

to play

[T' Pause @

Games
played

Completely

i
H B B

Remaining Time

Instantaneous rate

T
1 &

All red or all black

No move on the
deal

Ii

6000000
4000000
2000000

0

Frequency

(s =

100,000,000

8.726.717
8.727%, 1in 11.459

-§5,200,000.000
$5,138.811.400

-$61,188,600

5 hours 13 minutes
0 seconds

5311.81 games/sec
5847 95 games/sec

248587
0.2% 1in 4023

4048596

40% 1in247
415141
0.4%,1in 240.9
5792994

5.8%, 1in17.3

0 20 30 40 50
Cards to the Ace Piles

Who Was Stanislaw Ulam?

=Polish-American mathematician, many significant
contributions to mathematics and physics

=Ulam’s (Collatz) conjecture (1937):

L if neven f(3)=3"3+1=10
fn) =42 f(10)=5
3xn+1 if nodd f(5)=15+1=16
vn > 03i fi(n) =1 f(16) = 8
f(8) =4
Knowing what is big and what is f(4) = 2
small is more important than being f(2) =1

able to solve partial differential

equations.

— Staneslow (flam — ? o\\

AZQUOTES

Attempt to Disprove Conjecture

def UlamConjecture(n, toPrint = False):
"itassumes n a positive int"""
result = [n]

while n != 1:
if n%2 == 0:
n=n//2
else:

n=3%n + 1
if toPrint:
result.append(n)
if toPrint:
#print('Sequence leading to 1:', result)
print('value of i =', len(result),
'Maximum value of n =', max(result))

import sys
for i in range(100000):
UlamConjecture(random.randint(1, sys.maxsize))
print('Holds for', i+l1, 'randomly chosen ints between 1 and',
sys.maxsize)

6.0002 LECTURE 6 11

Monte Carlo Simulation

*A method of estimating the value of an unknown
guantity using the principles of inferential statistics

"|nferential statistics
o Population: a set of examples
o Sample: a proper subset of a population

o Key fact: a random sample tends to exhibit the same
properties as the population from which it is drawn

sExactly what we did with random walks

6.0002 LECTURE 6 12

An Example

=Given a single coin, estimate fraction of heads you
would get if you flipped the coin an infinite number of
times

=Consider one flip

How confident would you
be about answering 1.0?

6.0002 LECTURE 6 13

Flipping a Coin Twice

Do you think that the next flip will come up heads?

6.0002 LECTURE 6 14

iImes

100 T

IN

. Coi

ipping a

FI

Now do you

th

ink that the

ip will

next fl

come up heads?

Flipping a Coin 100 Times

6.0002 LECTURE 6

Do you think
that the
probability of
the next flip
coming up
heads is 52/1007?

Given the data,

it’s your best
estimate

But confidence
should be low

16

Why the Difference in Confidence?

= Confidence in our estimate depends upon two things
= Size of sample (e.g., 100 versus 2)
= Variance of sample (e.g., all heads versus 52 heads)

= As the variance grows, we need larger samples to have
the same degree of confidence

6.0002 LECTURE 6 17

Roulette

No need to
simulate, since
answers obvious

Allows us to
compare
simulation results
to actual
probabilities

oo 2

6.0002 LECTURE 6 18

Class Definition

class FairRoulette():
def __init__ (self):
self.pockets = []
for i in range(1,37):
self.pockets.append(i)
self.ball = None
self.pocket0dds = len(self.pockets) - 1
def spin(self):
self.ball = random.choice(self.pockets)
def betPocket(self, pocket, amt):
if str(pocket) == str(self.ball):
return amtxself.pocketOdds
else: return - amt
def __str__ (self):
return 'Fair Roulette'

6.0002 LECTURE 6 19

Monte Carlo Simulation

def playRoulette(game, numSpins, pocket, bet, toPrint):
totPocket = 0
for i in range(numSpins):
game.spin()
totPocket += game.betPocket(pocket, bet)
if toPrint:
print(numSpins, ‘spins of', game)
print('Expected return betting', pocket, '=',\
str(100xtotPocket/numSpins) + '%\n')
return (totPocket/numSpins)

game = FairRoulette()
for numSpins in (100, 1000000):
for i in range(3):
playRoulette(game, numSpins, 2, 1, True)

6.0002 LECTURE 6 20

100 and 1M Spins of the Wheel

100 spins of Fair Roulette
Expected return betting 2 =-100.0%

100 spins of Fair Roulette
Expected return betting 2 = 44.0%

100 spins of Fair Roulette
Expected return betting 2 =-28.0%

100000 spins of Fair Roulette
Expected return betting 2 =-0.244%

100000 spins of Fair Roulette
Expected return betting 2 =-0.964%

100000 spins of Fair Roulette
Expected return betting 2 = 0.548%

6.0002 LECTURE 6 21

Law of Large Numbers

" In repeated independent tests with the same actual
probability p of a particular outcome in each test, the
chance that the fraction of times that outcome occurs
differs from p converges to zero as the number of trials

goes to infinity

v

Does this imply that if
deviations from expected
behavior occur, these
deviations are likely to be
evened out by opposite
deviations in the future?

U N W W U N W N L W o N W o W o

-

T T T T WY T T T W W T T TP G W W 0 O) T W W T o W

ool B

6.0002 LECTURE 6 22

Gambler’s Fallacy

=“On August 18, 1913, at the casino in Monte Carlo,

black came up a record twenty-six times in succession
[in roulette]. ... [There] was a near-panicky rush to bet
on red, beginning about the time black had come up a

phenomenal fifteen times.” -- Huff and Geis, How to
Take a Chance

=Probability of 26 consecutive reds
: 1/67,108,865

=Probability of 26 consecutive reds when previous 25
rolls were red

. 1/2

6.0002 LECTURE 6 23

Regression to the Mean

TABLE I

Ncyuser OF AprLT CHILDREN OF VARIOUS STATCRES BORN OF 205 BMID-PARENTS OF VARIOUS STATURES.
(All Female heights have been multiplied by 1:08).

‘ .
Heights of Heights of the Adult Children. Total Number of
the Mid- .
parents in | ' I P ' ' Medians.
inches. 2.9'63.0 8149 |85 9 le=0 '0a.0'00.9 I=0.0 '#1.0 '=5.9 l=q. Adult Mid- N
Below t622 032‘642 652 66°2 (67 zlsszlssz 702 712 ,22|432 Above i iidven. | -parents. s
H | ; i =
T TNV N (R g (R TR . SRS 09 (AR B 7 o 1 e 4 5 . S
725 . s jeefee e foneie; 2l 2] 118 7,2 4 19 6 722 <,
15 . . feefeeiee | 11 8| 4805|020 4| 9! 2 2 43 11 699 &
708 ; 1 t.]l1i.]l2] t}slaslas]id! 7] 4! B 3 68 22 695 s
€35 ! .. .| 1°16| 4[17[27{20 33|25 2011, 4 5 183 41 639 &
63 ., 1 i..| 7. 11|/16/25(3 84 48|21 .18! 4 3| .. 219 49 632 Ny
675 | . ! 8| 3 11+/15136(38 28 383[19 11! 4'..| .. 211 33 676 =
663 . .. [8| 8! 58| 2[17|17{14:18] 4 .. |.. 0. 7 20 672 &
65 ! 1 .1 9.6 7/11|1N% 7, 7[6 2! 1.1 . 66 12 667 =
645 | 1 l S a &L BE R it Rl]ty ” 23 5 658 g
Beow .. 1 !..[2 4]/1; 2|2 1:1}.. «i. . e 14 1 . 2
—_—— i .
Totals 5 i 7032 5945117 135 120 167 |99 61! 41 17! 14 923 205 .
' 1 3 i
Medians g i66'3 6781679 l67-7 679 633 695 Ies-o l69-0 li7o~oI PR R v .
¢ I

B S

NoTe.—In calculating the Medians, the entries have been taken as referring to the middle of the squares in which they
stand. The reason why the beadings run 622, €32, &c., instead of 62'5, 63'5, &c., is that the observations sre unequally
distributed between 62 and 63, 63 and 64, &c., there being a strong Lias in favour of integral inches. After careful consideration,
ilcgncluded that the headings, as adopted, best satisfied the conditions. This inequality was not apparent in the case of the

id-parents,

Francis Galton, 1885

Regression to the Mean

" Following an extreme random event, the next random
event is likely to be less extreme

= If you spin a fair roulette wheel 10 times and get 100%
reds, that is an extreme event (probability = 1/1024)

= |t is likely that in the next 10 spins, you will get fewer
than 10 reds

o But the expected number is not less than 5!

= So, if you look at the average of the 20 spins, it will be
closer to the expected mean of 50% reds than to the
100% of the first 10 spins

6.0002 LECTURE 6 25

Revisiting Random Walk

Mean Distance from Origin (1000 trials)

£
D 40
-
O
= 30
O
= 90 -
) weme= Drunk 1D
g 10 - == = Drunk 2D
g == Drunk 3D
5 0— — Sqrt(x)
| | | | |
0 500 1000 1500 2000
Number of Steps

B\

6.0002 LECTURE 6

26

Some Shocking News!

6.0002 LECTURE 6

Casinos Not in the Business of Being Fair

European Wheel American Wheel

6.0002 LECTURE 6 28

Two Subclasses of Roulette

class EuRoulette(FairRoulette):
def __init__ (self):
FairRoulette. init (self)
self.pockets.append('0")
def __str_ (self):
return 'European Roulette’

class AmRoulette(EuRoulette):
def __init__ (self):
EuRoulette. init (self)
self.pockets.append('00")
def __str_ (self):
return 'American Roulette’

6.0002 LECTURE 6 29

Comparing the Games

def simGamel(spinList):
def findPocketReturn(game, numTrials, trialSize, toPrint):
pocketReturns = []
for t in range(numTrials):
trialvals = playRoulette(game, trialSize, 2, 1,
toPrint)
pocketReturns.append(trialVals)
return pocketReturns
numTrials = 20
resultDict = {}
games = (FairRoulette, EuRoulette, AmRoulette)
for G in games:
resultDict [G().__str__()] = []
for numSpins in spinlList:
print('\nSimulate', numTrials, 'trials of’,
numSpins, 'spins each')
for G in games:
pocketReturns = findPocketReturn(G(), numTrials,
numSpins, False)
expReturn = 100xsum(pocketReturns)/len(pocketReturns)
print('Exp. return for', G(), '=',
str(round(expReturn, 4)) + '%')

6.0002 LECTURE 6 30

Comparing the Games

Simulate 20
Exp. return

Exp. return
Exp. return

Simulate 20
Exp. return

Exp. return
Exp. return

Simulate 20
Exp. return

Exp. return
Exp. return

Simulate 20
Exp. return

Exp. return
Exp. return

trials of 1000 spins each
for Fair Roulette = 6.56%
for European Roulette = -2.26%
for American Roulette = -8.92%

trials of 10000 spins each

for Fair Roulette = -1.234%

for European Roulette = -4.168%
for American Roulette = -5.752%

trials of 100000 spins each
for Fair Roulette = 0.8144%
for European Roulette = -2.6506%
for American Roulette = -5.113%

trials of 1000000 spins each
for Fair Roulette = -0.0723%
for European Roulette = -2.7329%
for American Roulette = -5.212%

6.0002 LECTURE 6

31

Sampling Space of Possible Outcomes

= Never possible to guarantee perfect accuracy through
sampling

= Not to say that an estimate is not precisely correct

= Key question:

> How many samples do we need to look at before we can
have justified confidence on our answer?

= Depends upon variability in underlying distribution

6.0002 LECTURE 6 32

Quantifying Variation in Data

variance(X) = erx(lf(l— Nk
1 2
000 [S

= Standard deviation simply the square root of the variance

= Qutliers can have a big effect

= Standard deviation should always be considered relative to
mean

6.0002 LECTURE 6 33

Confidence Levels and Intervals

= Instead of estimating an unknown parameter by a single
value (e.g., the mean of a set of trials), a confidence interval
provides a range that is likely to contain the unknown value
and a confidence that the unknown value lays within that
range

= “The return on betting a pocket 10k times in European
roulette is -3.3%. The margin of error is +/- 3.5% with a 95%
level of confidence.”

= \WWhat does this mean?

= |f | were to conduct an infinite number of trials of 10k bets
each,

o My expected average return would be -3.3%

o My return would be between roughly -6.8% and +0.2% 95% of
the time

6.0002 LECTURE 6 34

From a Time Long Ago and Far Away

= “Bernie Sanders has opened up a double-digit lead in
the Democratic nominating contest... Sanders has 31%
support nationally... The poll has a margin of error of
+/- 5.4 percentage points.” — February 18, 2020

poll ©

6.0002 LECTURE 6 35

Empirical Rule

= Under some assumptions discussed later
> ~68% of data within one standard deviation of mean
o ~95% of data within 1.96 standard deviations of mean
> ~99.7% of data within 3 standard deviations of mean

6.0002 LECTURE 6 36

Applying Empirical Rule

def simGame(spinList):
resultDict = {}
games = (FairRoulette, EuRoulette, AmRoulette)
for G in games:
resultDict [G().__str__()] = []
numTrials = 20
for numSpins in spinList:
print('\nSimulate betting a pocket for', numTrials,
'trials of', numSpins, 'spins each')
for G in games:
pocketReturns = findPocketReturn(G(), numTrials,
numSpins, False)
mean = sum(pocketReturns)/len(pocketReturns)
std = np.std(pocketReturns)
resultDict [G().__str__()].append((numSpins,
100xmean,
100xstd))
print('Exp. return for', G(), '=',
str(round(100xmean, 3))
+ '%,', '"+/- ' + str(round(100%1.96x%std, 3))
+ "% with 95% conf.')

6.0002 LECTURE 6 37

Results

Simulate betting a pocket for 20 trials of 1000 spins each

Exp. return for Fair Roulette = 6.56%, +/- 42.065% with 95% conf.

Exp. return for European Roulette = -2.26%, +/- 32.89% with 95% conf.
Exp. return for American Roulette = -8.92%, +/- 35.146% with 95% conf.

Simulate betting a pocket for 20 trials of 10000 spins each

Exp. return for Fair Roulette = -1.234%, +/- 11.578% with 95% conf.

Exp. return for European Roulette = -4.168%, +/- 11.559% with 95% conf.
Exp. return for American Roulette = -5.752%, +/- 10.585% with 95% conf.

Simulate betting a pocket for 20 trials of 100000 spins each

Exp. return for Fair Roulette = 0.814%, +/- 3.038% with 95% conf.

Exp. return for European Roulette = -2.651%, +/- 4.111% with 95% conf.
Exp. return for American Roulette = -5.113%, +/- 4.436% with 95% conf.

6.0002 LECTURE 6 38

Assumptions Underlying Empirical Rule

*The mean estimation error is zero

=The distribution of the errors in the estimates is
normal

0.40 Norrpal Dilstribultion, Meanl= 0 a]nd SQ =1

0.35

0.30

0.25

0.20

6.0002 LECTURE 6 39

Exploiting Randomness

= Using randomized computation to model stochastic
situations

= Using randomized computation to solve problems that
are not inherently random

" E.g., what's the value of T

6.0002 LECTURE 6

circumference

— I area = T * radius?

diameter

6.0002 LECTURE 6 41

Rhind Papyrus (~1550 BCE)

4%(8/9)2=3.16

6.0002 LECTURE 6 42

~1100 Years Later e

“And he made a molten sea, ten cubits
from the one brim to the other: it was
round all about, and his height was five
cubits: and a line of thirty cubits did

compass it round about.”
—1 Kings 7.23

6.0002 LECTURE 6 43

~300 Years Later (Archimedes)

3 .XDA%B

Perimeter of interior hexagon is 6r
Circumference of circle is 2mtr
So 3is alower bound on mt

, Similarly, the length of the sides of
I,-" The outer hexagon is an upper bound
~ onm

Archimedes used a 96-sided polygon

3+10/71<mn<3+10/70
3.140845070422535< 1< 3.142857142857143

6.0002 LECTURE 6 44

700 Years later

= Zu Chongzhi used polygons with
24,576 sides!

3.1415926 < m < 3.1415927

6.0002 LECTURE 6 45

And ~1000 Years Later

= Adriaan Anthonisz (1527-1607) estimated it at
355/113 (roughly 3.1415929203539825)

6.0002 LECTURE 6

~300 Years Later (Buffon-Laplace)

A, =2*2=4
1 A =Tr’=m
needles in circle area of circle

needles in square area of square

1 1

_ area of square * needles in circle
area of circle =

needles in square

4 x needles in circle

area of circle = :
needles in square

6.0002 LECTURE 6 iy

~200 Years Later

': > 1

A

Crazy archer on closed course. Do not try ANYWHERE.

https://www.youtube.com/watch?v=o0YM6MIjZ8IY

V4
(g0
Q
| -

af
Q

i’
>

.n

LN

49

6.0002 LECTURE 6

Simulating Buffon-Laplace Method

def throwNeedles(numNeedles):
inCircle = 0
for needle in range(1l, numNeedles + 1, 1):
X = random. random()
y = random. random()
if (xkx + yky)*x0.5 <= 1.0:
inCircle += 1
if needle%10000000 == 0:
print('Dropped another 1@ million needles')
return 4x(inCircle/numNeedles)

What are the minimum and maximum possible estimates?

Let’s try 10 and 100 needles

6.0002 LECTURE 6 50

Simulating Buffon-Laplace Method, cont.

import numpy as np

def getEst(numNeedles, numTrials, printLevel = 0):
estimates = []
for t in range(numTrials):
piGuess = throwNeedles(numNeedles)
estimates.append(piGuess)
if printLevel > 1:
print('Finished trial', t, 'Est. =', piGuess)
sDev = np.std(estimates)
curEst = sum(estimates)/len(estimates)
if printLevel > 0:
print("{:13s} {:13s} {}"
.format(str(round(curEst, 10)),

str(round(sDev, 10)), numNeedles))
return (curEst, sDev)

6.0002 LECTURE 6 51

Simulating Buffon-Laplace Method, cont.

def estPi(precision, numTrials, printLevel = 0):
numNeedles = 100

sDev = precision
if printLevel > 0:

print("{:13s} {:13s} {}"

.format('Estimate', 'Std', 'Needles'))

while sDev >= precision/1.96: Why not just precision?

if printLevel > 1:

print('Trying', numNeedles, 'needles')
curEst, sDev = getEst(numNeedles, numTrials,
printLevel)

numNeedles %= 2
return curkst

T

Est.
1.96*std 1.96*std

6.0002 LECTURE 6 52

Simulating Buffon-Laplace Method, cont.

def estPi(precision, numTrials, printLevel = 0):

numNeedles = 100
sDev = precision
if printLevel > 0:

print("{:13s} {:13s} {}"

.format('Estimate’', 'Std', 'Needles'))

while sDev >= precision/1.96:

if printLevel > 1:

print('Trying', numNeedles, 'needles')
curkEst, sDev = getEst(numNeedles, numTrials,
printLevel)

numNeedles = 2

return curkst ..
precision = 0.1

Est. est = 3.152
3.152 std = 0.9516
1.96*std L operg ©St+1.96*std = 3.3385

3.3385-pi = 0.197

6.0002 LECTURE 6 53

Output

Estimate Std Needles
3.152 0.1417603612 100
3.1415 0.1154458748 200
3.131 0.0745922248 400
3.138875 0.0574073983 800
3.1390625 0.0468631235 1600
3.1445625 0.0323536971 3200
3.14053125 0.0203694155 6400
3.1415 0.015885362 12800
3.14271875 0.0110747967 25600
3.142375 0.007102177 51200
3.1408544922 0.0055614574 102400
3.1409003906 0.0037853099 204800
3.1417026367 0.0023156432 409600

onically improving?

|nnprovu1g?

6.0002 LECTURE 6 54

Being Right is Not Good Enough

= Not sufficient to produce a good answer
= Need to have reason to believe that it is close to right

" |n this case, small standard deviation implies that we
are close to the true value of

Right?

po“7

pon't peek

6.0002 LECTURE 6 55

Is it Correct to State

= 95% of the time we run this simulation, we will
estimate that the value of pi is
between 3.137163976028 and 3.1462412973719998 ?

= With a probability of 0.95 the actual value of is
between 3.137163976028 and 3.1462412973719998 ?

= Both are factually correct

= But only one of these statements can be inferred from
our simulation

» Statiscally valid + true

6.0002 LECTURE 6 56

Introduce a Bug

Generally Useful Technique

= To estimate the area of some region, R

> Pick an enclosing region, E, such that the area of E is easy
to calculate, and R lies completely within E

o Pick a set of random points that lie within E
o Let F be the fraction of the points that fall within R
o Multiply the area of E by F

= Way to estimate integrals

6.0002 LECTURE 6 58

Definite Integrals: Geometric Intrepretation

fx) ay

Wikipedia

Sin(x)

1.0

0.8

0.6

0.4

0.2

6.0002 LECTURE 6 (510)

Random Points

1.0

0.8

0.6

0.4

0.2

0 0.8 0®%p, V0 © |$’ L B
'%.0 0.5 1.

.‘:... % o° '0‘ ‘~‘.

1.5 2.0 2.5 3.0

6.0002 LECTURE 6 61

Plot a Function and Get Min and Max

import matplotlib.pyplot as plt

def evalFcn(fcn, minX, maxX, toPlot):

xVals = []
yVals = []
incr = 0.001

curvVal = minX

while curVal < maxX:
xVals.append(curVal)
yVals.append(fcn(curVal))
curVal += incr

if toPlot:
plt.plot(xVals, yVals)
plt.hlines(0, minX, maxX)
plt.xlim(minX, maxX)
plt.title(fcn. _name_ + "(x)")

return min(yVals), max(yVals)

6.0002 LECTURE 6 62

Integrate

def dropNeedles(fcn, minX, maxX, minY, maxY, numNeedles, toPlot):
underCurve = 0@
for needles in range(1l, numNeedles + 1):
x = random.uniform(minX, maxX)
y = random.uniform(minY, maxY)
if y > 0 and y < fcn(x):
underCurve += 1
if toPlot and needles%100 == 0:
plt.plot(x, y, 'bo')
elif y < @ and y > fcn(x):
underCurve -= 1
if toPlot and needles%100 == 0:
plt.plot(x, y, 'ro')
return (underCurve/numNeedles)*(maxX - minX)*(maxY - minY)

def integrate(fcn, minX, maxX, toPlot = True):
minY, maxY = evalFcn(fcn, minX, maxX, toPlot)
print('Integral of', fcn.__name__, 'from', round(minX, 2),
‘to', round(maxX, 2), '=',
round(dropNeedles(fcn, minX, maxX, minY, maxy,
100000, toPlot), 2))

6.0002 LECTURE 6 63

sin{x)

Test integrate

integrate(np.sin, @, np.pi, True)
plt.figure()

integrate(np.sin, @, 2xnp.pi, True)
plt.figure()

integrate(np.cos, @, np.pi, True)

Integral of sin from @ to 3.14 = 2.0
Integral of sin from @ to 6.28 = 0.01
Integral of cos from © to 3.14 = -0.01

6.0002 LECTURE 6

Next Week

= Monday is a holiday, Patriot’s Day, no lecture

= Wednesday, two lectures + micro quiz
> Micro quiz, open for 12 hours starting at 4PM EDT

= Regular lecture
o Simulation model of spread of infectious disease

= Alternate lecture (recorded only)
o Simulation of stock market THIA O i,

6.0002 LECTURE 6

