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Assigned	Reading

§ Today:	
◦ Sections	15.1-15.3
◦ Section	15.5

§ Next	lecture:	
◦ Chapter	14
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The	Simple	World	of	Newtonian	Mechanics

§Want	to	build	computational	models	of	physical	world

§ Every	effect	has	a	cause,	so	physical	world	can	be	
understood	causally
◦ e.g.,	Newton’s	three	laws	of	motion

§ 18th century	mathematics
◦ 18.01,	18.02

§ 18th-19th century	physics
◦ 8.01
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1643	– 1727	
A	side	comment	 on	Newton	and	campus	closures:
• Plague	 forced	closure	of	Cambridge	 from	1665-1667
• Newton	went	home	 to	family’s	country	house	(Woolsthorpe Manor)
• Poll:	 	which,	 if	any,	of	the	following	 did	he	accomplish	 during	that	time?

• Invented	calculus
• Derived	first	version	of	laws	of	gravity
• Discovered	 foundations	 of	optics	 of	colors



Two+	Centuries	Later
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• 20th century	physics
• 8.04,	8.05,	8.06

• In	early	20th century,	atomic	
and	subatomic	 observations	
seemed	 to	defy	classical	
mechanical	 explanations
• E.g.,	do	electrons	

behave	as	particles	 or	
waves	(or	both)?

• Led	to	introduction	 of	
quantum	mechanics,	 and	
assertion	 that	one	cannot	
precisely	measure	 a	particle’s	
physical	properties

• This	had	 impact	 beyond	
physics	– what	are	
philosophical	 implications	 if	
one	cannot	measure	 things	
precisely	 or	cannot	be	sure	
that	an	observed	 effect	had	a	
specific	 cause?



• Heisenberg	and	Bohr	
argued	that	at	its	most	
fundamental	level,	the	
behavior	of	the	physical	
world	cannot	be	predicted
◦ For	example,	cannot	
precisely	measure	
position	and	momentum	
of	a	particle	at	the	same	
time

◦ Fine	to	make	statements	
of	the	form	“x	is	highly	
likely	to	occur,”	but	not	of	
the	form	“x	is	certain	to	
occur”
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Copenhagen	 Interpretation

“Those	who	are	not	
shocked	when	they	first	
come	across	quantum	
theory	cannot	possibly	
have	understood	 it.	…If	
you	think	you	can	talk	
about	quantum	 theory	
without	 feeling	 dizzy,	you	
haven't	understood	 the	
first	thing	about	 it.”

“The	more	precise	 the	
measurement	 of	
position,	 the	more	
imprecise	 the	
measurement	 of	
momentum,	 and	vice	
versa.”



• Einstein	and	Schrodinger	objected
◦ "I,	at	any	rate,	am	convinced	that	He	[God]	does	not	
throw	dice."– Albert	Einstein

◦ Bohr,	in	response,	said,	"Einstein,	don't	tell	God	what	to	
do."

Many	Were	Indeed	Shocked
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Poll:
Heisenberg	 (1932),	Bohr	
(1922),	Einstein	 (1921)	and	
Schrodinger	(1933	- shared)	
all	won	the	Nobel	prize	for	
Physics.	 	Which	one	had	a	
son	that	also	won	the	
Nobel	 prize	for	Physics?

One	of	6	cases	 of	two	
generations	 winning	
different	Nobel	 prizes



DOES	IT	REALLY	MATTER?
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• Suppose	we	flip	a	coin	twice
• Could	we	correctly	predict	

whether	the	flips	would	yield
• 2	heads?
• 2	tails?
• 1	head	and	1	tail?

• Need	to	know	accurately:
• weight	distribution	of	coin
• velocity	and	acceleration	of	

thumb
• orientation	of	coin	on	thumb	

before	flip
• air	flow	around	coin
• height	above	landing	spot
• other	effects



The	Moral
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§ The	world	may	or	may	not	be	inherently	unpredictable

§ But	lack	of	knowledge	prevents	precise	predictions

§ Therefore,	treat	the	world	as	inherently	unpredictable

Causal	nondeterminism – some	events	truly	random
Predictive	nondeterminism	– in	principle	might	be	able	to	
predict,	but	don’t	have	enough	information.		There	is	chaos,	
but	not	randomness	
Use	a	stochastic	process	to	represent	systems	or	phenomena	
that	seem	to	change	in	a	random	way	



• model	systems	where	have	choices	in	state	
transitions
• e.g.,	a	drunk	wandering	in	a	field,	with	random	
probability	of	taking	a	step	in	any	direction	at	any	
point	in	time;	motion	of	particles	in	a	fluid

• model	systems	where	measurement	is	uncertain	or	
noisy
• e.g.,	physical	model	of	a	spring	stretching;	
epidemiology	studies	connecting	mortality	to	
environmental	factors	(e.g.,	smoking)

• model	systems	where	can’t	measure	entire	system
• e.g.,	polling	voter	preference	before	election;	
estimating	public	support	for	initiatives	(e.g.,	
mitigating	climate	change)

• draw	statistical	conclusions	about	outcomes
• how	likely	is	an	outcome	to	occur,	and	how	
confident	are	we	in	that	estimate?

• do	for	systems	that	are	not	completely	random,	but	
are	not	exactly	predicted	by	model,	and	for	random	
systems

Why	Should	We	Care	about	Stochastics?
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Stochastic	Processes

§ In	general,	a	system	often	can	be	defined	by	a	set	of	
state	variables,	and	processes	that	determine	the	
transition	to	a	next	set	of	values	for	those	variables
◦ Causal	processes

§ In	a	stochastic system,	the	process	for	determining	
next	state	might	depend	both	on	the	previous	states	of	
the	process	and	on	some	random	element
◦ Predictive	nondeterminism

§ This	will	require	a	change	in	how	we	think	about	
computational	models	of	processes
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Two	Specifications	 for	a	Process
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Any	implementation	that	satisfies	the	second	specification	would	
also	satisfy	the	first.
But	one	that	satisfies	the	first	specification	might	or	might	not	
satisfy	the	second



Trying	It	(simulate	rolling	5	dice)
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Poll:	Is	this	an	example	of	predictive	or	causal	non-determinism?	

How	probable	is	the	output	11111?



Probability	 is	About	Counting

§ Count	the	total	number	of	possible	events	(often	called	the	
universe	of	events)

§ Count	the	number	of	events	that	have	the	property	of	
interest

§ Divide	second	number	by	the	first

§ Probability	of	rolling	11111?
◦ All	events:	11111,	11112,	11113,	…,	11121,	11122,	…,	
66666

◦ Ratio:	1/(6**5)
◦ ~0.0001286

§ Probability	of	12345?
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Same	probability	



Some	Basic	Facts	about	Probability

§ Probabilities	are	always	in	the	range	0	to	1.		0	if	
impossible,	and	1	if	guaranteed

§ If	the	probability	of	an	event	occurring	is	p,	the	
probability	of	it	not	occurring	must	be	1-p

§When	events	are	independent of	each	other,	the	
probability	of	all	of	the	events	occurring	is	equal	to	the	
product of	the	probabilities	of	each	of	the	events	
occurring
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Independence

§ Two	events	are	independent	if	the	outcome	of	one	
event	has	no	influence	on	the	outcome	of	the	other

§ Independence	should	not	be	taken	for	granted
◦ Is	your	score	on	the	micro	quiz	after	today’s	lecture	
independent	of	how	well	you	did	on	the	first	Pset?
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Some	Probability	Algebra

§ Given	a	universe	U	of	all	possible	events

§ P(A)	=	number	of	events	in	A
number	of	events	in	U

§ P(A	and	B)	=	P(A)P(B),	 if	A	and	B	independent
◦ What	is	probability	of	flipping	a	head	on	a	coin	and	rolling	
a	5	on	a	die?

◦ P(head)	=	1/2
◦ P(roll	5)	=	1/6	
◦ Product	is	1/12

§ P(A	or	B)	?
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H1,	H2,	H3,	H4,	H5,	H6
T1,	T2,	T3,	T4,	T5,	T6

A

B

U



Some	Probability	Algebra

§ Given	a	universe	U	of	all	possible	events
§ P(A)	=	number	of	events	in	A

number	of	events	in	U
§ P(A	and	B)	=	P(A)P(B),	 if	A	and	B	independent
◦ What	is	probability	of	flipping	a	head	on	a	coin	and	rolling	
a	5	on	a	die?

◦ P(head)	=	1/2	
◦ P(roll	5)	=	1/6	
◦ Product	is	1/12

§ P(A	or	B)	?
◦ 1	– P(	¬A	and	¬B)
◦ 1	– P(	¬A)P(¬B)
(A)	+	P(B)	– P(A	and	B)

6.0002	LECTURE	4 19

H1,	H2,	H3,	H4,	H5,	H6
T1,	T2,	T3,	T4,	T5,	T6

P(head	or	rolling	5)?

1	- (1/2	*	5/6)	=	7/12

A

B

U



Some	Probability	Algebra

§ Given	a	universe	U	of	all	possible	events
§ P(A)	=	number	of	events	in	A

number	of	events	in	U
§ P(A	and	B)	=	P(A)P(B),	 if	A	and	B	independent
◦ What	is	probability	of	flipping	a	head	on	a	coin and	rolling	
a	5	on	a	die?

◦ P(head)	=	1/2	
◦ P(roll	5)	=	1/6	
◦ Product	is	1/12

§ P(A	or	B)	?
◦ 1	– P(	¬A	and	¬B)
◦ P(A)	+	P(B)	– P(A	and	B)
◦ P(A)	+	P(B)	– P(A)P(B)
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H1,	H2,	H3,	H4,	H5,	H6
T1,	T2,	T3,	T4,	T5,	T6

P(head	or	rolling	5)?

1	- (1/2	*	5/6)	=	7/12

A

B

U

1/2	+	1/6	– 1/12	=	7/12

Counted	
these	
twice



Independent	 vs.	Dependent	 Probabilities

§Deal	two	cards	at	random	from	a	standard	deck	of	52	
cards
§What	is	the	probability	that	the	first	card	is	a	king	and	
the	second	a	king?
§With	replacement
§ 4/52	*	4/52
§ These	are	independent	events

§Without	replacement?
§ Really	asking	what	is	the	probability	that	the	second	card	
is	a	king,	given	that	the	first	card	was	a	king	

§ 4/52	*	3/51
§ These	are	not independent	events
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§ probability	of	A,	given	B	occurred	

§ P(A|B)	=	P(A	and	B)
P(B)

§ example	– let	D1	 be	value	of	roll	of	first	die
and	– let	D2 be	value	of	roll	of	second	die

§ what	is	P(D1 =	2	|	D1 +	D2 <=	5)?

Conditional	Probabilities
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Conditional	Probabilities

6.0002	LECTURE	4 23

• what	is	P(D1 =	2	|	D1 +	D2 <=	5)?
• P(D1	=	2)	=	6/36	=	1/6
• P(D1	+	D2 <=5)	=	10/36
• P(D1 =	2|D1	+	D2 <=5)

=	3/10

But	also
• P(D1 =	2	and	D1	+	D2 <=5)

P(D1	+	D2 <=5)

=	3/36
10/36
=	3/10

1 2 3 4 5 6

1

2

3

4

5

6

Note	that	we	cannot	 use

P(D1 =	2	and	D1 +	D2 <=5)	=	P(D1)P(D1 +	D2 <=5)

because	 events	are	not	independent	



• Going	to	explore	simulation	of	rolling	a	group	of	dice	many	
times

• First	of	many	simulations	we	will	see

• Talk	more	carefully	about	simulation	in	future	lectures;	
especially	when	dealing	with	problems	that	do	not	have	
analytic	solutions

• Simulation
◦ Run	many	trials	in	which	we	select	one	event	from	the	
universe	of	possible	events

◦ For	each	trial,	compute	some	properties	of	event
◦ Report	some	statistics	about	the	properties	over	the	set	
of	trials

Using	Simulation	 to	Estimate	Probabilities
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A	Simulation	of	Die	Rolling
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Roll	appropriate	 #	of	dice

d Count	#	of	hits

d

Return	observed	
probability



Output	of	Simulation

§ Actual	probability	=	0.0001286

§ Estimated	probability	=	0.0
§ Actual	probability	comes	directly	from	math,	but	
estimated	probability?
§Why	did	simulation	give	me	the	wrong	answer?
◦ 6**5	=	7776	possibilities,	so	1000	trials	unlikely	to	
observe	one	event	in	that	universe	with	enough	
frequency	to	estimate	accurately

◦ Even	if	observed	once,	estimate	would	then	be	0.001
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Let’s	try	1,000,000	 trials



Morals

§Moral	1:	it	takes	a	lot	of	trials	 to	get	a	good	estimate	
of	the	frequency	of	occurrence	of	a	rare	event.		We’ll	
talk	lots	more	in	later	lectures	about	how	to	know
when	we	have	enough	trials	to	trust	the	estimate

§Moral	2:	one	should	not	confuse	the	sample	
probability	with	the	actual	probability

§Moral	3:	there	was	really	no	need	to	do	this	by	
simulation,	since	there	is	a	perfectly	good	closed	form	
answer.		We	will	see	many	examples	where	this	is	not	
true,	where	only	simulation	can	provide	answers	about	
processes	and	outcomes
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Aesop
620	BC	–
564	BC



•What	is	the	probability	of	at	least	two	people	in	a	group	
having	the	same	birthday?

• If	there	are	30	people	in	a	room,	should	you	be	surprised	if	
two	share	a	birthday?

The	Birthday	Problem

6.0002	LECTURE	4 28

Poll:
What	do	you	
think	are	the	
odds	of	two	
people,	 out	of	a	
group	of	30,	
sharing	a	
birthdate?



• What	if	there	are	367	people	in	the	group?
• Use	the	“pigeonhole	principle”	– if	you	try	to	put	m	items	
into	n	containers	and	m	>	n,	then	at	least	one	container	
must	have	more	than	1	item

•What	about	fewer	then	366	people	in	the	group?

The	Birthday	Problem
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• If	assume	each	birthdate	equally	likely,	then	can	use	
“inclusion/exclusion	principle”

§ Probability	that	n	(<367)	people	each	have	different	
birthday

§ Probability	that	at	least	two	of	n	people	have	same	
birthday:

§Without	assumption	of	equal	likelihood,	VERY complicated

The	Birthday	Problem
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366
366

∗
365
366

∗
364
366

∗ ⋯∗
366 − 𝑛 + 1

366
=

366!
366- ∗ 366 − 𝑛 !

1 −
366!

366- ∗ 366 − 𝑛 !
For	n	=	23	this	 is	about	 .5063

For	n	=	30	this	 is	about	 .7053

(but	no	twins	allowed!)



The	Birthday	Problem
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Results
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Approximation	Using	a	Simulation
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One	trial

Set	of	trials

Create	array	of	0’s,	one	for	each	possible	day

Count	hits	for	each	day

Is	day	with	most	hits	big	enough?



Results
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Why	3	Is	Much	Harder	Analytically

§ Suppose	we	want	the	probability	of	3	people	sharing	a	
birthday,	out	of	some	group	of	size	N?

§ For	2	people,	the	complementary	problem	is	“all	
birthdays	are	distinct”

§ For	3	people,	the	complementary	problem	is	a	
complicated	disjunction	of	cases,	and	hard	to	describe	
analytically

§ But	using	the	simulation	 is	dead	trivial!!
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Results
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Note	how	a	simulation	is	answering	a	
question	we	cannot	answer	analytically



But	All	Dates	Are	NOT	Equally	 Likely

37
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Poll:	why	are	some	 birthdays	 less	 common?



How	Does	this	Affect	Probabilities?

§ Do	you	expect	a	big	change?

§ Again,	adjusting	analytic	model	is	a	pain
§ Adjusting	simulation	model	easy
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Poll:
Given	this	
distribution	 of	
birthdays,	do	
you	expect	 a	big	
change	 in	
probability	 of	
sharing	a	
birthdate?



Excerpt	of	Data

6.0002	LECTURE	4 39

month,day,births
1,1,160369
1,2,169896
1,3,180036
1,4,182854
1,5,184145
1,6,186726
1,7,188277
1,8,185186
1,9,181511
1,10,183668



Approximating	Using	a	Simulation
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List	of	ints,	each	 is	
number	of	births	 on	a	
particular	 day

For	each	day	(indexed	 from	
start	of	year)	create	 numBirths
copies	 of	that	 index

Very	long	 list,	but	picking	 an	element	 from	it	at	random	
will	 reflect	actual	 probability	 of	a	birth	on	that	day

160,369	0’s,	then	
168,896	1’s,	then	
180,036	2’s,	then…



Approximating	Using	a	Simulation
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Results
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Looking	at	Results

6.0002	LECTURE	4 43

Given	apparent	variance
Shouldn’t	difference	
between	actual	and	
uniform	distribution	
be	larger?
Or	at	least	in	
consistent	direction?



A	Better	Plot
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§ Effect	small
§ Frequency	is	
pretty	similar	with	
a	few	exceptions

§ Not	a	large	enough	
sample	to	see	effect	
consistently

§Much	more	on	this	
later	in	the	term



2M	Trials
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§ You	might	conclude	that	simulation	is	only	useful	to	
thinking	about	toy	problems,	like	flipping	coins,	rolling	
die,	or	looking	at	party	games	like	shared	birthdays
§ In	the	coming	lectures	we	are	going	to	use	these	
simulation	methods	to	look	at	real	world	problems

Can	Simulation	Address	 Real	Problems?
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Model	 systems	where	
have	choices	 in	state	
transitions	 – random	

walks

Model	 systems	where	
measurement	 is	

uncertain	 or	noisy	–
linear	 regression

Model	 systems	where	
can’t	measure	 entire	
system	– Central	Limit	

Theorem	



§ Earlier	in	6.0001	we	used	dicts as	a	very	efficient	way	
to	store	and	retrieve	data
§ Given	that	keys	are	arbitrary,	how	does	Python	
efficiently	retrieve	a	value	associated	with	a	key?
§ Uses	a	hash	table:
◦ Convert	a	key	to	an	integer	within	a	particular	range	
(called	a	hash	function)	– range	would	be	size	of	dict
◦ Typically	mapping	a	large	range	of	values	to	a	smaller	one

◦ Use	integer	to	index	into	a	list	
◦ Store	or	retrieve	value	at	that	spot	in	the	list
◦ Indexing	is	constant	time,	so	if	hash	function	is	fast	to	
compute,	method	is	very	efficient	– which	is	why	dict’s
are	efficient	data	structures

An	Aside	on	Hashing
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§ Can	generalize	the	idea	to	both	store	and	retrieve	data	
from	a	list	using	arbitrary	keys

§ Ideal	hash	function:
◦ Has	a	range	from	1	to	n
◦ Produces	a	uniform	distribution	of	keys,	i.e.,	probability	
that	any	key	is	mapped	to	any	integer	is	1/n

§ If	we	do	K	insertions	into	a	hash	table	with	n	slots,	
what	is	chance	of	a	collision	of	two	keys	mapping	to	the	
same	index?
§ This	is	just	the	birthday	problem!!

An	Aside	on	Hashing
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Stochastics Useful	for	Measuring	 Event	Probability
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Can	stochastics help	us	answer	questions	 like:	 how	likely	 is	
this	to	happen?
Given	that	this	occurred	on	March	14,	2017,	we	might	want	
to	be	careful	about	 assumptions	 of	independent	 randomly	
positioned	 players	– as	opposed	 to	some	 non-random	effect



Summary

§ As	far	as	we	can	tell,	the	world	is	stochastic
§ Therefore	models	need	to	estimate	probabilities
§ Analytic	models	feasible	for	reasonably	simple	situations
§ For	more	complex	situations,	simulations	may	be	best	(or	
only)	option
§ Simulate	stochastic	process	by:
◦ Defining	an	event	(e.g.,	rolling	a	die	N	times,	flipping	a	
coin	N	times,	randomly	picking	birthdays	for	N	people),

◦ Running	some	number	of	trials,	
◦ Estimating	probability	of	observing	particular	event	(e.g.,	
rolling	11111,	finding	three	people	with	shared	birthday)

§Much	muchmuch more	on	simulation	models	to	come
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§ The	quiz	will	be	available	to	start	at	15:55	EDT,	on	days	
noted	in	the	calendar,	and	due	within	12	hours.	Once	
you	start,	you	have	30	minutes	to	complete	it.	Be	sure	
you	have	your	IDE	open	and	your	allowed	materials	
ready.
§ You	may	use	class	notes,	slides,	and	code	files.	You	
may	NOT look	up	anything	on	the	Internet.	You	may	
NOT discuss	the	quiz	with	anyone	for	the	12	hours	that	
the	quiz	is	available.
§ Once	you	click	on	the	'Start	Quiz'	button,	your	30	
minute	time	starts,	and	cannot	be	stopped.
§ For	additional	details,	see	the	course	Stellar	site:

http://stellar.mit.edu/S/course/6/sp20/6.0002/

Microquiz Logistics
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