TUPLES,
LISTS,
MUTABILITY

(download slides and .py files to follow along)

6.0001 LECTURE 5

Eric Grimson

2/17/20 6.0001 LECTURE 5

LAST FEW LECTURES

= while loops & for loops
= should know how to write both kinds

= should know when to use them
= computations characterized by “state variables” and update rules

= functions
" recursion

= decomposition and abstraction

2/17/20 6.0001 LECTURE 5 p

TODAY

" new data types — tuples and lists

= mutable and immutable data structures
= challenges of aliasing under mutation

= looping or recursing over compound data structures

2/17/20 6.0001 LECTURE 5 3

| DON'T ALWAYS DO THE
ASSIGNEI] READING

l

‘
Assigned Reading \Q’

FIBSTWEEI(I]FI}U\SS

stoday: |

* section 5.1— 5.5 o
snext lecture: b Introduction to

. section 5.6 ~ Computation

' and Programming
* chapter6 A0sing P»ython
* chapter?7 |

A Ilcatnon ttyn, £ andmg Data

seco ed| on

See https://mitpress.mit.edu/books/introduction-computation-and-programming-

using-python-second-edition for errata sheet
2/17/20 6.0001 LECTURE 5 4

WHEN T STARTED ALL WE HAD WERE ZEROS LWROTEAN you HAD

PROGRAMMING, WE DIDNT | 5] AND ONES —- AND ENTIRE ZEROST WE
HAVE ANY OF THESE §] SOMETIMES WE DIDN'T DATABASE. HAD TO USE
SISSY “ICONS” AND g| EVEN HAVE ONES. PROGRAM THE LETTER
“WINDOWS” £ (USING ONLY 0"

: ZEROS.

A new data type

" Have seen scalar types: int, float, bool, string

= Want to introduce new compound data types

" indexed sequences of elements, which could themselves be
compound structures

" tuples—immutable
" lists — mutable

" Explore ideas of
* Mutability
* Aliasing
* Cloning

2/17/20 6.0001 LECTURE 5 5

TUPLES

= Indexable ordered sequence of objects

= Objects can be any type —int, string, tuple, tuple of tuples, ... ber strings?
Reme
= Cannot change element values, immutable .
wple “h one elem®
te = [() gpty
a mead
ts = (2) Extra com
t = (2, "mit", 3
() g starts at 0
t[0] > evaluatesto2 \ndeX
(2,"mit",3) + (5,6)—> evaluatesto (2, "mit",3,5,6)
t[1:2] —> slice tuple, evaluatesto ("mit",)
t[1:3] - slice tuple, evaluatesto ("mit", 3)
len (t) — evaluatesto 3

max ((3,5,0)) —=> evaluates5
t[1l] = 4 —> gives error, can’t modify object

2/17/20 6.0001 LECTURE 5 6

INDICES AND SLICING

seq = (2,'a',4,(1,2))

index: 0 1 2
print(len(seq))
print(seq[3])
print(seq[-11])
print(seq[3][0])
print(seq[4])

print(seq[l])
print(seq[-2:]
print(seq[l:4:2]
print(seq[:-1])
print(seq[l:3])

for e in seq:
print(e)

2/17/20

3

N2 20 20 20 Z

20 20 20 20 2

\Z

4

(1,2)
(1,2)

1
error

a
(4,(1,2))
(‘a',(1,2))
(2,'a',4)
‘a',4

2

3

6.0001 LECTURE 5

TUPLES

= Conveniently used to swap variable values

X =V temp = X (x, y) = (y, X)

Yy = X X =Yy ""
x y = temp

= Used to return more than one value from a function

def quotient and remainder (x, Vy):

q=x//y
r = X %

Y
return (g, r)

(quot, rem) quotient and remainder (4, 5)

both = quotient and remainder (4, 5)

2/17/20 6.0001 LECTURE 5 8

CALM

YOUR TURN BT

Consider the following code: A) (‘sunny’, ‘cc’)

B) (‘sunny’, ‘ccold’)
def always sunny(tl, t2):
"""tl, t2 are non-empty"""

sun = ("sunny", "sun") D) nothing, it will show an error
first = tl[0] + t2[0]
return (sun[0], first)

C) (‘sunny’, ‘cloudycold’)

To what does always sunny((‘cloudy’), (‘cold’,))
evaluate?

2/17/20 6.0001 LECTURE 5

LISTS

" Indexable ordered sequence of objects

e Usually homogeneous (i.e., all integers, all strings, all
lists)

* But can contain mixed types (not common)

= Denoted by square brackets, []

= Mutable, this means you can change element values

2/17/20 6.0001 LECTURE 5 11

INDICES AND ORDERING

a list =[[]
L = [2, '"a', 4, [1,2]]

. len
len(L) = evaluatesto4 ©V&°

searts at0
—> evaluatesto 2

]+1 -2 evaluatesto5
— evaluatesto [1, 2], another list!

W N O

—> gives an error

L
L
L[
L
1 = 2

L[1i-1] -2 evaluatesto 'a'sinceL[1]="a"

max ([3,5,0]) =2 evaluates5

2/17/20 6.0001 LECTURE 5 12

MUTABILITY

= Lists are mutable!

= Assigning to an element at an index changes the value
L = [2, 1, 3]
L[1] = 5

"Lisnow [2, 5, 37,;notethisisthe same object L

2/17/20 6.0001 LECTURE 5 13

IFSITERATES MEANS TO REPEAT,

ITERATING OVER A LIST

" Compute the sum of elements of a list

= Common pattern

total = 0 total = 0

for 1 in range(len(L)): for 1 in| L:
total += LJ[1] total += 1

print(total) print(total)

= Notice
* Listelementsareindexed 0 tolen (L) -1

* range (n) goesfrom0 ton-1

2/17/20 6.0001 LECTURE 5 14

CALM

YOUR TURN BT

L= ["life", "answer", 42, 0] Whatis the value of L after you run this code?

A) ["1ife", "answer", 42, 0]
for thing in L:

if thing == 0: B) ["universe", "answer", 42, 0]
Ll{thing] = "universe"

elif thing == 42: C) ["universe", "everything", 42, 0]
L[1] = "everything"

D) [("1ife", "everything", 42, 0]

2/17/20 6.0001 LECTURE 5

OPERATION ON LISTS: append

= Add an element to end of list with L.. append (element)

= Mutates the list!
L = [2,1,3]
L.append (5) 2> Lisnow [2,1,3,5]

= What is the dot?
* Lists are Python objects, everythingin Pythonis an object
* Objects have data
* Objects have methods and functions
* Access thisinformation by object name.do something ()
* Equivalentto calling append with arguments . and 5
* Will learn more about these later

2/17/20 6.0001 LECTURE 5 17

OPERATION ON LISTS — append

= Add an element to end of list with L.. append (element)

= Mutates the list!
L = [2,1,3]
L.append (5) 2> Lisnow [2,1,3,5]

PR

OPERATION ON LISTS — append

" Add an element to end of list with L.. append (element)

" Mutates the list!
L = [2,1,3]
L.append (5) 2> Lisnow [2,1,3,5]
L = L.append(d)

> [2/1/3/5]

OPERATION ON LISTS — append

" Add an element to end of list with L.. append (element)

" Mutates the list!
L = [2,1,3]
L.append (5) -2 Lisnow [2,1,3,5]
L =|L.append(5)

o

OPERATION ON LISTS — append

" Add an element to end of list with L.. append (element)

= Mutates the list!
L = [2,1,3]
L.append (5) -2 Lisnow [2,1,3,5]

e 0°
L = L.append(2) O\ «\\6’{\0“ 6‘\)@5
C,a(e Qe(‘(6
/C (\6 S \O\) 25 G
QQQ ,i\o(\‘ . e(,‘—
[(2,1,3,5,5] A eo\O\
r—r 27> 2 ((\e & O(\
N
o)
0T ae
1\ \
QQe“d (o ’
g &(’\C‘\\‘
S e‘& e(:ﬁ

TRICKY EXAMPLE 1: append

= Range returns something that behaves like a tuple (but
isn’t — it returns an iterable)

= Returns the first element, and an iteration method by
which subsequent elements are generated as needed

range (4) -2> equivalentto tuple (0,1, 2, 3)
range (2, 6) - equivalentto tuple (2, 3,4, 5)

Q
'59(6 £ \o©
L — [1 / 2 / 3 / 4] o Oeﬂce;\ﬂd\ﬂ% ©
o ST 00
for 1 in | range(len(L)) :\xe""“;z«med &
3 oth time: Lis [1, 2, 3, 4, 0]
L.append(1) 1sttime: Lis[1,2,3,4,0,1]

2" time: Lis[1,2,3,4,0,1,2]
3"9time: Lis[1,2,3,4,0,1,2,3]

2/17/20 6.0001 LECTURE 5 22

print (L)

TRICKY EXAMPLE 2: append
=

.
Il

[1,2,3,4]

. \WN <« [1,2,3,4,0,1]
1 =20 O(\%(\a A\

AL —{]
for e inj \

L.append (i) E
o .
\\° «\\-)xe(3‘\0(\ 1 +=1
S 3 Ot time: Lis[1, 2, 3, 4, 0]
print (L) 1%ttime: Lis[1,2,3,4,0,1]
In previous example, L was accessed at 2" time: Lis[1,2,3,4,0,1, 2]
onset to create a range iterable; in this 3rd time: Lis[1,2,3,4,0,1,2,3]

example, the loop is directly accessing
indices into L

2/17/20 6.0001 LECTURE 5 P

NEVER STOPS!

COMBINING LISTS %

° . (2
= Concatenation, + operator, creates a new list <&

" Mutate list with L. extend (some list)

L1 = [2,1,3]

L2 = [4,5,0]

L3 = L1 + L2 - L3is[2,1,3,4,5,06]

Ll.extend ([0,6]) -2 mutatedL1to[2,1,3,0,6]
8 2.1.3,0,6
[4,5, 6]
12,1,3,4,5, 6]

2/17/20 6.0001 LECTURE 5 25

Note that L3 does not
change after we mutate L1,
since it was created as a
new list from the original L1

TRICKY EXAMPLE 3: combining

15ttime: new Lis(1, 2, 3,41, 2, 3, 4)
2" time: new Lis(1,2,3,4,1,2,3,4)
o (1,2,3,4,1,2,3,4)
LA 3time: new Lis{7,2,3,4,1,2,3,4,
L =101,2,3,4] > (1,2,3,4,1,2,3,4)
1,2,3,4,1,2,3,4,
for e 1in| 1l <1,2,3,4,1,2,3,4D
4% time: new Lis}1,2,3,4,1,2,3,4,
L=L+1L ey 1,2,3,4,1,2,3,4
_ W0 O 1,2,3,4,1,2,3,4,
Print(L) oo™ ¥ eso™ 2,3,4,1,2,3,
oo™ (A0 o 1,2,3,4,1,2,3,8
Vot ke Aed T M 1,2,3,4,1,2,3,4
« ‘\009‘“0@\6“.\%\(\3\\ | 1,2,3,4,1,2,3,4,
\D:O.\(\‘ed‘o\@ ‘ 2,3,4,1,2,3,
S

2/17/20 6.0001 LECTURE 5

OPERATION ON LISTS: REMOVE

= Delete element at a specific indexwithdel (L [index])

" Remove element at end of list with L. . pop (), returnsthe
removed element

" Remove a specific element with .. remove (element)
* Looks for the element and removes it

* If element occurs multiple times, removes first occurrence
* If element not in list, gives an error

o L =1012,1,3,6,3,7,0] # do below in order
N 9" L.remove(2) > mutates L. = [1,3,6,3,7,0]
09\)@“" L.remove (3) 2? mutatesL = [1,6,3,7,0]

T Y del(L[1]) D mutatesL = [1,3,7,0]
_ L.pop () - returns 0 and mutates . = [1,3, 7]

2/17/20 6.0001 LECTURE 5 27

MUTATION AND ITERATION

http://www.pythontutor.com/ to see step-by-step

= Avoid mutatinga list as you are iterating over it

def remove_ dups (L1, L2): def remove dups (Ll, L2):
for e 1n Ll: L1l copy = L1[:]
1f e 1in L2: for e 1n L1 copy:
L1l.remove (e) if e in L2:
x L1l.remove (e)
L1 = [1, 2, 3, 4
L2 = %1 2, 5 61 first g ~ L
= ’ ’ ’ \\S cOP
remove dups (L1, L2) QONe 1L

No’te v ot C\O(\e
= L1 is[2,3,4] not[3,4] Why? goes ™

* Python uses an internal counter to keep track of index in the loop over
list L1

* Mutating changes the list but Python doesn’t update the counter
* Loop never sees element 2

2/17/20 6.0001 LECTURE 5 28

CONVERT LISTS TO STRINGS
AND BACK

" Convertstringto list with 1ist (s),returnsalist with every
character from s an elementin L

" Canuse s.split (),tosplit astring on a character
parameter, splits on spaces if called without a parameter

"Use''.join (L) toturna list of charactersinto a string, can
give a character in quotes to add char between every element
s = "I<3 cs" - s is astring
list (s) 2 returns ['I','<','3'," ', '¢c',"'s"']
s.split('<") 2 returns ['I', '3 cs']
L = 1["a','b',"'c'] - Lis alist
"' .Join (L) - returns "abc"

' '.join (L) - returns "a b c"

2/17/20 6.0001 LECTURE 5 29

OTHER LIST
OPERATIONS

" sort () and sorted ()

" reverse ()

= and many more!
https://docs.python.org/3/tutorial/datastructures.html

L=[9,0,0, 3]
a = sorted (L) =2 returnssorted list, does not mutate L

a = L.sort () 2 mutatesL=[0, 3, 6, 9], returnsNone

L.reverse () =2 mutatesL.=[9,6,3,0]

2/17/20 6.0001 LECTURE 5 30

Ll

L2

L3

L4

L3

L3

YOUR TURN

CALM

AND

TAKE YOUR
TURN ALREADY

= [‘re’]
= [‘mi’]
= [‘'do’]
= L1 + L2
.extend (14)

.sort ()

del (L3[0])

L3

.append ([‘fa’,’"1la’])

2/17/20

What is the value of L3 after you execute all the
operations in this code?

A) [‘mi’, ‘re’,[‘fa’, ‘la’]]
B) [‘\mi’, ‘re’, ‘fa’, ‘la’]
C) [\rel, \mi’ [\fal’ \la’]]

D) [‘do’, ‘mi’, [‘fa’, ‘la’]]

6.0001 LECTURE 5

MUTATION, ALIASING, CLONING

IMPORTANT

and
TRICKY!

Again, Python Tutor is your best friend
to help sort this out!

http://www.pythontutor.com/

LISTS IN MEMORY

= Lists are mutable

= Behave differently than immutable types
= Alistis an objectin memory
= Variable name pointsto object

" Using equal sign between mutable objects creates aliases
* Both variables point to the same object in memory

= Any variable pointing to that object is affected by mutation
of object

= Key phrase to keep in mind when working with lists is side
effects

2/17/20 6.0001 LECTURE 5 34

ALIASING

= City may be known by many names

. . Boston
= Attributes of a city The Hub

* small, tech-savvy Beantown

= All nicknames point to the same city
* add new attribute to one nickname ...

... all the aliases refer to the old attribute and all the new ones

2/17/20 6.0001 LECTURE 5

ALIASES

" hot is an alias for warm— changing one changes the

Other! \\(,\%\\ \0\)\' Q
B e
. N© 6@ C\(\’c\
" append () has a side effect W e
o \)C\'\)(
, &
a=1 1
b =a
print(a)
print(b) >
Frames Objects
warm = ['red’, 'yellow', 'orange']
hot = warm Global frame |i§t : .
a 1 "red" | "yellow" | "orange" ‘_"pink“
b 1
warm
hot

2/17/20 6.0001 LECTURE 5 36

CLONING A LIST

= Create a new list and copy every element using a
clone
chill = cool][:]

cool = ['blue’, 'green’, ‘'grey’']

y
Frames Objects
Global frame list
O 1 2
.///’_“*%b :
COOl nbluell "gr‘een" "gr\ey"
chill
list
0 1 2
Ilbluell llgr‘eenll llgr‘eyll

2/17/20 6.0001 LECTURE 5 37

SORTING LISTS

= Calling sort () mutatesthe list, returns None

= Calling sorted ()
does not mutate

list, must assign ;
result to a variable Frames Objects
warm = ['red’, 'yellow', ‘'orange’'] | Global frame list
) - > 0 1 2
warm "orange" | "red" | "yellow"
sortedwarm None
cool Ilst
sortedcool <
"grey" green" "blue™
Ilst
blue green" ‘ "grey"

2/17/20 6.0001 LECTURE 5 38

LISTS OF LISTS
OF LISTS OF.... =4

= Can have nested lists

= Side effects still

possible after mutation I

‘ 4

Frames Objects
warm = ['yellow', 'orange'] Global frame st .
hot = ["red’] RESE ‘ "yellow" | "orange"
brightcolors = [warm] hot
brightcolors.append(hot) brightcolors .
print(brightcolors) ; 1
‘ |lredll Ilpinkll

2/17/20 6.0001 LECTURE 5

39

KEEP
CALM

YOUR TURN BT

L1 = [“bacon”, “eggs”] What is the value of brunch after you execute all the
L2 = [“toast”, “jam~] OPerations in this code?

brunch = L1 A) [“bacon”, “eggs”, “toast”, “jam”]
Ll.append(“juice”) B) [\\bacon//, “eggs”, \\juice//, “thSt”, “jam”]
brunch.extend(LZ) C) [“baCOn”, “eggs”, “juj_ce”, [\\toast//, “jam”]]

D) [\\bacon//’ \\eggS//, [\\toast//, \\jam//] :|

2/17/20 6.0001 LECTURE 5

PROBLEMS
WITH
RECU?RS\ON

LISTS ARE NATURALLY
RECURSIVE

~| PROBLEMS
WITH
REC\)?RS\O

U Plecse Lok one. L

A j

def total iter(L): def total recur(L):
result = 0 if L == []:
for e in L: return 0
result += len(e) else:
return result return len(L[0]) + \

total recur(L[1l:])

test = ["abc",'d',"efghi"] test = ["abc",'d',"efghi"]

print(total iter(test)) print(total recur(test))

2/17/20 6.0001 LECTURE 5

LISTS ARE NATURALLY
RECURSIVE

=The list operation reverse isbuilt in; but we can
easily see how a list naturally supports recursion

* To reverse a list (as a copy), recursively reverse all but the
first element, and add that element to the end

P PRGZLEMS\A
WITH
RECU?RS\O

L]ﬁ:sg Loke one
T

FEEETTEE

my_rev my_rev

@9@9@ becomes @9@ _»@

def my_rev(L):
iT L == []¢:
return L

else:

Note: concatenation
ST T e T L o ®—[0]® expects a pair of lists

test2 = ["abc", ['d'], ['e', ['f', 'g']l]]
print(my_rev(test2))

2/17/20 6.0001 LECTURE 5 43

WITH INSOMNIA,
NOTHING IS REAL.

EVERYTHING IS FAR AWAY.
EVERYTHING IS A COPY

CONTROL COPYING [

=Assignment just creates a new pointer to same object
old list = [[1,2],[3,4]1,[5, 'foo']]

new list = old list

new list[2][1] = 6
print("New list:", new list)
print("01ld list:", old list)

=So mutating one object changes the other

old list S

new list

2/17/20 6.0001 LECTURE 5 6.0001 LECTURE 5

CONTROL COPYING

sSuppose we want to create a copy of a list, not just a shared
pointer; shallow copying does this at the top level of the list

import copy
old_list = [[1,2],[3,41,[5,6]]
new list = copy.copy(old 1list)

print("New list:", new list)

print("0ld list:", old list)

2/17/20 6.0001 LECTURE 5 'y

old list = [[1,2],[3,4]1,[5,6]]

new list = copy.copy(old list)

print("New list:", new list)

print("0ld list:", old list)

[[1,21,[03,4],[5,6]1]

new list

2/17/20 6.0001 LECTURE 5 48

CONTROL COPYING

*Now we mutate the top level structure
import copy

old list = [[1,21,[3,41,[5,6]]
new list = copy.copy(old list)

old list.append([7,8])

print("New list:", new list)

print ("0Old list:", old 1list)

2/17/20 6.0001 LECTURE 5

49

old list = [[1,2],[3,4]1,[5,6]]

new list = copy.copy(old list)

[old_list.append([7,8])]

print("New list:", new list)

print("0ld 1list:", old list)

[(1,2]1,03,41,05,6],[7,8]]

old list

2/17/20 6.0001 LECTURE 5 10)

CONTROL COPYING

"But if we change an element in one of the sub-structures
import copy

old list = [[1,2],[3,41,[5,6]]

new list = copy.copy(old 1list)

old list.append([7,8])
old list[1][1] = 9
print("New list:", new list)

print("01ld 1list:", old 1list)

2/17/20 6.0001 LECTURE 5

51

old list = [[1,2],[3,4]1,[5,6]]

new list copy.copy(old 1list)

7

old list.append([7,8])]

\

old list[1][1] = 9 J

print("New list:", new list)

print("0ld 1list:", old list)

[(1,21,03.9],[5,61,[7,8]]

new list

2/17/20 6.0001 LECTURE 5 52

CONTROL COPYING

*"|f we want all structuresto be new copies, we need a deep
copy

import copy

old_list = [[1,2],[3,41,[5,6]]

new list ={copy.deepcopﬂ(old_list)

old list.append([7,8])
old list[1][1l] = 9
print("New list:", new list)

print ("0Old list:", old 1list)

2/17/20 6.0001 LECTURE 5 53

old list = [[1,2],[3,4]1,[5,6]]

new list = copy.deepcopy(old list)

7

old list.append([7,8])]

\

old list[1][1] = 9 J

print("New list:", new list)

print("0ld 1list:", old list)

[f1,2],03.9/,05,6],[7,8]]

old list 2 [[1,21,103,41,15,61]

new list

2/17/20 6.0001 LECTURE 5 54

. 1DON'T ALWAYS INDENT
| 4MY;CODE
. A

WRITING YOUR %
OWN VERSION

def my deep copy(L):

if L == []:
return L
elif type(L[0]) == type([]):

return()my_deep_copy(L[O])()+\
my deep copy(L[1l:])

else:

return @L[O]@ + my _deep copy(L[1l:])

WHY LISTS AND TUPLES?

*|f mutation can cause so many problems, why do we
even want to have lists, why not just use tuples?

* Efficiency —if processing very large sequences, don’t want
to have to copy every time we change an element

=|f lists basically do everything that tuples do, why not
just have lists?

* Immutable structures can be very valuable, e.g., we will
see using immutable structures as keys into dictionaries
next lecture

2/17/20 6.0001 LECTURE 5 56

ONEDOES,NOT SIME

-

{¥a

Ta I(e h ome messd g e ENDA Plﬁgin;ﬁnu wmmur‘

A TAKE-HOME-MESSAGE!

=Lists and tuples provide compound data structures
* Can be indexed

* Can be sliced

"They naturally support recursive or iterative algorithms

*Many built in methods for processinglists — reverse,
sort, sorted, append, extend, etc.

=Lists are mutable!

* Need to be careful about aliasing — when two names refer
to the same mutable structure

2/17/20 6.0001 LECTURE 5 57

