
TUPLES,	
LISTS,	
MUTABILITY
(download	slides	and	.py files	to	follow	along)

6.0001	 LECTURE	5

Eric	Grimson

6.0001	LECTURE	5 12/17/20

LAST	FEW	LECTURES
§ while	loops	&	for	loops
§ should	know	how	to	write	both	kinds
§ should	know	when	to	use	them
§ computations	characterized	 by	“state	variables”	 and	update	 rules

§ functions
§ recursion	
§ decomposition	and	abstraction

6.0001	LECTURE	5 22/17/20

TODAY
§ new	data	types	– tuples	and	lists
§mutable	and	immutable	data	structures
§challenges	of	aliasing	under	mutation

§ looping	or	recursingover	compound	data	structures

6.0001	LECTURE	5 32/17/20

Assigned	Reading
§today:
• section	5.1	– 5.5

§next	lecture:
• section	5.6
• chapter	6
• chapter	7

6.0001	LECTURE	5 4

See	https://mitpress.mit.edu/books/introduction-computation-and-programming-
using-python-second-edition for	errata	sheet

2/17/20

A	new	data	type
§ Have	seen	scalar	types:	int,float,bool,string
§Want	to	introduce	new	compound	data	types
§ indexed	sequences	of	elements,	which	could	themselves	be	
compound	structures

§ tuples	– immutable	
§ lists	– mutable	

§ Explore	ideas	of
•Mutability
• Aliasing
• Cloning

6.0001	LECTURE	5 52/17/20

§ Indexable ordered	sequence	of	objects
§ Objects	can	be	any	type	– int,	string,	tuple,	 tuple	of	tuples,	…

§ Cannot	change	element	 values,	 immutable
te = ()

ts = (2,)

t = (2, "mit", 3)

t[0] à evaluates	to	2
(2,"mit",3) + (5,6)à evaluates	to (2,"mit",3,5,6)
t[1:2] à slice	tuple,	evaluates	to	("mit",)
t[1:3] à slice	tuple,	evaluates	to	("mit",3)
len(t) à evaluates	to	3
max((3,5,0)) à evaluates	5

t[1] = 4 à gives	error,	can’t	modify	object

TUPLES

6.0001	LECTURE	5 62/17/20

INDICES	AND	SLICING
seq = (2,'a',4,(1,2))

print(len(seq)) à 4
print(seq[3]) à (1,2)
print(seq[-1]) à (1,2)
print(seq[3][0]) à 1
print(seq[4]) à error

print(seq[1]) à a
print(seq[-2:] à (4,(1,2))
print(seq[1:4:2] à ('a',(1,2))
print(seq[:-1]) à (2,'a',4)
print(seq[1:3]) à 'a',4

for e in seq: à 2
print(e) 'a'

4
(1,2)

6.0001	LECTURE	5 7

index:				0							1						2									3

2/17/20

TUPLES
§ Conveniently	used	to	swap variable	values

x = y temp = x (x, y) = (y, x)

y = x x = y

y = temp

§ Used	to	return	more	than	one	value	from	a	function
def quotient_and_remainder(x, y):

q = x // y

r = x % y

return (q, r)

(quot, rem) = quotient_and_remainder(4,5)

6.0001	LECTURE	5 82/17/20

both = quotient_and_remainder(4,5)

YOUR	TURN
Consider	 the	following	code:

def always_sunny(t1, t2):
"""t1, t2 are non-empty"""
sun = ("sunny", "sun")
first = t1[0] + t2[0]
return (sun[0], first)

To	what	does	always_sunny((‘cloudy’), (‘cold’,))
evaluate?

A)	(‘sunny’, ‘cc’)

B)	(‘sunny’, ‘ccold’)

C)	(‘sunny’, ‘cloudycold’)

D)	nothing,	 it	will	show	an	error

2/17/20 6.0001	LECTURE	5 9

LISTS
§ Indexable ordered	sequence	of	objects
• Usually	homogeneous	(i.e.,	all	integers,	all	strings,	all	
lists)
• But	can	contain	mixed	types	(not	common)

§ Denoted	by	square brackets,	[]

§Mutable,	this	means	you	can	change	element	values

6.0001	LECTURE	5 112/17/20

INDICES	AND	ORDERING
a_list = []

L = [2, 'a', 4, [1,2]]

len(L) à evaluates	to	4
L[0] à evaluates	to	2
L[2]+1 à evaluates	to	5
L[3] à evaluates	to	[1,2],	another	list!
L[4] à gives	an	error	
i = 2
L[i-1] à evaluates	to	'a' since	L[1]='a'
max([3,5,0]) à evaluates	5	

6.0001	LECTURE	5 122/17/20

MUTABILITY

6.0001	LECTURE	5 13

§ Lists	are	mutable!
§ Assigning	to	an	element	at	an	index	changes the	value

L = [2, 1, 3]

L[1] = 5

§ L is	now	[2, 5, 3]; note	this	is	the	same	object	L

L

[2,1,3][2,5,3]

2/17/20

ITERATING	OVER	A	LIST

6.0001	LECTURE	5 14

§ Compute	the	sum	of	elements	of	a	list
§ Common	pattern

§ Notice
• List	elements	are	indexed	0 to	len(L)-1
• range(n) goes	from	0 to	n-1

total = 0

for i in range(len(L)):

total += L[i]

print(total)

total = 0

for i in L:

total += i

print(total)

2/17/20

YOUR	TURN
L= ["life", "answer", 42, 0]

for thing in L:
if thing == 0:

L[thing] = "universe"
elif thing == 42:

L[1] = "everything"

What	is	the	value	of	L	after	you	run	this	code?

A)	["life", "answer", 42, 0]

B)	["universe", "answer", 42, 0]

C)	["universe", "everything", 42, 0]

D)	["life", "everything", 42, 0]

2/17/20 6.0001	LECTURE	5 15

OPERATION	ON	LISTS:	append
§ Add an	element	to	end	of	list	with	L.append(element)
§Mutates the	list!

L = [2,1,3]
L.append(5) à L	is	now	[2,1,3,5]

§What	is	the	dot?	
• Lists	are	Python	objects,	everything	in	Python	is	an	object
• Objects	have	data
• Objects	have	methods	and	functions	
• Access	this	information	by	object_name.do_something()
• Equivalent	to	calling	appendwith	arguments	L and	5
• Will	learn	more	about	these	later

6.0001	LECTURE	5 172/17/20

OPERATION	ON	LISTS	– append
§ Add an	element	to	end	of	list	with	L.append(element)

§Mutates the	list!
L = [2,1,3]
L.append(5) à L	is	now	[2,1,3,5]

6.0001	LECTURE	5 18

L

[2,1,3][2,1,3,5]

2/17/20

OPERATION	ON	LISTS	– append
§ Add an	element	to	end	of	list	with	L.append(element)
§Mutates the	list!

L = [2,1,3]
L.append(5) à L	is	now	[2,1,3,5]
L = L.append(5)

6.0001	LECTURE	5 19

L

[2,1,3][2,1,3,5]

2/17/20

OPERATION	ON	LISTS	– append
§ Add an	element	to	end	of	list	with	L.append(element)
§Mutates the	list!

L = [2,1,3]
L.append(5) à L	is	now	[2,1,3,5]
L = L.append(5)

6.0001	LECTURE	5 20

L

[2,1,3][2,1,3,5,5]

2/17/20

OPERATION	ON	LISTS	– append
§ Add an	element	to	end	of	list	with	L.append(element)
§Mutates the	list!

L = [2,1,3]
L.append(5) à L	is	now	[2,1,3,5]
L = L.append(5)

6.0001	LECTURE	5 21

L

[2,1,3][2,1,3,5,5]

None

2/17/20

TRICKY	EXAMPLE	1:	append
§ Range	returns	something	that	behaves	like	a	tuple	(but	
isn’t	– it	returns	an	iterable)
§ Returns	the	first	element,	and	an	iteration	method	by	
which	subsequent	elements	are	generated	as	needed
range(4) à equivalent	to	tuple	(0,1,2,3)
range(2,6) à equivalent	to	tuple	(2,3,4,5)
L = [1,2,3,4]

for i in range(len(L)):

L.append(i)

print(L)
6.0001	LECTURE	5 22

0th time:	 L	is	[1,	2,	3,	4,	0]
1st time: L	is	[1,	2,	3,	4,	0,	1]
2nd time: L	is	[1,	2,	3,	4,	0,	1,	2]

3rd time: L	is	[1,	2,	3,	4,	0,	1,	2,	3]
2/17/20

TRICKY	EXAMPLE	2:	append

L = [1,2,3,4]

i = 0

for e in L:

L.append(i)

i += 1

print(L)

6.0001	LECTURE	5 24

0th time:	 L	is	[1,	2,	3,	4,	0]

1st time: L	is	[1,	2,	3,	4,	0,	1]

2nd time: L	is	[1,	2,	3,	4,	0,	1,	2]

3rd time: L	is	[1,	2,	3,	4,	0,	1,	2,	3]

2/17/20

NEVER	STOPS!

[1,2,3,4]

L

e

[1,2,3,4,0][1,2,3,4,0,1]

i

012

In	previous	example,	L	was	accessed	 at	
onset	to	create	a	range	iterable;	 in	this	
example,	the	 loop	is	directly	accessing	
indices	 into	L

COMBINING	LISTS
§ Concatenation,	+	operator,	creates	a	new list
§Mutate list	with	L.extend(some_list)
L1 = [2,1,3]

L2 = [4,5,6]

L3 = L1 + L2 à L3 is	[2,1,3,4,5,6]

L1.extend([0,6]) à mutated	L1 to	[2,1,3,0,6]

25

L1 [2,1,3]

L2 [4,5,6]

L3 [2,1,3,4,5,6]

[2,1,3,0,6]

2/17/20 6.0001	LECTURE	5

Note	that	L3	does	not	
change	after	we	mutate	L1,	
since	 it	was	created	as	a	
new	list	 from	the	original	L1

TRICKY	EXAMPLE	3:	combining

L = [1,2,3,4]

for e in L:

L = L + L

print(L)

6.0001	LECTURE	5 26

1st time:	 new L	is	[1,	2,	3,	4,	1,	2,	3,	4]

2nd time: new L	is	[1,	2,	3,	4,	1,	2,	3,	4,	
1,	2,	3,	4,	1,	2,	3,	4]

3rd time: new L	is	[1,	2,	3,	4,	1,	2,	3,	4,	
1,	2,	3,	4,	1,	2,	3,	4
1,	2,	3,	4,	1,	2,	3,	4,	
1,	2,	3,	4,	1,	2,	3,	4]

4th time: new L	is	[1,	2,	3,	4,	1,	2,	3,	4,	
1,	2,	3,	4,	1,	2,	3,	4
1,	2,	3,	4,	1,	2,	3,	4,	
1,	2,	3,	4,	1,	2,	3,	4
1,	2,	3,	4,	1,	2,	3,	4,	
1,	2,	3,	4,	1,	2,	3,	4
1,	2,	3,	4,	1,	2,	3,	4,	
1,	2,	3,	4,	1,	2,	3,	4]

2/17/20

OPERATION	ON	LISTS:	REMOVE
§ Delete	element	at	a	specific	index	withdel(L[index])

§ Remove	element	at	end	of	list	with	L.pop(),	returns	the	
removed	element

§ Remove	a	specific	element	with	L.remove(element)
• Looks	for	the	element	 and	removes	 it
• If	element	 occurs	multiple	 times,	removes	 first	occurrence
• If	element	 not	in	list,	gives	an	error

L = [2,1,3,6,3,7,0] # do below in order
L.remove(2)àmutates	L = [1,3,6,3,7,0]
L.remove(3)àmutates	L = [1,6,3,7,0]
del(L[1]) àmutates	L = [1,3,7,0]
L.pop() à returns	0	and	mutates	L = [1,3,7]

6.0001	LECTURE	5 272/17/20

MUTATION	AND	ITERATION
http://www.pythontutor.com/ to	see	step-by-step

§ Avoidmutating	a	list	as	you	are	iterating	over	it
def remove_dups(L1, L2):

for e in L1:
if e in L2:

L1.remove(e)

L1 = [1, 2, 3, 4]
L2 = [1, 2, 5, 6]
remove_dups(L1, L2)

§ L1 is	[2,3,4] not	[3,4] Why?	
• Python	uses	an	internal	 counter	to	keep	 track	of	index	in	the	loop	over	
list	L1
• Mutating	changes	the	list	but	Python	doesn’t	update	the	counter
• Loop	never	sees	element	2

6.0001	LECTURE	5 28

def remove_dups(L1, L2):
L1_copy = L1[:]
for e in L1_copy:

if e in L2:
L1.remove(e)

2/17/20

CONVERT	LISTS	TO	STRINGS	
AND	BACK
§ Convert	string	to	list	with	list(s),	returns	a	list	with	every	
character	from	s an	element	in	L

§ Can	use	s.split(),	to	split	a	string	on	a	character	
parameter,	splits	on	spaces	if	called	without	a	parameter

§ Use	''.join(L) to	turn	a	list	of	characters	into	a	string,	can	
give	a	character	in	quotes	to	add	char	between	every	element

6.0001	LECTURE	5 29

s = "I<3 cs" à s is	a	string
list(s) à returns	['I','<','3',' ','c','s']
s.split('<') à returns	['I', '3 cs']
L = ['a','b','c'] à L is	a	list
''.join(L) à returns	"abc"
'_'.join(L) à returns	"a_b_c"

2/17/20

OTHER	LIST	
OPERATIONS

§ sort() and	sorted()
§ reverse()

§ and	many	more!	
https://docs.python.org/3/tutorial/datastructures.html

L=[9,6,0,3]

a = sorted(L)à returns	sorted	list,	does	not	mutateL
a = L.sort()àmutatesL=[0,3,6,9],returns	None
L.reverse() àmutatesL=[9,6,3,0]

6.0001	LECTURE	5 302/17/20

YOUR	TURN
L1 = [‘re’]

L2 = [‘mi’]

L3 = [‘do’]

L4 = L1 + L2

L3.extend(l4)

L3.sort()

del(L3[0])

L3.append([‘fa’,’la’])

What	is	the	value	of	L3	after	you	execute	 all	the	
operations	 in	this	code?

A)	[‘mi’, ‘re’,[‘fa’, ‘la’]]

B)	[‘mi’, ‘re’, ‘fa’, ‘la’]

C)	[‘re’, ‘mi’ [‘fa’, ‘la’]]

D)	[‘do’, ‘mi’, [‘fa’, ‘la’]]

2/17/20 6.0001	LECTURE	5 31

MUTATION,	ALIASING,	CLONING

Again,	Python	Tutor	is	your	best	friend	
to	help	sort	this	out!
http://www.pythontutor.com/

IMPORTANT	
and

TRICKY!

6.0001	LECTURE	5 332/17/20

LISTS	IN	MEMORY
§ Lists	are	mutable
§ Behave	differently	than	immutable	types
§ A	list	is	an	object	in	memory
§ Variable	name	points	to	object
§ Using	equal	sign	between	mutable	objects	creates	aliases
• Both	variables	point	to	the	same	object	in	memory

§ Any	variable	pointing	to	that	object	is	affected	by	mutation	
of	object
§ Key	phrase	to	keep	in	mind	when	working	with	lists	is	side	
effects

6.0001	LECTURE	5 342/17/20

ALIASING
§ City	may	be	known	by	many	names
§ Attributes	of	a	city
• small,	tech-savvy

§ All	nicknames	point	to	the	same	city
• add	new	attribute	to	one	nickname	…

6.0001	LECTURE	5 35

Boston
The	Hub
Beantown

Boston small tech-savvy

The	Hub small tech-savvy

Beantown small tech-savvy

snowy

snowy

snowy

…	all	the	aliases refer	to	the	old	attribute	and	all	the	new	ones

2/17/20

ALIASES
§ hot is	an	alias for	warm – changing	one	changes	the	
other!
§ append()has	a	side	effect

6.0001	LECTURE	5 362/17/20

CLONING	A	LIST
§ Create	a	new	list	and	copy	every	element	using	a	
clone	
chill = cool[:]

6.0001	LECTURE	5 372/17/20

SORTING	LISTS
§ Calling	sort() mutates	the	list,	returns	None
§ Calling	sorted()
does	not	mutate	
list,	must	assign	
result	to	a	variable

6.0001	LECTURE	5 382/17/20

LISTS	OF	LISTS	
OF	LISTS	OF….
§ Can	have	nested lists
§ Side	effects	still	
possible	after	mutation

6.0001	LECTURE	5 392/17/20

YOUR	TURN
L1 = [“bacon”, “eggs”]

L2 = [“toast”, “jam”]

brunch = L1

L1.append(“juice”)

brunch.extend(L2)

What	is	the	value	of	brunch	after	you	execute	 all	the	
operations	 in	this	code?

A)	[“bacon”, “eggs”, “toast”, “jam”]

B)	[“bacon”, “eggs”, “juice”, “toast”, “jam”]

C)	[“bacon”, “eggs”, “juice”, [“toast”, “jam”]]

D)	[“bacon”, “eggs”, [“toast”, “jam”]]

2/17/20 6.0001	LECTURE	5 40

LISTS	ARE	NATURALLY	
RECURSIVE

def total_iter(L):

result = 0

for e in L:

result += len(e)

return result

test = ["abc",'d',"efghi"]

print(total_iter(test))

def total_recur(L):

if L == []:

return 0

else:

return len(L[0]) + \

total_recur(L[1:])

test = ["abc",'d',"efghi"]

print(total_recur(test))

2/17/20 6.0001	LECTURE	5 42

LISTS	ARE	NATURALLY	
RECURSIVE
§The	list	operation	reverse is	built	in;	but	we	can	
easily	see	how	a	list	naturally	supports	recursion
• To	reverse	a	list	(as	a	copy),	recursively	reverse	all	but	the	
first	element,	and	add	that	element	to	the	end

2/17/20 6.0001	LECTURE	5 43

my_rev

a		à b		à c

my_rev

b		à c abecomes

Note:	concatenation	
expects	 a	pair	of	lists

CONTROL	COPYING
§Assignment	 just	creates	a	new	pointer	to	same	object
old_list = [[1,2],[3,4],[5,'foo']]

new_list = old_list

new_list[2][1] = 6

print("New list:", new_list)

print("Old list:", old_list)

§So mutating one object changes the other

2/17/20 6.0001	LECTURE	5 466.0001	LECTURE	5

old_list

[[1,2],[3,4],[5,‘foo’]]

new_list

[[1,2],[3,4],[5,6]]

CONTROL	COPYING
§Suppose	we	want	to	create	a	copy	of	a	list,	not	just	a	shared	
pointer;	shallow	copying	does	this	at	the	top	level	of	the	list

import copy

old_list = [[1,2],[3,4],[5,6]]

new_list = copy.copy(old_list)

print("New list:", new_list)

print("Old list:", old_list)

2/17/20 6.0001	LECTURE	5 47

old_list = [[1,2],[3,4],[5,6]]

new_list = copy.copy(old_list)

print("New list:", new_list)

print("Old list:", old_list)

2/17/20 6.0001	LECTURE	5 48

6.0001	LECTURE	5

old_list

new_list

[[1,2],[3,4],[5,6]]

[, ,]

CONTROL	COPYING
§Now	we	mutate	the	top	level	structure

import copy

old_list = [[1,2],[3,4],[5,6]]

new_list = copy.copy(old_list)

old_list.append([7,8])

print("New list:", new_list)

print("Old list:", old_list)

2/17/20 6.0001	LECTURE	5 49

old_list = [[1,2],[3,4],[5,6]]

new_list = copy.copy(old_list)

old_list.append([7,8])

print("New list:", new_list)

print("Old list:", old_list)

2/17/20 6.0001	LECTURE	5 50

6.0001	LECTURE	5

old_list

new_list

[[1,2],[3,4],[5,6]]

[, ,]

[[1,2],[3,4],[5,6],[7,8]]

CONTROL	COPYING
§But	if	we	change	an	element	 in	one	of	the	sub-structures	
import copy

old_list = [[1,2],[3,4],[5,6]]

new_list = copy.copy(old_list)

old_list.append([7,8])

old_list[1][1] = 9

print("New list:", new_list)

print("Old list:", old_list)

2/17/20 6.0001	LECTURE	5 51

old_list = [[1,2],[3,4],[5,6]]

new_list = copy.copy(old_list)

old_list.append([7,8])

old_list[1][1] = 9

print("New list:", new_list)

print("Old list:", old_list)

2/17/20 6.0001	LECTURE	5 52

6.0001	LECTURE	5

old_list

new_list

[[1,2],[3,4],[5,6]]

[, ,]

[[1,2],[3,4],[5,6],[7,8]][[1,2],[3,9],[5,6],[7,8]]

CONTROL	COPYING
§If	we	want	all	structures	to	be	new	copies,	we	need	a	deep	
copy

import copy

old_list = [[1,2],[3,4],[5,6]]

new_list = copy.deepcopy(old_list)

old_list.append([7,8])

old_list[1][1] = 9

print("New list:", new_list)

print("Old list:", old_list)
2/17/20 6.0001	LECTURE	5 53

old_list = [[1,2],[3,4],[5,6]]

new_list = copy.deepcopy(old_list)

old_list.append([7,8])

old_list[1][1] = 9

print("New list:", new_list)

print("Old list:", old_list)

2/17/20 6.0001	LECTURE	5 54

old_list

new_list

[[1,2],[3,4],[5,6]][[1,2],[3,4],[5,6],[7,8]]

[[1,2],[3,4],[5,6]]

[[1,2],[3,9],[5,6],[7,8]]

WRITING	YOUR	
OWN	VERSION
def my_deep_copy(L):

 if L == []:

 return L

 elif type(L[0]) == type([]):

 return [my_deep_copy(L[0])] +\

 my_deep_copy(L[1:])

 else:

 return [L[0]] + my_deep_copy(L[1:])

2/17/20 6.0001	LECTURE	5 55

WHY	LISTS	AND	TUPLES?
§If	mutation	can	cause	so	many	problems,	why	do	we	
even	want	to	have	lists,	why	not	just	use	tuples?
• Efficiency	– if	processing	very	large	sequences,	don’t	want	
to	have	to	copy	every	time	we	change	an	element

§If	lists	basically	do	everything	that	tuples	do,	why	not	
just	have	lists?
• Immutable	structures	can	be	very	valuable,	e.g.,	we	will	
see	using	immutable	structures	as	keys	into	dictionaries	
next	lecture

2/17/20 6.0001	LECTURE	5 56

Take	home	message
§Lists	and	tuples	provide	compound	data	structures
• Can	be	indexed
• Can	be	sliced

§They	naturally	support	recursive	or	iterative	algorithms
§Many	built	in	methods	for	processing	lists	– reverse,	
sort,	sorted,	append,	extend,	etc.
§Lists	are	mutable!
• Need	to	be	careful	about	aliasing	– when	two	names	refer	
to	the	same	mutable	structure

2/17/20 6.0001	LECTURE	5 57

