
DICTIONARIES,	
DEBUGGING,	
EXCEPTIONS
(download	slides	and	.py files	to	follow	along)

6.0001	 LECTURE	6

Eric	Grimson

6.0001	LECTURE	6 12/19/20

LAST	TIME
§ indexable,	ordered	data	types
§ tuples	– immutable	object	type
§ lists	– mutable	object	type
◦ aliasing,	cloning
◦ mutability	side	effects

§ iteration	or	recursion	over	lists	and	tuples

6.0001	LECTURE	6 22/19/20

TODAY
§ dictionaries	– another	mutable object	type
§ debugging
§ exceptions
§ assertions

6.0001	LECTURE	6 32/19/20

Assigned	Reading
§Today
◦ Section	5.6
◦ Chapter	6
◦ Chapter	7

§Next	lecture
◦ Sections	8.1-8.2

6.0001	LECTURE	6 4

https://mitpress.mit.edu/sites/default/files/Guttag_errata_revised_083117.pdf	

2/19/20

DICTIONARIES

6.0001	LECTURE	6 52/19/20

HOW	TO	STORE	
STUDENT	INFO
§ could	store	using	separate	lists	for	each	kind	of	information
names = ['Ana', 'John', 'Matt', 'Katy']

grades = ['B', 'A+', 'A', 'A']

microquizzes = ...

psets = ...

§ a	separate list for	each	item
§ each	list	must	have	the	same	length
§ info	stored	across	lists	at	same	index,	each	index refers	to	
information	for	a	different	person
§ indirectly	access	information	by	finding	location	in	lists	
corresponding	to	a	person,	then	extract

6.0001	LECTURE	6 62/19/20

HOW	TO	ACCESS
STUDENT	INFO
def get_grade(student, name_list, grade_list):

i = name_list.index(student)

grade = grade_list[i]

return (student, grade)

§messy	if	have	a	lot	of	different	info	of	which	to	keep	track,	e.g.,	
a	separate	list	for	microquiz scores,	for	pset scores,	etc.
§must	maintain	many	lists	and	pass	them	as	arguments
◦ could	store	a	list	of	lists	for	each	student,	but	then	need	 to	
remember	 which	sublist corresponds	 to	each	part	of	the	grade

§must	always	index	using	integers
§must	remember	to	change	multiple	lists,	when	adding	or	
updating	information

6.0001	LECTURE	6 7

Remember	 the	“.”	notation	for	methods	
associated	with	types	of	objects

2/19/20

A	BETTER	AND	CLEANER	WAY	–
A	DICTIONARY
§ nice	to	index	item	of	interest	directly	(not	always	int)
§ nice	to	use	one	data	structure,	no	separate	lists

A	list A	dictionary
Elem	1

Elem	2

Elem	3

Elem	4

…

Key	1

Key	2

Key	3

Key	4

…

Val	1

Val	2

Val	3

Val	4

…

0

1

2

3

…

6.0001	LECTURE	6 82/19/20

A	PYTHON	DICTIONARY
§ store	pairs	of	data
• key
• value	(any	data	object)

my_dict = {}

grades = {'Ana':'B', 'Matt':'A', 'John':'A+', 'Katy':'A'}

Key	1

Key	2

Key	3

…

Val	1

Val	2

Val	3

…

key1				val1

6.0001	LECTURE	6 9

key2			val2 key3				 val3 key4						val4

'Ana'

'Matt'

'John'

'Katy'

'B'

'A'

'A+'

'A'

Note:	values	could	be	
arbitrary	structure

2/19/20

'Ana'

'Matt'

'John'

'Katy'

'B'

'A'

'A+'

'A'

DICTIONARY	LOOKUP
§ similar	to	indexing	into	a	list
§ looks	up the	key
§ returns the	value associated	
with	the	key
§ if	key	isn’t	found,	get	an	error

6.0001	LECTURE	6 10

grades = {'Ana':'B', 'Matt':'A', 'John':'A+', 'Katy':'A'}

grades['John'] à evaluates	 to	'A+'

grades['Sylvan'] à gives	a	KeyError

2/19/20

A	PYTHON	DICTIONARY
§ while	we	are	going	to	
demonstrate	just	using	final	
grade,	one	can	easily	see	
advantage	of	storing	more	
complex	structures,	such	as	
another	dictionary
§ access	parts	by	key,	don’t	
need	to	remember	order

Key	1 Val	1

6.0001	LECTURE	6 11

'Ana'

2/19/20

grades = {'Ana':{'mq':[5,2,4], 'ps': [10,8,4], 'fin': 'B'}

grades['Ana’]['mq'][0] returns 5

'mq' [5,2,4]

'ps' [10,8,4]

'fin' 'B'

DICTIONARY	
OPERATIONS

grades = {'Ana':'B', 'Matt':'A', 'John':'A+', 'Katy':'A'}

§ add an	entry
grades['Sylvan'] = 'C'

§ test if	key	in	dictionary
'John' in grades à returns True
'Daniel' in grades à returns False

§ delete entry
del(grades['Ana'])

§ change	entry
grades['Sylvan'] = 'B'

6.0001	LECTURE	6 12

'Sylvan' 'C'

'Ana'

'Matt'

'John'

'Katy'

'B'

'A'

'A+'

'A'

'B'

2/19/20

DICTIONARY	
OPERATIONS

grades = {'Ana':'B', 'Matt':'A', 'John':'A+', 'Katy':'A’}

§get	an	iterable that	acts	like	a	tuple	of	all	keys
grades.keys()

à returns dict_keys(['Denise','Katy','John','Ana'])

§ get	an	iterable that	acts	like	a	tuple	of	all	values	
grades.values()

à returns dict_values(['A', 'A', 'A+', 'B'])

6.0001	LECTURE	6 13

'Ana'

'Matt'

'John'

'Katy'

'B'

'A'

'A+'

'A'

2/19/20

DICTIONARY	KEYS	&	VALUES
§ values	
• any	type	(immutable	and	mutable)
• can	be	duplicates
• dictionary	 values	 can	be	lists,	even	other	dictionaries!

§ keys
• must	be	unique	
• immutable type	(int,	float,	string,	tuple,bool)
• actually	need	an	object	that	is	hashable,	but	think	of	as	immutable	as	all	
immutable	types	are	hashable

• be	careful	using	float type	as	a	key

§ no	order	to	keys	or	values!
d = {4:{1:0}, (1,3):"twelve", 'const':[3.14,2.7,8.44]}

6.0001	LECTURE	6 142/19/20

list vs dict

6.0001	LECTURE	6 15

§ ordered	sequence	of	
elements
§ look	up	elements	by	an	
integer	index

§ indices	have	an	order
§ index	is	an	integer

§matches “keys”	to	
“values”
§ look	up	one	item	by	
another	item
§ no	order is	guaranteed
§ key	can	be	any	
immutable type

2/19/20

EXAMPLE:	THREE	FUNCTIONS	TO
ANALYZE	SONG	LYRICS
1)	create	a	frequency	dictionary	mapping	str:int

2)	find	word	that	occurs	most	often	and	how	many	times
• use	a	list,	in	case	more	than	one	word	with	same	number
• return	a	tuple	(list,int) for	 (words_list,	highest_freq)

3)	find	the	words	that	occur	at	least	X	times
• let	user	choose	“at	least	X	times”,	so	allow	as	parameter
• return	a	list	of	tuples,	each	tuple	is	a	(list, int)
containing	the	list	of	words	ordered	by	their	frequency
• IDEA:	From	song	dictionary,	find	most	frequent	word.	Delete	
most	common	word.	Repeat.	It	works	because	you	are	
mutating	the	song	dictionary.

6.0001	LECTURE	6 162/19/20

CREATING	A	DICTIONARY
def generate_word_dict(song):

song_words = song.lower()

words_list = song_words.split()

word_dict = {}

for w in words_list:

if w in word_dict:

word_dict[w] += 1

else:

word_dict[w] = 1

return word_dict

6.0001	LECTURE	6 172/19/20

USING	THE	DICTIONARY
def find_frequent_word(word_dict):

words = []

highest = max(word_dict.values())

for w in word_dict.keys():

if word_dict[w] == highest:

word.append(w)

return (words, highest)

6.0001	LECTURE	6 182/19/20

LEVERAGING	DICT	
PROPERTIES
def occurs_often(word_dict, atleast):

freq_list = []
done = False
while not done:

word_freq_tuple = find_frequent_word(word_dict)
if word_freq_tuple[1] < atleast:

done = True
else:

freq_list.append(word_freq_tuple)
for i in word_freq_tuple[0]:

del(word_dict[i])
return freq_list

song_dict = generate_word_dict(song)
print("***** WORDS IN SONG *****")
print(song_dict)
print("***** MOST COMMON WORD *****")
print(find_frequent_word(song_dict))
print("***** TOP MOST COMMON WORDS *****")
print(occurs_often(song_dict, 20))

6.0001	LECTURE	6 192/19/20

Some	observations
§conversion	of	string	into	list	of	words	enables	use	of	
list	methods
§iteration	over	list	naturally	follows	from	structure	of	
lists
§ability	to	access	all	values	and	all	keys	of	dictionary	
allows	natural	looping	methods
§mutability	of	dictionary	enables	recursive	processing	

2/19/20 6.0001	LECTURE	6 20

FIBONACCI	RECURSIVE	CODE
def fib(n):

if n == 1:

return 1

elif n == 2:

return 2

else:

return fib(n-1) + fib(n-2)

§ two	base	cases
§ calls	itself	twice
§ this	code	is	inefficient

6.0001	LECTURE	6 21

Leonardo	Bonacci,
aka	Fibonacci

2/19/20

INEFFICIENT	FIBONACCI
fib(n) = fib(n-1) + fib(n-2)

§ recalculating the	same	values	many	times!
§ could	keep	track of	already	calculated	values

Fib(6)

Fib(5) Fib(4)

Fib(4) Fib(3) Fib(2)

Fib(3) Fib(2)

6.0001	LECTURE	6 22

Fib(3)

Fib(2) Fib(1)

Fib(2) Fib(1) Fib(2) Fib(1)

2/19/20

FIBONACCI	WITH	
MEMOIZATION
def fib_efficient(n, d):

if n in d:
return d[n]

else:
ans = fib_efficient(n-1, d) + fib_efficient(n-2, d)
d[n] = ans
return ans

d = {1:1, 2:2}
print(fib_efficient(6, d))

§ do	a	lookup	first	in	case	already	calculated	the	value
§modify	dictionary	as	progress	through	function	calls

6.0001	LECTURE	6 232/19/20

EFFICIENCY	GAINS
§ Calling	fib(34)	results	in	11,405,773 recursive	calls	to	
the	procedure
§ Calling	fib_efficient(34)	results	in	65 recursive	calls	to	
the	procedure
§ Using	dictionaries	to	capture	intermediate	results	can	
be	very	efficient
§ But	note	that	this	only	works	for	procedures	without	
side	effects (i.e.,	the	procedure	will	always	produce	the	
same	result	for	a	specific	argument	independent	of	any	
other	computations	between	calls)

6.0001	LECTURE	6 242/19/20

TESTING,	DEBUGGING,	
EXCEPTIONS,	ASSERTIONS

6.0001	LECTURE	6 252/19/20

PROGRAMMING	CHALLENGES

What you want the program to do What the program actually does

EXPECTATION REALITY

6.0001	LECTURE	6 262/19/20

DEFENSIVE	PROGRAMMING
• Write	specifications for	functions
• Modularize programs
• Check	conditions on	inputs/outputs	(assertions)

TESTING/VALIDATION
• Compare input/output	

pairs	to	specification
• “Is	it	working?”
• “How	can	I	break	my	

program?”

DEBUGGING
• Study	events	leading	up	

to	an	error
• “Why	is	it	not	working?”
• “How	can	I	fix	my	

program?”

6.0001	LECTURE	6 282/19/20

Prevent	bugs	
from	occurring	

Check	 for	bugs Remove	 bugs

SET	YOURSELF	UP	FOR	EASY	
TESTING	AND	DEBUGGING
§ from	the	start,	design	code	to	ease	this	part
§ break	program	into	modules that	can	be	tested	and	
debugged	individually
§ document	constraints on	modules
• what	do	you	expect	the	input	to	be? the	output	to	be?

§ document	assumptions behind	code	design

6.0001	LECTURE	6 29

“Motherhood	and	apple	pie”	approach:
Something	that	cannot	be	questioned	
because	it	appeals	to	universally-held,	
wholesome	values

2/19/20

WHEN	ARE	YOU	READY
TO	TEST?
§ ensure	code	runs
• remove	syntax	errors
• remove	static	semantic	errors
• Python	interpreter	can	usually	find	these	for	you

§ have	a	set	of	expected	results
• an	input	set
• for	each	input,	the	expected	output

6.0001	LECTURE	6 302/19/20

CLASSES	OF	TESTS
§ Unit	testing
• validate	each	piece	of	program
• testing	each	function	separately

§ Regression	testing
• fixing	a	bug	might	introduce	new	
ones,	so	add	test	for	bugs	as	you	
find	them	in	a	function
• catch	reintroduced	errors	that	
were	previously	fixed

§ Integration	testing
• does	overall	program	work?
• most	programmers	tend	to	rush	to	
do	this

6.0001	LECTURE	6 312/19/20

TESTING	APPROACHES
§ intuition about	natural	boundaries	to	the	problem
def is_bigger(x, y):

""" Assumes x and y are ints
Returns True if y is less than x, else False """

• can	you	come	up	with	some	natural	partitions?

§ if	no	natural	partitions,	might	do	random	testing
• probability	that	code	is	correct	increases	with	more	tests
• better	options	below

§ black	box	testing
• explore	paths	through	specification

§ glass	box	testing
• explore	paths	through	code

6.0001	LECTURE	6 322/19/20

def sqrt(x, eps):
""" Assumes x, eps floats, x >= 0, eps > 0

Returns res such that x-eps <= res*res <= x+eps """

§ designed	without looking at	the	code
§ can	be	done	by	someone	other	than	the	implementer	to	
avoid	some	implementer	biases
§ testing	can	be	reused if	implementation	changes
§ paths through	specification	
• build	test	cases	in	different	natural	space	partitions
• also	consider	boundary	conditions	(empty	lists,	singleton	
list,	large	numbers,	small	numbers)

BLACK	BOX	TESTING

6.0001	LECTURE	6 332/19/20

def sqrt(x, eps):
""" Assumes x, eps floats, x >= 0, eps > 0

Returns res such that x-eps <= res*res <= x+eps """

BLACK	BOX	TESTING

6.0001	LECTURE	6 34

CASE x eps

boundary 0 0.0001
Perfect square 25 0.0001
Less than 1 0.05 0.0001
Irrational square root 2 0.0001
extremes 2 1.0/2.0**64.0
extremes 1.0/2.0**64.0 1.0/2.0**64.0
extremes 2.0**64.0 1.0/2.0**64.0
extremes 1.0/2.0**64.0 2.0**64.0
extremes 2.0**64.0 2.0**64.0

2/19/20

GLASS	BOX	TESTING
§ use	code directly	to	guide	design	of	test	cases	
§ called	path-complete if	every	potential	path	through	
code	is	tested	at	least	once
§ what	are	some	drawbacks of	this	type	of	testing?
• can	go	through	loops	arbitrarily	many	times
• missing	paths

§ guidelines	
• branches
• for	loops
• while	loops

6.0001	LECTURE	6 352/19/20

GLASS	BOX	TESTING
def abs(x):

""" Assumes x is an int
Returns x if x>=0 and –x otherwise """
if x < -1:

return –x
else:

return x

§ a	path-complete	test	suite	could	miss	a	bug
§ path-complete	test	suite:	2	and	-2
§ but	abs(-1)	incorrectly	returns	-1
§ should	still	test	boundary	cases

6.0001	LECTURE	6 362/19/20

BUGS
§ once	you	have	discovered	that	your	code	does	not	run	
properly,	you	want	to:
◦ isolate	the	bug(s)
◦ eradicate	the	bug(s)
◦ retest	until	code	runs	correctly	for	all	cases

6.0001	LECTURE	6 372/19/20

6.0001	LECTURE	6 39

Admiral	Grace	Murray	Hopper

2/19/20

6.0001	LECTURE	6 402/19/20

DEBUGGING
§ goal	is	to	have	a	bug-free	program
§ tools
• built	in	to	IDLE	and	Anaconda
• error	messages
• stepping	through	code,	 line	at	a	time
• Python	Tutor
• print statement
• use	your	brain,	be	systematic in	your	hunt

6.0001	LECTURE	6 432/19/20

ERROR	MESSAGES	- EASY
§ trying	to	access	beyond	the	limits	of	a	list
test = [1,2,3] then						test[4] à IndexError

§ trying	to	convert	an	inappropriate	type
int(test) à TypeError

§ referencing	a	non-existent	variable	
a à NameError

§mixing	data	types	without	appropriate	coercion
'3'/4 à TypeError

§ forgetting	to	close	parenthesis,	quotation,	etc.	
a = len([1,2,3]
print a à SyntaxError

6.0001	LECTURE	6 442/19/20

LOGIC	ERRORS	- HARD
§ think before	writing	new	code
§ draw pictures	
§ take	a	break
§ explain the	code	to	
• someone	else
• a	rubber	ducky

6.0001	LECTURE	6 452/19/20

DEBUGGING	STEPS:
be	a	scientist
§ study	program	code
• ask	how	did	I	get	the	unexpected	 result	
• don’t	ask	what	is	wrong
• is	it	part	of	a	family?

§ scientific	method
◦ study	available	data	– both	correct	test	cases	and	incorrect	
ones

◦ form	an	hypothesis	 consistent	with	the	data
◦ design	and	run	a	repeatable	 experiment	 with	potential	 to	
refute	the	hypothesis

◦ keep	 record	of	experiments	 performed:	 use	narrow	range	of	
hypotheses,	 use	simple	 test	cases

6.0001	LECTURE	6 472/19/20

PRINT	STATEMENTS
§ good	way	to	test	hypothesis
§ when	to	print
• enter	function
• show	values	of	parameters	 before	computation
• function	results
• show	value	of	computation	before	exiting

6.0001	LECTURE	6 492/19/20

DEBUGGING	AS	SEARCH
§ want	to	narrow	down	space	of	possible	sources	of	
error
§ design	experiments	that	expose	intermediate	stages	
of	computation	(use	print	statements!),	and	use	results	
to	further	narrow	search
§ bisection	search	can	be	a	powerful	tool	for	this
◦ If	reach	a	print	statement,	and	intermediate	results	are	
not	what	expected,	know	there	is	at	least	one	error	
before	that	point	in	the	code;	otherwise	error	must	be	
restricted	to	code	after	that	point

6.0001	LECTURE	6 522/19/20

SOME	PRAGMATIC	HINTS
§ look	for	the	usual	suspects
§ ask	why	the	code	is	doing	what	it	is,	not	why	it	is	not	
doing	what	you	want
§ the	bug	is	probably	not	where	you	think	it	is	–
eliminate	locations
§ explain	the	problem	to	someone	else
§ don’t	believe	the	documentation
§ take	a	break	and	come	back	to	the	bug	later

6.0001	LECTURE	6 632/19/20

5	Minute	Break

6.0001	LECTURE	6 642/19/20

5	Minute	Break

6.0001	LECTURE	6 66

When	my	code	somehow	just	works
2/19/20

EXCEPTIONS,	
ASSERTIONS

6.0001	LECTURE	6 672/19/20

UNEXPECTED	
CONDITIONS
§ what	happens	when	procedure	execution	hits	an	
unexpected	condition?
§ get	an	exception…	to	what	was	expected
• trying	to	access	beyond	list	limits	

test = [1,7,4]
test[4] à IndexError

• trying	to	convert	an	inappropriate	type	
int(test) à TypeError

• referencing	a	non-existing	variable	
a à NameError

•mixing	data	types	without	coercion	
'a'/4 à TypeError

6.0001	LECTURE	6 682/19/20

OTHER	EXCEPTIONS
§ already	seen	common	error	types:
• SyntaxError:	Python	can’t	parse	program
• NameError:	local	or	global	name	not	found
• AttributeError:	attribute	reference	fails
• TypeError:	operand	doesn’t	have	correct	type
• ValueError:	operand	type	okay,	but	value	is	illegal
• IOError:	IO	system	reports	malfunction	(e.g.	file	not	
found)

6.0001	LECTURE	6 692/19/20

HANDLING	EXCEPTIONS
§ Python	code	can	provide	handlers	for	exceptions

try:
a = int(input("Tell me one number:"))
b = int(input("Tell me another number:"))
print(a/b)

except:
print("Bug in user input.")

§ exceptions	raised by	any	statement	in	body	of	try are	
handled by	the	except statement	and	execution	continues	
with	the	body	of	the	except statement

6.0001	LECTURE	6 702/19/20

HANDLING	SPECIFIC	
EXCEPTIONS
§ have	separate	except clauses	to	deal	with	particular	
types	of	exceptions
try:

a = int(input("Tell me one number: "))
b = int(input("Tell me another number: "))
print("a/b = ", a/b)
print("a+b = ", a+b)

except ValueError:
print("Could not convert to a number.")

except ZeroDivisionError:
print("Can't divide by zero")

except:
print("Something went very wrong.")

6.0001	LECTURE	6 712/19/20

OTHER	EXCEPTIONS
§ else:
• body	of	this	is	executed	when	execution	of	associated	
try body	completes	with	no	exceptions

§ finally:
• body	of	this	is	always	executed	after	try,		else and	
except clauses,	even	if	they	raised	another	error	or	
executed	a	break,	continueor	return
• useful	for	clean-up	code	that	should	be	run	no	matter	
what	else	happened	(e.g.	close	a	file)

6.0001	LECTURE	6 722/19/20

WHAT	TO	DO	WITH	
EXCEPTIONS?
§ fail	silently – substitute	default	values	or	just	continue
• bad	idea!	user	gets	no	warning

§ return	an	“error”	value
• complicates	code	having	to	check	for	a	special	value

§ stop	execution,	signal	error	condition
raise <exceptionName>(<arguments>)

raise ValueError("something is wrong")

2/19/20 6.0001	LECTURE	6 75

EXAMPLE:	RAISING	AN	
EXCEPTION

def get_ratios(L1, L2):

ratios = []

for index in range(len(L1)):

try:

ratios.append(L1[index]/L2[index])

except ZeroDivisionError:

ratios.append(float('nan')) #nan = not a number

except:

raise ValueError('get_ratios called with bad arg')

else:

print(“success”)

finally:

print(“executed no matter whats)

return ratios
6.0001	LECTURE	6 762/19/20

EXAMPLE	OF	EXCEPTIONS
§ assume	we	are	given	a	class	list for	a	subject:	each	
entry	is	a	list	of	two	parts
• a	list	of	first	and	last	name	for	a	student
• a	list	of	grades	on	assignments

§ create	a	new	class	list,	with	name,	grades,	and	an	
average

6.0001	LECTURE	6 77

test_grades = [[['peter', 'parker'], [10.0, 5.0, 85.0]],
[['bruce', 'wayne'], [10.0, 8.0, 74.0]]]

[[['peter', 'parker'], [10.0, 5.0, 85.0], 33.33333],
[['bruce', 'wayne'], [10.0, 8.0, 74.0], 30.666667]]]

2/19/20

EXAMPLE	
CODE

def get_stats(class_list):
new_stats = []
for elt in class_list:

new_stats.append([elt[0], elt[1], avg(elt[1])])
return new_stats

def avg(grades):
return sum(grades)/len(grades)

6.0001	LECTURE	6 78

[[['peter', 'parker'], [10.0, 5.0, 85.0]],
[['bruce', 'wayne'], [10.0, 8.0, 74.0]]]

2/19/20

ERROR	IF	NO	GRADE	FOR	A	
STUDENT
§ if	one	or	more	students	don’t	have	any	grades,	
get	an	error
test_grades = [[['peter', 'parker'], [10.0, 5.0, 85.0]],

[['bruce', 'wayne'], [10.0, 8.0, 74.0]],
[['captain', 'america'], [8.0,10.0,96.0]],
[['thor'], []]]

§ get	ZeroDivisionError: float division by zero
because	try	to	
return sum(grades)/len(grades)

6.0001	LECTURE	6 792/19/20

OPTION	1:	FLAG	THE	ERROR	
BY	PRINTING	A	MESSAGE
§ decide	to	notify that	something	went	wrong	with	a	msg
def avg(grades):

try:
return sum(grades)/len(grades)

except ZeroDivisionError:
print('warning: no grades data')

§ running	on	some	test	data	gives
warning: no grades data

[[['peter', 'parker'], [10.0, 5.0, 85.0], 33.3333333],

[['bruce', 'wayne'], [10.0, 8.0, 74.0], 30.66666666],

[['captain', 'america'], [8.0, 10.0, 96.0], 38.0],

[['thor'], [], None]]

6.0001	LECTURE	6 802/19/20

OPTION	2:	CHANGE	THE	POLICY
§ decide	that	a	student	with	no	grades	gets	a	zero
def avg(grades):

try:
return sum(grades)/len(grades)

except ZeroDivisionError:
print('warning: no grades data')
return 0.0

§ running	on	some	test	data	gives
warning: no grades data

[[['peter', 'parker'], [10.0, 5.0, 85.0], 33.333333],

[['bruce', 'wayne'], [10.0, 8.0, 74.0], 30.666666],

[['captain', 'america'], [8.0, 10.0, 96.0], 38.0],

[['thor'], [], 0.0]]
6.0001	LECTURE	6 812/19/20

ASSERTIONS
§ want	to	be	sure	that	assumptions	on	state	of	
computation	are	what	we	expected
§ use	an	assert statement	to	raise	an	
AssertionError exception	if	assumptions	not	met
§ an	example	of	good	defensive	programming

826.0001	LECTURE	62/19/20

EXAMPLE
def avg(grades):

assert len(grades) != 0, 'no grades data'

return sum(grades)/len(grades)

§ raises	an	AssertionError if	it	is	given	an	empty	list	for	
grades
§ otherwise	runs	ok

836.0001	LECTURE	62/19/20

ASSERTIONS	AS	DEFENSIVE	
PROGRAMMING
§ assertions	don’t	allow	a	programmer	to	control	
response	to	unexpected	conditions
§ ensure	that	execution	halts	whenever	an	expected	
condition	is	not	met
§ typically	used	to	check	inputs	to	functions,	but	can	be	
used	anywhere
§ can	be	used	to	check	outputs	of	a	function	to	avoid	
propagating	bad	values
§ can	make	it	easier	to	locate	a	source	of	a	bug

846.0001	LECTURE	62/19/20

WHERE	TO	USE	ASSERTIONS?
§ goal	is	to	spot	bugs	as	soon	as	introduced	and	make	
clear	where	they	happened
§ use	as	a	supplement to	testing
§ raise	exceptions if	user	supplies	bad	data input
§ use	assertions to
• check	types of	arguments	or	values
• check	that	invariantson	data	structures	are	met
• check	constraints on	return	values
• check	for	violations of	constraints	on	procedure	(e.g.	no	
duplicates	in	a	list)

856.0001	LECTURE	62/19/20

TAKE	HOME	MESSAGE
§Dictionaries	are	a	powerful	data	structure	for	
associating	values	with	complex	keys
§Good	code	creation	requires	defensive	programming,	
thoughtful	testing,	and	disciplined	debugging
§Exceptions	provide	the	coder	with	a	way	of	handling	
unexpected	input
§Assertions	are	one	way	of	enforcing	conditions	on	a	
“contract”	between	a	coder	and	a	user

2/19/20 6.0001	LECTURE	6 86

