DICTIONARIES,
DEBUGGING,
EXCEPT\ONS

(download slides and .py files to follow along)
6.0001 LECTURE 6

Eric Grimson

LAST TIME

" indexable, ordered data types

= tuples —immutable object type

= lists — mutable object type
o aliasing, cloning
o mutability side effects

" jteration or recursion over lists and tuples

2/19/20 6.0001 LECTURE 6 p

TODAY

= dictionaries —another mutable object type

= debugging
= exceptions

= gssertions

2/19/20 6.0001 LECTURE 6 3

Assigned Reading

"Today
o Section 5.6
o Chapter6 1 “Introduction to
> Chapter7 = Computation
" <and Programming
=Next lecture Usifig Pythoh «
> Sections 8.1-8.2 With"':li;tié; to Understanding Data

. ‘Q 4

https://mitpress.mit.edu/sites/default/files/Guttag_errata_revised 083117.pdf

2/19/20 6.0001 LECTURE 6 4

wnlle@l’uum._ "

DICTIONARIES

HOW TO STORE
STUDENT INFO

names = "John',|] "Matt', 'Katy']
grades = 'A+"', 'A', "A']
microquiz

psets =

" 3 separate list for each item
= each list must have the same length

" info stored across lists at same index, each indexrefers to
information for a different person

" indirectly access information by finding location in lists
correspondingto a person, then extract

2/19/20 6.0001 LECTURE 6 6

HOW TO ACCESS
STUDENT INFO

def get grade(student, name list, grade list): 0

. A Y
— , , x\O OO . KO
i = name_list.index(student) (\6\0069@(500 6\0(’3‘\,‘\'(\6(o
grade = grade lisf[i] W o) \)° ec)so
— \° ac(;

return (student, grade) o

Remember the “” notation for methods
associated with types of objects

" messy if have a lot of differentinfo of which to keep track, e.g.,
a separate list for microquiz scores, for pset scores, etc.

" must maintain many lists and pass them as arguments

o could store a list of lists for each student, but then need to
remember which sublist corresponds to each part of the grade

" must always index using integers

" must remember to change multiple lists, when adding or
updatinginformation

2/19/20 6.0001 LECTURE 6 7

A BETTER AND CLEANER WAY —
A DICTIONARY

" nice to index item of interest directly (not always int)

" nice to use one data structure, no separate lists

A list A dictionary
0 Elem 1 Key 1 Val 1

1 Elem 2 Key 2 Val 2

2 Elem 3 Key 3 Val 3

3 Elem 4 Key 4 Val 4

23

Sy B o
i Shortel

English

Dictionary
jtion

il
il
|
VvV
~
(2}
~l
=
A
Z
>
<
N
~<

AMVINOILDICT

A PYTHON DICTIONARY

= store pairs of data
> key
* value (any data object)

S
e('(\Q’O(\a(\\
S o Note: values could be
my dict =| {} arbitrary structure

grades = {'Ana':'B'D 'Matt':'A', 'John':'A+', 'Katy':'A'E

(I T 1 [(I

keyl vall key2 val2 key3 val3 keyd val4

2/19/20 6.0001 LECTURE 6 9

Merriam-
Webster’s

{(Collegiate

Dictionary

Eleventh Edition

DICTIONARY LOOKUP

= similar to indexing into a list

= looks up the key

= returns the value associated <
with the key

= if key isn’t found, get an error

grades = {'Ana':'B', 'Matt':'A', 'John':'A+', 'Katy':'A'}
grades['John'] - evaluates to "A+"'

grades['Sylvan'] - gives a KeyError

2/19/20 6.0001 LECTURE 6 10

N oh Shorter
0 Oxford .
5 EnghSh

X l)iction‘dl‘,\'
dition

A PYTHON DICTIONARY

= while we are going to [5,2,4]
demonstrate just using final [10,8,4]
grade, one can easily see 'fin' ‘B!
advantage of storing more

complex structures, such as

another dictionary

= access parts by key, don’t
need to remember order

grades = {'Ana':{'mqg':[5,2,4], 'ps': [10,8,4], 'fin': 'B'}

grades['Ana’] ['mg'] [0] returns 5

2/19/20 6.0001 LECTURE 6 11

DICTIONARY
OPERATIONS

grades = {'Ana':'B', 'Matt':'A', 'John':'A+', 'Katy':'A'}
= add an entry

grades['Sylvan'] = 'C'
= test if key in dictionary

'"John' in grades - returns True
'Daniel' in grades =2 returns False

= delete entry

del (grades['Ana'])

= change entry

grades['Sylvan'] = 'B'

2/19/20 6.0001 LECTURE 6 12

DICTIONARY
OPERATIONS

grades = {'Ana':'B', 'Matt':'A', 'John':'A+', 'Katy':'A’

=get an iterable that acts like a tuple of all keys

grades.keys ()

= returns dict keys(['Denise', 'Katy', 'John', 'Ana'])

= get an iterable that acts like a tuple of all values

grades.values ()
- returns dict values(['A', 'A', 'A+', 'B'I])

2/19/20 6.0001 LECTURE 6 13

DICTIONARY KEYS & VALUES & *

= values
* any type (immutable and mutable)
* can be duplicates
 dictionary values can be lists, even other dictionaries!

" keys
* must be unique
* immutable type (int, float, string, tuple,bool)

 actually need an object that is hashable, but think of as immutable as all
immutable types are hashable

* be careful using float type as a key

" no order to keys or values!
d = {4:{1:0}, (1,3):"twelve", 'const':[3.14,2.7,8.44]}

2/19/20 6.0001 LECTURE 6 14

list VS

dict

= ordered sequence of
elements

" ook up elements by an
integer index

" indices have an order

" index is an integer

2/19/20 6.0001 LECTURE 6

= matches “keys” to
“values”

" look up one item by
another item

" no order is guaranteed

= key can be any
immutable type

15

EXAMPLE: THREE FUNCTIONS TO
ANALYZE SONG LYRICS

1) create a frequency dictionary mapping str:int

2) find word that occurs most often and how many times
e use a list, in case more than one word with same number

* returnatuple (1ist, int) for (words_list, highest freq)

3) find the words that occur at least X times
* |let user choose “at least X times”, so allow as parameter

* return alist of tuples, each tupleisa (1list, int)
containing the list of words ordered by their frequency

* IDEA: From songdictionary, find most frequent word. Delete
most common word. Repeat. It works because you are
mutating the songdictionary.

2/19/20 6.0001 LECTURE 6 16

CREATING A DICTIONARY

def generate word dict(song):

song words = song.lower()

words list = song words.split(

word dict = {}

for w in words list:

if w in word dict:

& W
word dict|w] += 1 :

else:

word dict[w] =1

return word dict

2/19/20 6.0001 LECTURE 6 17

USING THE DICTIONARY

def find frequent word(word dict):

words = []

highest = max(word dict.values())

@V’
for w in word=dict.keys()4 \ﬁﬁ&é

1if word dict[w] == highest:

word.append(w)

return (words, highest)

2/19/20 6.0001 LECTURE 6 18

LEVERAGING DICT
PROPERTIES

def occurs often(word dict, atleast):
freq list = []
done = False
while not done:
word freq tuple = find frequent word(word dict)
if word freq tuple[l] < atleast:
| done = True |

else:
freq list.append(word freq tuple)
for i in word freq tuple[0]:
del(word dict[i])
return freq list

song dict = generate word dict(song)
print("***** WORDS IN SONG ***%*")
print(song dict)

print (" ***** MOST COMMON WORD **#***x'")
print(find frequent word(song dict))
print("***** TOP MOST COMMON WORDS ***#**")
print (occurs often(song dict, 20))

2/19/20 6.0001 LECTURE 6 19

Some observations

sconversion of string into list of words enables use of
list methods

siteration over list naturally follows from structure of
lists

=ability to access all values and all keys of dictionary
allows natural looping methods

*"mutability of dictionary enables recursive processing

2/19/20 6.0001 LECTURE 6 20

FIBONACCI RECURSIVE CODE

def fib(n):
if n == 1:
return 1

elif n == 2:

return 2

else:

return fib(n-1) + fib(n-2)
= two base cases
= calls itself twice

= this code is inefficient

Leonardo Bonacci,
aka Fibonacci

INEFFICIENT FIBONACCI
fib(n) = fib((n-1) + fib (n-2)

Fib (06)

= recalculating the same values many times!

= could keep track of already calculated values

2/19/20 6.0001 LECTURE 6 22

FIBONACCI WITH ‘ s‘
MEMOIZATION | \‘

T
: .. S
def fib efficient(n, d): e
: : (n,) \(\e\\s ((\e\.\. 3‘:\00
1if n 1in d: (\% 0660 o't
return d[n] o0 N\e‘\\ T\
o \e
else: o
ans = fib efficient(n-1, d) + fib efficient(n-2, d)
d[n] = ans (\a‘\\
return ans O°
QPR
A °
\(\\&\ \o,éc)e
= {1l:1, 2:2} N\&\(\

print(fib efficient (6, d))

= do a lookup first in case already calculated the value

= modify dictionary as progress through function calls

2/19/20 6.0001 LECTURE 6 23

EFFICIENCY GAINS

= Calling fib(34) results in 11,405,773 recursive calls to
the procedure

= Calling fib_efficient(34) results in 65 recursive calls to
the procedure

= Using dictionaries to capture intermediate results can
be very efficient

= But note that this only works for procedures without
side effects (i.e., the procedure will always produce the
same result for a specific argument independent of any
other computations between calls)

2/19/20 6.0001 LECTURE 6 P

TESTING, DEBUGGING,
EXCEPTIONS, ASSERTIONS

PROGRAMMING CHALLENGES

EXPECTATION REALITY

FUNNYCUTEGKFS

Whatyouwantthe programtodo Whatthe program actually does

2/19/20 6.0001 LECTURE 6 26

-

o

DEFENSIVE PROGRAMMING
 Write specifications for functions
* Modularize programs
* Check conditions on inputs/outputs (assertions)

/

/

Prevent bugs
from occurring

\

/ TESTING/VALIDATION \

 Compare input/output
pairs to specification

* “Isit working?”

* “How can | break my

K program?”

/

Check for bugs

2/19/20

-~

_

~

DEBUGGING
Study events leading up
to an error
“Why is it not working?”
“How can | fix my
/

program?”

6.0001 LECTURE 6

Remove bugs

28

SET YOURSELF UP FOR EASY
TESTING AND DEBUGGING

= from the start, design code to ease this part

= break program into modules that can be tested and
debugged individually

= document constraints on modules
* what do you expect theinputto be? the outputto be?

=" document assumptions behind code design

“Motherhood and apple pie” approach: | V20 -;,
Something that cannot be questioned ¥ o0 Al
because it appeals to universally-held,
wholesome values

WHEN ARE YOU READY
TO TEST?

" ensure code runs
* remove syntaxerrors

°* remove staticsemanticerrors

* Pythoninterpreter can usually find these for you

" have a set of expected results
* aninputset
* for each input, the expected output

Not sure if\code
wrong

—
N

CLASSES OF TESTS or unit 19Rrany.

= Unit testing
* validate each piece of program

* testing each function separately

= Regression testing

* fixing a bug mightintroduce new
ones, so add test for bugs as you
find themin a function

e catchreintroduced errors that
were previously fixed

" Integration testing
* doesoverall program work?

* most programmerstendtorushto
do this

6.0001 LECTURE 6

2/19/20

TESTING APPROACHES i

= intuition about natural boundaries to the problem
def is bigger(x, y):

Assumes X and y are ints

Returns True if y is less than x, else False
* can you come up with some natural partitions?

"= if no natural partitions, might do random testing
* probabilitythat code is correct increases with more tests
* betteroptions below

= black box testing
* explore paths through specification

= glass box testing
* explore pathsthrough code

2/19/20 6.0001 LECTURE 6 32

BLACK BOX TESTING

def sqrt (x, eps):
""" Assumes x, eps floats, x >= 0, eps > 0

Returns res such that x-eps <= res*res <= xt+eps """

= designed without looking at the code

= can be done by someone other than the implementer to
avoid some implementer biases

= testing can be reused if implementation changes

= paths through specification
* build test cases in different natural space partitions

* also consider boundary conditions (empty lists, singleton
list, large numbers, small numbers)

2/19/20 6.0001 LECTURE 6 33

BLACK BOX TESTING

def sqgrt(x, eps):
""" Assumes x, eps floats, x >= 0, eps > 0

Returns res such that x-eps <= res*res <= xt+eps """

boundary 0 0.0001
Perfect square 25 0.0001

Less than 1 0.05 0.0001
Irrational square root 2 0.0001
extremes 2 1.0/2.0*%*64.0
extremes 1.0/2.0*%*64.0 1.0/2.0**64.0
extremes 2.0%*64.0 1.0/2.0**64.0
extremes 1.0/2.0*%*%64.0 2.0**64.0
extremes 2.0**64.0 2.0**64.0

2/19/20 6.0001 LECTURE 6 34

GLASS BOX TESTING

= use code directly to guide design of test cases

= called path-complete if every potential path through
code is tested at least once

= what are some drawbacks of this type of testing?
* can go through loops arbitrarily many times

* missing paths

- . .) a\\ Once
guidelines _ cse reredexac O nce

» for loops gy of 10OF e 310 ey
* while loops ha

2/19/20 6.0001 LECTURE 6 35

GLASS BOX TESTING

def abs(x):
""" Assumes X is an int
Returns x if x>=0 and —x otherwise """
if x < =1:
return —Xx
else:
return X

" 3 path-complete test suite could miss a bug
= path-complete test suite: 2 and -2
" but abs(-1) incorrectly returns-1

= should still test boundary cases

2/19/20 6.0001 LECTURE 6 36

BUGS

= once you have discovered that your code does not run
properly, you want to:

o jsolate the bug(s)
o eradicate the bug(s)

o retest until code runs correctly for all cases

2/19/20 6.0001 LECTURE 6 37

Admiral Grace Murray Hopper

©
w
o
-]
—
O
w
p—
o
o
o
S
©

O s On Adana >W : {/-\-ho 7032 %y) 015
J 0o . ‘ahﬁé = aagdom / 9037 §YC 795 <covuch
130c (039 M ~me | TS eeOed) b)) Y0/5 725057(-3)
033 Pro » <. Mdoyqr6yss

C-d'str 1.1306767/;' §)
P~ » = \
FdonsS =% =~ 033 M ;r..,J xruJ Jeo b ‘
im ¢ “ ", ow .

kel

1/ :)I;&l'-t‘l CO.‘AV\C Sine check
PR RO B

“hON Lo l‘.'J‘.Z\

2/19/20 6.0001 LECTURE 6 40

DEBUGGING

= goal is to have a bug-free program

WwWw.p dcomics.com

= tools
* built into IDLE and Anaconda

* error messages
* stepping through code, line at a time

* Python Tutor
°* print statement
* use your brain, be systematicin your hunt

2/19/20 6.0001 LECTURE 6 43

Error!

8 Random Error just to annoy you.

FRROR MESSAGES - EASY
" trying to access beyond the limits of a list
test = [1,2,3] then test[4] - IndexError
= trying to convertan inappropriate type
int (test) - TypeError
= referencing a non-existentvariable
a - NameError

" mixing data types without appropriate coercion
'3'/4 - TypeError

= forgetting to close parenthesis, quotation, etc.
a = len([1,2,3]
print a - SyntaxError

2/19/20 6.0001 LECTURE 6 44

LOGIC ERRORS - HARD

= think before writing new code

= draw pictures
= take a break

= explainthe code to
°* someone else

* arubberducky

DEBUGGING STEPS:
be a scientist

= study program code
* ask how did | get the unexpected result
* don’t ask what is wrong
* is it part of a family?

= scientific method

o study available data — both correct test cases and incorrect
ones

o form an hypothesis consistent with the data

o desigh and run a repeatable experiment with potential to
refute the hypothesis

o keep record of experiments performed: use narrow range of
hypotheses, use simple test cases

2/19/20 6.0001 LECTURE 6 'y

PRINT STATEMENTS

= good way to test hypothesis

= when to print
* enterfunction

* show values of parameters before computation
* function results

* show value of computation before exiting

2/19/20 6.0001 LECTURE 6 49

DEBUGGING AS SEARCH

= want to narrow down space of possible sources of
error

= design experiments that expose intermediate stages
of computation (use print statements!), and use results
to further narrow search

= bisection search can be a powerful tool for this

° If reach a print statement, and intermediate results are
not what expected, know there is at least one error
before that pointinthe code; otherwise error must be
restricted to code after that point

2/19/20 6.0001 LECTURE 6 52

SOME PRAGMATIC HINTS

" look for the usual suspects

= ask why the code is doing what it is, not why it is not
doing what you want

= the bug is probably not where you think it is —
eliminate locations

= explain the problem to someone else
= don’t believe the documentation

= take a break and come back to the bug later

2/19/20 6.0001 LECTURE 6 63

5 Minute Break

LET ME DEBUG WITH YOU !!!

5 Minute Break "f_'i‘l!s“m‘a'l'('l‘,'lz"ﬂﬂﬂils

nun'@‘
AERAID 10 B

When my code somehow just rks

2/19/20 6.0001 LECTURE 6 66

EXCEPTIONS,
ASSERTIONS

UNEXPECTED
CONDITIONS

= what happens when procedure execution hits an
unexpected condition?

= get an exception... to what was expected

* trying to access beyond list limits
test = [1,7,4]

test[4] - IndexError
* trying to convert an inappropriate type

int(test) - TypeError
* referencing a non-existing variable

a - NameError

* mixing data types without coercion
‘a'/4 - TypeError

2/19/20 6.0001 LECTURE 6 68

i .\- Anemor occurted while displaying e previous emor.

N

OTHER EXCEPTIONS

= already seen common error types:
* SyntaxError:Python can’t parse program

* NameError:local or global name not found
* AttributeError:attribute reference fails
* TypeError:operand doesn’t have correct type

* ValueError:operandtype okay, but value is illegal

* TOError:l0systemreports malfunction (e.g. file not
found)

2/19/20 6.0001 LECTURE 6 69

HANDLING EXCEPTIONS

= Python code can provide handlers for exceptions

try:
a = int(input("Tell me one number:"))
b = int(input("Tell me another number:"))
print(a/b)

[except:

print("Bug in user input.")

= exceptions raised by any statement in body of try are
handled by the except statement and execution continues
with the body of the except statement

2/19/20 6.0001 LECTURE 6 70

HANDLING SPECIFIC
EXCEPTIONS e L

= have separate except clauses to deal with particular
types of exceptions

Lry:
a = int(input ("Tell me one number: "))
b = int (input ("Tell me another number: "))
print("a/b = ", a/b)
print("atb = ", atb) @
except| ValueError: dﬁ»ﬁﬁs
print ("Could not convert to a number.") §§L¢&§§
except| ZeroDivisionError: \6ﬁ@0
print("Can't divide by zero")
except: f\o‘a\\(
print ("Something went very wrong.") d®2¢5

2/19/20 6.0001 LECTURE 6 71

OTHER EXCEPTIONS K

" else:

* body of this is executed when execution of associated
try body completes with no exceptions

" finally:
* body of thisis always executed aftertry, elseand

exceptclauses, evenif they raised another error or
executed abreak,continueorreturn

 useful for clean-up code that should be run no matter
what else happened (e.g. close a file)

2/19/20 6.0001 LECTURE 6 72

There are no
exceptions to the rule

that everybody likes to
W H AT T D W |T H be an exception to the

rule.

EXCEPTIONS?

American Journalist

= fail silently — substitute default values or just continue
* bad idea! user gets no warning

" return an “error” value
* complicates code having to check for a special value

= stop execution, signal error condition

ralse <exceptionName> (<arguments>)

"something is wrong'"))

raisel||ValueError

A—

\!
O .)
0(6 0‘\ ef (3\66 \)‘3\)’6 e
o @ Kk A _2®
Qo Na(\ Q":\O(\) ((\QS
) 0) W\
\\0 ‘(\

2/19/20 6.0001 LECTURE 6 75

IFYOU/CANIUSEDICAPRIOITO
ASSOCIATESINKING/WITH|INCEETION

EXAMPLE: RAISING AN ,
EXCEPTION

RAISING WITH/EXCERTIONS

def get_ ratios(Ll, L2):
ratios = []
for index in range(len(Ll)):
try:
ratios.append(Ll[index]/L2[index])
except ZeroDivisionError:

ratios.append(float('nan')) #nan = not a number

o‘\except:
o . . .
e raise ValueError('get ratios called with bad arg')
2 N —
Q(o%(%0@0 else
(@92“ print(“success”)
eXt finally:

print (“executed no matter whats)

return ratios

2/19/20 6.0001 LECTURE 6 76

EXAMPLE OF EXCEPTIONS

= assume we are given a class list for a subject: each
entry is a list of two parts

* a list of first and last name for a student
* alist of grades on assignments

test grades = [[]['peter', 'parker'], [10.0, 5.0, 85.0]],
[['bruce', 'wayne'], [10.0, 8.0, 74.0]1]

= create a new class list, with name, grades, and an
average

[[['peter', 'parker'], [10.0, 5.0, 85.0], 33.33333],
[['bruce', 'wayne'], [10.0, 8.0, 74.0], 30.666667]]]

2/19/20 6.0001 LECTURE 6 77

EXAMPLE

CODE [[['peter', 'parker'], [10.0, 5.0, 85.0]],
[['bruce', 'wayne'], [10.0, 8.0, 74.0]]]

4

def get stats(class list):
new stats = []

for elt in class list:

new stats.append([elt[0], elt[l], avg(elt[l])])
return new stats

def avg(grades):

return sum(grades)/len(grades)

2/19/20 6.0001 LECTURE 6 78

ERROR [F NO GRADE FOR A
STUDENT

= if one or more students don’t have any grades,
get an error

test grades = [[['peter', 'parker'], [10.0, 5.0, 85.0]1],
[['bruce', 'wayne'], [10.0, 8.0, 74.0]],

[[' captain', 'america'], [8.0,10.0,96.0]],
[["thor'],|[1]]

" get zeroDivisionError: float division by zero

because try to
return sum(grades)/flen(grades)

2/19/20 6.0001 LECTURE 6 79

OPTION 1: FLAG THE ERROR
BY PRINTING A MESSAGE

= decide to notify that something went wrong with a msg
def avg(grades):
try:
return sum(grades)/len(grades)
except ZeroDivisionError:
print('warning: no grades data')

)) el
" running on some test data gives

¢O°
e

N

%6

Q2D

warning: no grades data

[[['peter', 'parker'], [10.0, 5.0, 85.0], 33.3333333],

[['bruce', 'wayne'], [10.0, 8.0, 74.0], 30.66666666], 58
0D
[['captain',6 'america'], [8.0, 10.0, 96.0], 38.0],®ﬁg5iz@ﬁ\
' ' eC W
[['thor'], [],|None]] O 5@ e
\\) ‘\‘(\e

QO

2/19/20 6.0001 LECTURE 6 80

OPTION 2: CHANGE THE POLICY

= decide that a student with no grades gets a zero
def avg(grades):
try:
return sum(grades)/len(grades)
except ZeroDivisionError:
print('warning: no grades data')
return 0.0 (O

" running on some test data gives QoS

warning: no grades data

[[['peter', 'parker'], [10.0, 5.0, 85.0], 33.333333],
[['bruce', 'wayne'], [10.0, 8.0, 74.0], 30.666666],

[['captain', 'america'], [8.0, 10.0, 96.0], 38.0], Q(ew‘

.\‘I
[['thor'], [1,]0.0]] o

2/19/20 6.0001 LECTURE 6 81

ASSERTIONS

= want to be sure that assumptions on state of
computation are what we expected

" use an assert statement toraise an
AssertionError exceptionif assumptions not met

= an example of good defensive programming

2/19/20 6.0001 LECTURE 6 82

EXAMPLE

def avg(grades):

assert len(grades) != 0, 'no grades data'

return sum(grades)/len(grades) o00°

o \
\O \
" 90 ed\’a‘e\\(\\o‘ «€

WO (»{'\0(\
22
20

" raises an AssertionErrorifitis given an empty list for
grades

= otherwise runs ok

2/19/20 6.0001 LECTURE 6 83

ASSERTIONS AS DEFENSIVE
PROGRAMMING

= assertions don’t allow a programmer to control
response to unexpected conditions

= ensure that execution halts whenever an expected
condition is not met

= typically used to check inputs to functions, but can be
used anywhere

= can be used to check outputs of a function to avoid
propagating bad values

= can make it easier to locate a source of a bug

WHERE TO USE ASSERTIONS?

= goal is to spot bugs as soon as introduced and make
clear where they happened

= use as a supplement to testing
" raise exceptions if user supplies bad data input

= yse assertions to
* checktypes of arguments or values

e checkthatinvariants on data structures are met
* check constraints on return values

* check for violations of constraints on procedure (e.g. no
duplicatesin a list)

2/19/20 6.0001 LECTURE 6 85

TAKE HOME MESSAGE

=Dictionaries are a powerful data structure for
associating values with complex keys

"Good code creation requires defensive programming,
thoughtful testing, and disciplined debugging

=Exceptions provide the coder with a way of handling
unexpected input

=Assertions are one way of enforcing conditions on a
“contract” between a coder and a user

2/19/20 6.0001 LECTURE 6 86

