Lecture 5: Random Walks

(download slides and .py files from Stellar to follow along)

John Guttag

MIT Department of Electrical Engineering and
Computer Science

Relevant Reading

=Today
o Chapters 11 and 14

¢ Introduction to

="Next lecture 7 2 -
o Chapters 16 and 17 %pu S
and Programming

“Using Python

With Application to Understanding Data

/ X :/ : g

'.‘/' >

second edition
John \7téag

6.0002 LECTURE 5 2

Microquiz 1 Results

Total Median: 6, Mean: 6.2, Std: 2.5

60

i

P S A R SR 0 D gv W g P
'\

Total

O & K
Q\?),LQ‘_L

6.0002 LECTURE 5 3

Summary of Last Lecture

= As far as we can tell, the world is stochastic

= Therefore models need to estimate probabilities

= Analytic models feasible for reasonably simple situations
= For more complex situations, simulations often better

= Simulate stochastic process by:
o Defining an event (e.g., rolling a die N times, flipping a
coin N times, randomly picking birthdays for N people),

> Running some number of trials,

o Estimating probability of observing particular event (e.g.,
rolling 11111, finding three people with shared birthday)

6.0002 LECTURE 4 i

= [75

| DONT CAR® IF YOUR FRIGND WAS Q&
A FLIGHT SIMULATOR. YOU'Re GOING [
TO LeARN TO FLY ON YOUR QWN. :

Simulation Model

Ly
‘ s
3
g
A
&
|

3
A
B

= A description of computations that provide
useful information about the possible
behaviors of the system being modeled

= Descriptive, not prescriptive;
> Does not completely characterize outcomes, but
allows us to sample space of possible outcomes

= Only an approximation to reality

I”

= “All models are wrong, but some are usefu

— George Box An Accidental
Statistician

The Life and Memories of George E. P. Box

6.0002 LECTURE 5 5

WHATIFITOLD YOU

Simulations Are Used a Lot B
k

\
THAT YOUR REALITY IS
__ACGOMPUTER SIMULATION

= To model systems that are mathematically intractable
= To extract useful intermediate results

= To support iterative development by successive
refinement and asking/answering “what if” questions

6.0002 LECTURE 5 6

Why Random Walks?

" Important for modeling behavior in many domains

o Understanding the stock market, modeling diffusion processes,
modeling cell movement

= Good illustration of how to use simulations to understand
things

= Excuse to cover some important programming topics
> Practice with classes

> Practice with plotting

6.0002 LECTURE 5

What are Random Walks?

Method to model a system where:

= Objects wander away from where they start

= Objects start at a location and choose a random
direction in which to take each step

o distribution of choice of direction (and speed) can be
different for different object types

Example: Brownian motion of particles of different types

= What are likely physical distributions of different kinds
of particles over time?

6.0002 LECTURE 5 8

Random Walks

" Model properties of systems where objects wander at
random according to some distribution of steps:

1. Perform an experiment where you take N steps at
random based on some distribution and ask how
far away will you be from the start (or where did
you stop)?

2. With many experiment trials/repetitions, what is
the average distance away from the start location
(or what are the properties of the set of end
points)?

3. Asyou increase the number of steps, is there a
relation between the number of steps and the
average distance away from the start?

4. Is there a description of the set of end points?

6.0002 LECTURE 5 9

Random Walks in the Real World

" In modeling stocks, change in price often modeled as
a Gaussian random walk

o Step size chosen from a normal distribution

> Basic assumption of Black-Scholes-Merton option pricing
model

" In population genetics, random walk describes
statistical properties of genetic drift

" In physics, the Brownian motion of molecules in
liquids and gases is a random walk

6.0002 LECTURE 5 10

Our Initial Random Walk

= Often called the drunkard’s walk
= A random walk on a two-dimensional surface
= Each step a fixed distance

= Step taken in a direction chosen randomly

Homer — Just Odd

6.0002 LECTURE 5 11

Drunkard’s Walk

Homer starts at the origin, and takes a unit step in one of

— the cardinal directions at random with equal likelihood.
| | | | | | | | |

. How does distance from origin relate to number of steps?

6.0002 LECTURE 5

12

Poll 1

= How far will Homer get?

6.0002 LECTURE 5 13

One Possible First Step

14

6.0002 LECTURE 5

Another Possible First Step

6.0002 LECTURE 5 15

Yet Another Possible First Step

6.0002 LECTURE 5 16

Last Possible First Step

If all steps are equally likely, after one step drunk is distance 1.0
away from start

6.0002 LECTURE 5 17

Possible Distances After Two Steps (assuming
moved right on first step, other options similar)

6.0002 LECTURE 5 18

Possible Distances After Two Steps

Average if equally likely is:
(2+2*%1.41+2+2*%141+2+2*%1.41+2+2*1.4+4*%0)/16
= 1.205

6.0002 LECTURE 5

19

Expected Distance After 100,000 Steps?

= Can see that expected distance seems to increase with
number of steps, and certainly maximum distance does

> Went from 0 to 1 to 1.205 as expected distance

" Enumerating all possibilities (even using a computer)
clearly not practical

= Need a different approach to problem

= Will use a stochastic simulation

6.0002 LECTURE 5 20

LLLLLLLLLLLLLLLLLL

The

Structure of Simulation D0y i3 d's
How

= Simulate one walk of k steps Riff?‘}jéffs

o Record distance from origin at end of walk Leonard @odinow

o Record final location

= Simulate n such walks, each of k steps
o Record all distances and final locations

= Report average distance from origin over set of
n walks

o Will come back to final locations over set of walks
later

6.0002 LECTURE 5 21

First, Some Useful Abstractions

" Location—a place
> An object, like a drunk, has a location
o Location can change as object moves

= Field—a collection of drunks with locations
o |nitially just those locations occupied by drunks

* Drunk—somebody who wanders from location to
location in a field

6.0002 LECTURE 5 22

Strange Breed by Steve Langille
http:/Avown2, hi.ne t/sd/strange bree d.htm

.

Class Location, part 1

class Location(object):
def __init__ (self, x, y): s o
"""x and y are numbers""" o o]
self.x = X
self.y =y

Note that move returns

a hew location

def move(self, deltaX, deltaYy):
"""deltaX and deltaY are numbers"™""
return Location(self.x + deltaX,
self.y + deltay)

def getX(self):
Eetur('n sng.x Will let x, y, deltaX and deltaY

be floats

def getY(self): More general than example
return self.y

6.0002 LECTURE 5 23

Class Location, continued

def distFrom(self, other):
xDist = self.x - other.getX()
yDist = self.y - other.getY()
return (xDist**2 + yDist**2)**9.5

def __str__(self):
return '<' + str(self.x) + ', ' + str(self.y) + '>'

b Euclidean distance

6.0002 LECTURE 5 24

Class Drunk

class Drunk(object):

def __init__(self, name = None):

Assumes name 1s a str
self.name = name

def __str__(self):
if self !'= None:
return self.name
return 'Anonymous’

Not intended to be useful on its own

A base class to be inherited

6.0002 LECTURE 5

25

The Usual Drunk

class UsualDrunk(Drunk):
def takeStep(self):
stepChoices = [(0,1), (90,-1),

(1: @), ('1: @)]
return random.choice(stepChoices)

Takes a random step in cardinal
directions with equal probability

6.0002 LECTURE 5 26

Another Subclass of Drunk

class MasochistDrunk(Drunk):
def takeStep(self):
stepChoices = [(0.0,1.1), (0.0,-0.9),
(1.0, 0.0), (-1.0, 0.0)]
return random.choice(stepChoices)

6.0002 LECTURE 5

Yet Another Subclass of Drunk

class LiberalDrunk(Drunk):
def takeStep(self):
stepChoices = [(0.0,1.0), (0.0,-1.0),
(0.9, 0.0), (-1.1, 0.0)]
return random.choice(stepChoices)

6.0002 LECTURE 5

Poll 2:

6.0002 LECTURE 5 29

Class Field, part 1

class Field(object):
def __init__ (self):
self.drunks =

def addDrunk(self, drunk, loc):
if drunk in self.drunks:

Dictionary mapping
Drunk to Location;
Can have many
drunks in a field

raise ValueError('Duplicate drunk')

else:
self.drunks[drunk] = loc|

def getLoc(self, drunk):
if drunk not in self.drunks:

raise ValueError('Drunk not in field")

return self.drunks[drunk]

6.0002 LECTURE 5

30

Class Field, continued

def moveDrunk(self, drunk):
if drunk not in self.drunks:
raise ValueError('Drunk not in field")
xDist, yDist =[arunk.takeStepZﬂ

fﬂse_maue_meibad_ai;iocation to get new Llocation
self.drunks[drunk] =

[seLf. drunks [dr‘unk]I. move(xDist, yDist)]

Dealing with Location object

So call method to set new
location

Store that new location in
dictionary as entry associated
with drunk (as key)

Remember that move
returns a new location by
adding deltas to current
location

6.0002 LECTURE 5 31

Simulating a Single Walk

def walk(f, d, numSteps):
"""Assumes: f a Field, d a Drunk in f,
and numSteps an int >= 0.
Moves d numSteps times, and returns the
distance between the final location and
the location at the start of the walk.""™
start = f.getlLoc(d)
for s in range(numSteps):
[f.moveDrunk(d)]
return @tart.distFrom(F.getLoc(d))]

Move drunk d by
numSteps stepsin field £

Use method on location of drunk
d to get distance from start

location

6.0002 LECTURE 5 32

Simulating Multiple Walks
def simWalks(numSteps, numTrials,):

"""Assumes numSteps an int >= 0, numTrials an int > 0,
dClass a subclass of Drunk
Simulates numTrials walks of numSteps steps each.
Returns a list of the final distances for each trial
Homer = ('Homer')
origin = Location(@, 0)

distanFes =[] . The name of a Python class, not
for t in_range(numTrials): an instance, leads to a

f = () o generalized function

f.addDrunk (Homer, origin)

distances.append(round(walk(f, Homer,
numTrials), 1))

return distances

6.0002 LECTURE 5 33

Poll 3

6.0002 LECTURE 5 34

Putting It All Together

def drunkTest(walkLengths, numTrials, dClass):
"""Assumes walkLengths a sequence of ints >= ©
numTrials an int > @, dClass a subclass of Drunk
For each number of steps in walkLengths, runs
simWalks with numTrials walks and prints results
for numSteps in walkLengths:
distances = simWalks(numSteps, numTrials, dClass)
print(dClass. name__ , 'random walk of',
numSteps, 'steps’)
print(' Mean =",
round(sum(distances)/len(distances), 4))
print(' Max =",
max(distances), 'Min =', min(distances))

6.0002 LECTURE 5 35

Let’s Try It PR

drunkTest((10, 100, 1000, 10000), 100,

UsualDrunk)

Should mean
UsualDrunk random walk of 10 steps distance be same
Mean = 8.634 for different
Max = 21.6 Min = 1.4 numbers of steps?
UsualDrunk random walk of 100 steps
Mean = 8.57 Should mean
Max = 22.0 Min = 0.0 distance be almost
UsualDrunk random walk of 1000 steps O after10steps?
Mean = 9.206

Max = 21.6 Min = 1.4

UsualDrunk random walk of 10000 steps
Mean = 8.727
Max = 23.5 Min = 1.4

Does this pass the smell test?

6.0002 LECTURE 5 36

Let’s Try a Smoke Test

= Try on cases where we think we know the answer
° A very important precaution!

Smoke
Testing

6.0002 LECTURE 5

Sanity Check

drunkTest((0, 1, Zj 100, UsualDrunk)

UsualDrunk random walk of O steps
Mean = 8.634
Max = 21.6 Min = 1.4

UsualDrunk random walk of 1 steps
Mean = 8.57
Max = 22.0 Min = 0.0

UsualDrunk random walk of 2 steps
Mean = 9.206
Max = 21.6 Min = 1.4

Poll 4

Where‘s the bug?

6.0002 LECTURE 5

Try simulations of
0, 1 and 2 steps

After O steps, on
average we are 9
units away?

38

Simulating Multiple Walks

def simWalks(numSteps, numTrials, dClass):
"""Assumes numSteps an int >= 0, numTrials an int > 0,
dClass a subclass of Drunk
Simulates numTrials walks of numSteps steps each.
Returns a list of the final distances for each trial
Homer = dClass('Homer")
origin = Location(9, 0)
distances = []
for t in range(numTrials):
f = Field()
f.addDrunk (Homer, origin)

distances.append(round(wal
numSteps), 1))

return distances

6.0002 LECTURE 5 39

Sanity Check

In [18]: drunkTest((@, 1, 2), 100, UsualDrunk)
UsualDrunk random walk of @ steps
Mean = 0.0
Max = 0.0 Min = 0.0
UsualDrunk random walk of 1 steps
Mean = 1.0
Max = 1.0 Min = 1.0
UsualDrunk random walk of 2 steps
Mean = 1.268

Max = 2.0 Min = 0.0

6.0002 LECTURE 5 40

Let’s Try It

drunkTest((10, 100, 1000, 10000), 100,
UsualDrunk)

UsualDrunk random walk of 10 steps
Mean = 2.863
Max = 7.2 Min = 0.0

UsualDrunk random walk of 100 steps
Mean = 8.296
Max = 21.6 Min = 1.4

UsualDrunk random walk of 1000 steps
Mean = 27.297
Max = 66.3 Min = 4.2

UsualDrunk random walk of 10000 steps
Mean = 89.241
Max = 226.5 Min = 10.0

6.0002 LECTURE 5 41

And the Masochistic Drunk?

random.seed(0)
simA11((UsualDrunk, MasochistDrunk),
(1000, 10000), 100)

UsualDrunk random walk of 1000 steps
Mean = 26.828

Max = 66.3 Min FJ

UsualDrunk random wa1k of 10000 steps

Mean = 90.073 Average step is
Max = 210.6|Min = 7.2 (0.0, 0.0)

MasochistDrunk random walk of 1000 steps
Mean = 58.425
Max = 133.3| Min = 6.7
MasochistDrunk random walk of 10000 steps

Mean = 515.575 Average step is
Max = 694.6| Min = 377.7 (0.0, 0.05)

6.0002 LECTURE 5 42

Visualizing the Trend

= Simulate walks of multiple lengths for UsualDrunk
= Seeing distances as numbers helps

= But, better to plot distance at end of each length walk
for each kind of drunk

Mean Distance from Origin (100 trials)

= w—= sual_drunk
\)\3(? 2 = = sqrt(steps)
C @) :
O\, and

W @S
. \\’&O X0 ° S

A\ \63(\5 € 10+
5\\6 OO @

cCH TN VIV PSP VPP SUTC N S
10! 102 103 104 10°
Number of Steps

6.0002 LECTURE 5 43

Plotting
Chapter 11

SLIDES DISTRIBUTED, BUT WILL NOT GO THROUGH
THEM IN LECTURE

CODE ON SLIDES IN plotting.py

6.0002 LECTURE 5 44

Poll (Anonymous, Idle Curiosity)

6.0002 LECTURE 5 45

Five Minute Break

WHY PLOTTING?

= Sooner or later, everyone needs to produce plots

o As we look at data in 6.0002 half of term, we will make
extensive use of plots to visualize results

Example of leveraging an existing library, rather than
writing procedures from scratch

o See problem sets

= Python provides libraries for (among other topics):
o Plotting Very similar to Matlab
> Numerical computation
o Stochastic computation
°c Machine learning

6.0002 LECTURE 5 47

matplotlib

= import library into computing environment
imbort matplotlib.pyplot as plt

o Allows code to reference library procedures as
plt.<procName>

= Provides access to existing set of graphing/plotting
procedures

= Here will just show some simple examples; lots of
additional information available in documentation
associated withmatplotlib

= Will see many other examples and details of these ideas
in rest of term

6.0002 LECTURE 5 48

A SIMPLE EXAMPLE

nVals = []
linear = []
quadratic = []
cubic = []
exponential = []

for n in range(9, 30):

nVals.append(n) W o
linear.append(n) eQ&SiNNQ&\C
quadratic.append(n**2) gﬁp¥gdfwﬁ @mﬁ@
cubic.append(n**3) Seé\;,«\oﬁ%(o«‘“
exponential.append(1l.5%*n) ¢§o<&$01

£0 z\)\d\oe

6.0002 LECTURE 5 49

PLOTTING THE DATA

= To generate a plot:

‘N

plt.plot|

\

+

esS
\\'a\\>es NG

<function of n>

)

= Arguments are lists of numbers (could also be arrays)
o Must be of the same length

o Generates a sequence of <x, y> values
o Plotted in order, then connected with lines

= Calling function in an iPython console will generate plots

within that console

= Calling function in a Python console will create a separate
window in which plot is displayed

6.0002 LECTURE 5

50

EXAMPLE

plt.plot(nvals, linear)

30

25

20 -

15F

10+

6.0002 LECTURE 5 51

SHOWING ALL DATA ON ONE PLOT

plt.plot(nvals, linear)
plt.plot(nvals, quadratic)
plt.plot(nvals, cubic)
plt.plot(nVals, exponential)

140000

e
LY o0
0 e
o° Q\(\‘ X\
100000 } e o %‘? %(’69
Wee a@ﬁﬁ
80000 | o W
e X
S
60000 |- 0\0\3(0\650
Q¢ \e A
40000 | P e
&€
20000 |
0

0 5

6.0002 LECTURE 5 52

PRODUCING MULTIPLE PLOTS

. ()
" Let’s graph each one separately amexox\\\ﬂce&o‘
N fere
= Call N s v

plt.figure(<arg>|) u©

o Creates a new display with that name if one does not
already exist

o If a display with that name exists, reopens it for
processing

6.0002 LECTURE 5 53

EXAMPLE CODE

plt.figure('expo"')
plt.plot(nvVals, exponential)
plt.figure('lin')
plt.plot(nVals, linear)
plt.figure('quad"')
plt.plot(nVals, quadratic)
plt.figure('cube')
plt.plot(nVals, cubic)
newExpo = []
for i in range(30):
newExpo.append(1.6%%i)

plt.figure('expo')

plt.plot(nVals, newExpo)

6.0002 LECTURE 5

3 ck X0 eXPO

54

PLOT WITH EXPONENTIALS

900000 D
(\6

800000 |- | <e®
700000 |-
600000 |
500000 |-
400000 |
300000 |-
200000 |
100000 |

0

0 5 10 15 20 25 30

6.0002 LECTURE 5 55

A “REAL” EXAMPLE

months = range(1, 13, 1)
temps = [28,32,39,48,59,68,75,73,66,54,45,34]
plt.plot(months, temps)

80
W
70 | xe
xO
N
il XS
W
 \°
2
50 | @\\
\"
Q,\)
40 |
30 |
20

6.0002 LECTURE 5 56

A “REAL" EXAMPLE

months = range(1, 13, 1)

temps = [28,32,39,48,59,68,75,73,66,54,45,34]
plt.plot(months, temps)

plt.title('Ave. Temperature in Boston')
plt.xlabel('Month")

plt.ylabel(('Degrees F'))

80 Ave. Temperature in Boston

70

Degrees F
3

A “REAL" EXAMPLE

months = range(1, 13, 1)

temps = [28,32,39,48,59,68,75,73,66,54,45,34]
plt.plot(months, temps)

plt.title('Ave. Temperature in Boston')
plt.xlabel('Month")

plt.ylabel(('Degrees F'))

plt.xlim(1, 12)

80 Ave. Temperature in Boston

Degrees F

A “REAL" EXAMPLE

months = range(1, 13, 1)
temps = [28,32,39,48,59,68,75,73,66,54,45,34]
plt.plot(months, temps)

plt.title('Ave. Temperature in Boston')
plt.xlabel('Month")

plt.ylabel(('Degrees F'))
plt.xticks((1,2,3,4,5,6,7,8,9,10,11,12))

&0 Ave. Temperature in Boston
\"
o e
®) ' w
@X\ \O)Z m
SANERCE o
\ (\\\S\ o
(00 (]

Month

A “REAL” EXAMPLE

plt.xticks((1,2,3,4,5,6,7,8,9,10,11,12),
('Jan','Feb', 'Mar', 'Apr', 'May"', 'Jun’',
*Jul', 'Aug', 'Sep', 'Oct"', 'Nov', 'Dec'))

Ave. Temperature in Boston

Degrees F

20 i 1 i 1 1 1 1 Il 1 1
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Month

6.0002 LECTURE 5 (510)

LET’S ADD ANOTHER CITY

months = range(1, 13, 1)
boston = [28,32, 39, 48 59,68,75,73,66,54 45 34]
plt. plot(months, boston, 1abe1 'Boston’
phoenix = [54,57,61,68,77,86,91,90,84,73 61 54]
plt.plot(months, phoenix label = 'Phoen1

plt.legend(loc = 'best')

plt.title('Ave. Temperatures')
plt.xlabel('Month")
plt.ylabel(('Degrees F'))

6.0002 LECTURE 5 61

PLOT WITH TWO CURVES

“T
100 f\ve ' em'pera$ures'

— Boston
| — Phoenix

Degrees F
3

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Month

6.0002 LECTURE 5 62

CONTROLLING DISPLAY PARAMETERS

= Suppose we want to control details of the displays
themselves

= Examples:
o changing color or style of data sets
o changing width of lines or displays

6.0002 LECTURE 5 63

CONTROLLING COLOR AND STYLE

months = range(1, 13, 1)

boston = [28,32,39,48,59,68,75,73,66,54,45,34]
plt.plot(months, boston,|'b-'|, label = 'Boston')
phoenix = [54,57,61,68,77, 86 91,90,84,73,61,54]

plt. plot(months, phoenlx, 'r— ', 1abe1 'Phoenix')
msp = [16,19,34,48,59,70,75,73,64,60,37,21]
plt.plot(months, msp, [g.-., label 'M1nneapolis')
plt.legend(loc = ‘'best’)

6.0002 LECTURE 5 64

CONTROLLING COLOR AND STYLE

Ave. Temperatures

| — Boston
- - Phoenix ’, ~
| == Minneapolis | . \

Degrees F

8 &

20 | & .

10

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Month

6.0002 LECTURE 5 65

OTHER PLOTTING OPTIONS

= There are many other options for controlling plotting
of data

o semilogy, semilogx allow you to use logarithmic
scaling on either axis

o Choice of where to place legend box
o Choice of “font” for a graph
o Multiple subplots within a larger display

= Check out textbook and documentation for pyplot to
learn more

6.0002 LECTURE 5 66

BACK TO OUR
WANDERING DRUNK

Let’s add one more type of drunk

class LiberalMasochistDrunk(MasochistDrunk):
def takeStep(self):
if random.choice([True, False]):
stepChoices = [(0.0,1.0), (0.0,-1.0),
(6.9, 0.0), (-1.1, 0.90)]

return random.choice(stepChoices)
else:

return MasochistDrunk.takeStep(self)

Tends to want to go
north, but also tends
to want to go “left”;
does this with equal
probability

6.0002 LECTURE 5

def

Simulation with Visualization

styleChoice = styleIterator(('m-', 'b—-', 'g-."', 'k'))]

or
curStyle = styleChoice.nextStyle()!
print{'Starting simulation of', dClass.__name__)

means = simDrunk(numTrials, dClass, walkLengths)
plt.plot(walkLengths, means, curStyle,
label = dClass.__name__)

plt.title('Mean Distance from Origin ('

+ str(numTrials) + ' trials)')
plt.xlabel('Number of Steps')
plt.ylabel('Distance from Origin')
plt.legend(loc = 'best')

6.0002 LECTURE 5 69

Some Details

class styleIterator(object):
def __init__ (self, styles):
self.index = 0
self.styles = styles

def nextStyle(self):
result = self.styles[self.index]
if self.index == len(self.styles) - 1:
self.index = 0
else:
self.index += 1
return result

6.0002 LECTURE 5 70

simDrunk

def simDrunk(numTrials, dClass, walkLengths):
meanDistances = []
for numSteps in walkLengths:
print('Starting simulation of',
numSteps, 'steps’)
trials = simWalks(numSteps, numTrials, dClass)
mean = sum(trials)/len(trials)
meanDistances.append(mean)
return meanDistances

6.0002 LECTURE 5 71

Poll 5

6.0002 LECTURE 5 72

Distance Trends

Mean Distance from Origin (100 trials)

E:500 - [cmm

= UsuaIDr.unk //
= a004|™" MasochistDrunk

O === LiberalDrunk ./
g 300 -| == LiberalMasochistDrunk

-

@ 200 -

)

c

5 100+

0

Q 0o-

| | | | |
0 2000 4000 6000 8000 10000
Number of Steps

6.0002 LECTURE 5 73

Ending Locations

= Run same simulations as before
o Consider different kinds of drunks
o Simulate random walks of different lengths
o Keep track of final locations

= Plot distribution of final locations

= Report mean absolute distance from origin, and mean
actual distance from origin

= See code handout for details

6.0002 LECTURE 5 74

Ending Locations

Steps North/South of Origin

(l).é)cation at End of Walks (10000 steps)

10

500 -

0_.

—500-1 +
A

UsualDrunk: mean abs dist = <60.0, 54.0>
mean dist = <-0.0, -0.0>

MasochistDrunk: mean abs dist = <51.0, 514.0>
mean dist = <1.0, 514.0>

—1000 -
—1000

|

—SbO 0 560 10b0
Steps East/West of Origin

6.0002 LECTURE 5

75

THE END BEGINS HERE

Ending Locations TERMINUS

(I).é)cation at End of Walks (10000 steps)

10

500 —

i
0_
R -

LiberalDrunk: mean abs dist = <506.0, 56.0>
—5Q0+ mean dist = <-506.0, 2.0>

LiberalMasochistDrunk: mean abs dist = <255.0, 251.0>
A meandist = <-2550, 251.0>

—1000 - u T T %
—1000 -500 0 500 1000
Steps East/West of Origin

Steps North/South of Origin

6.0002 LECTURE 5 76

EIEE
Mu.m@m.m.uw’m‘m Au?
@gﬂﬁ.?

n
L
O
L
=
-
2
£
=
=
%
O
L
L

6.0002 LECTURE 5

Poll: Wormholes

A Subclass of Field, part 1

class OddField(Field):
def __init__ (self, numHoles = 1000,
XxRange = 100, yRange = 100):
[Field.__init_ |self)
self.wormholes = {}
for w in range(numHoles):
X = random.randint(-xRange, xRange)
y = random.randint(-yRange, yRange)
newX = random.randint(-xRange, xRange)
newY = random.randint(-yRange, yRange)
newLoc = Location(newX, newY)
self.wormholes[(x, y)] = newlLoc

6.0002 LECTURE 5 79

A Subclass of Field, part 2

def moveDrunk(self, drunk):
Field.moveDrunk(self, drunk)
X = self.drunks[drunk].getX()
y = self.drunks[drunk].getY()
if (x, y) in self.wormholes:
self.drunks[drunk] = self.wormholes[(x, Vy)]

6.0002 LECTURE 5 80

Spots Reached During One Walk

.g, Spots Visited on Walk (1000 steps)
5 o 4

5 I .4
P 25~

'S 0- + Field

o Sag

¥ £ A OddField
£ —25-

5

S -50- ‘ &®
2751 4B

) T ' ' '

Ty -100 -50 0 50

Steps East/West of Origin

6.0002 LECTURE 5 81

Summary

= Point is not the simulations themselves, but how we built,
evaluated, and used them

= Started by defining classes

= Built functions corresponding to
o One trial, multiple trials, result reporting

= Made series of incremental changes to simulation so
that we could investigate different questions

o Get simple version working first
> Did a sanity check!
> Enhanced simulation a step at a time

= Showed how to use plots to get insights

6.0002 LECTURE 5 82

