DECOMPOSITION,
ABSTRACTION,
FUNCTIONS,
RECURSION

(download slides and .py files to follow along)

6.0001 LECTURE 4
Eric Grimson

LAST TWO LECTURES

" while loops & for loops
= should know how to write both kinds

= should know when to use them

= computations characterized by “state variables”; plus update rules for
changing those variables on each iteration

= for loops best when known range of iterations; while loops best when
want to iterate until some conditionis reached

" guess-and-check and approximation methods
= trade off between accuracy and efficiency

= bisection method for fast algorithms when problem has an
“ordering” property

2/11/20 6.0001 LECTURE 4 p

TODAY

= structuring programs and hiding details

= functions (aka procedures)
= syntax & semantics

= specifications
" scope

" recursion

2/11/20 6.0001 LECTURE 4 3

ASSIGN'3000 PAGES OF
S READINGY

e

./ T
A “'l
By g

ASSlgﬂed Readlng NEVERBI‘T'S;%;;THEMIN |

CLASS

stoday:
* section4.1-4.3

="next lecture:
* section5.1-5.5

singt,; Python

"/ With'Application to Unti;rsta/ﬁc;ing Data

secon ediyléfn
/ F 4
John V. G

See https://mitpress.mit.edu/books/introduction-computation-and-programming-
using-python-second-edition for errata sheet

2/11/20 6.0001 LECTURE 4 4

LEARNING TO PRODUCE CODE

" so far have covered basic language mechanisms

" in principle, you know all you need to know to accomplish
anything that can be done by computation

= after all, Turing showed that anything that is computable can
be done with just 6 primitives!

YOU KNOW NOTHING|
'. | ‘\\\c

" butin fact, we've taught you nothing about two of the
most important conceptsin programming...

2/11/20 6.0001 LECTURE 4 5

DECOMPOSITION AND
ABSTRACTION

" decomposition: how to divide a program into self-
contained parts that can be combined to solve the current
problem

* ideally parts can be reused by other programs

* self-contained means parts should complete computation
using only inputs provided to them

= abstraction: how to ignore unnecessary detail

* used to separate what something does, from how it actually
does it

" the combination allows us to write complex code while
suppressing details, so that we are not overwhelmed by the
complexity

2/11/20 6.0001 LECTURE 4 6

AN EXAMPLE:
THE SMART PRONE

= 3 black box

* can be viewed in terms of its inputs and outputs,
and how outputs are related to inputs, without any
knowledge of its internal workings

= user doesn’t know the details of how it works

= user does know the interface

" device converts a sequence of screen touches
and sounds into expected useful functionality

= abstraction: We don’t need to know
how something works
to know how to use it

2/11/20 6.0001 LECTURE 4 7

ABSTRACTION ENABLES
DECOMPOSITION

= 100’s of distinct parts

" designed and made by different companies
* do not communicate with each other

* may use same subparts as others

= decomposition:

Each component maker has to
know how its component
True for | interfacesto other components,
hardware | hjt not how other components
and for . | ted: | b
<oftware |Are€imp emen ed; can solve sub-
problems independently

2/11/20 6.0001 LECTURE 4

OUR GOAL

Apply these concepts of abstraction
(black box) and decomposition (splitting
into self-contained, possibly nested
parts) to programming!

Output

Input —— Black Box

Internal behavior of the code is unknown Many black boxes, can be used together without

knowing details of interiors

2/11/20 6.0001 LECTURE 4

9

SUPPRESS DETAILS with
ABSTRACTION

" in programming, think of a piece of code as a black box

* user cannot see details (in fact, want to hide tedious coding
details)

* user does not need to see details
* user does not want to see details
* coder creates details, and designs interface

= achieve abstraction with function (or procedure)
* function lets us capture code within a black box

* function has specifications, captured using docstrings

* think of docstring as “contract” between creator and user:

o if user providesinput that satisfies stated conditions, function will
produce output according to specs, with indicated side effects

° not typically enforced in Python (we’ll see assertions later), but user
relies on coder’s work meeting the contract

2/11/20 6.0001 LECTURE 4 10

CREATE STRUCTURE with
DECOMPOSITION

" in programming, divide code into modules that are:

* self-contained (can compute using basic elements and
inputs provided to them)

used to break up codeinto logical pieces

intended to be reusable

used to keep code organized

* used to keep code coherent (readable and understandable)

" in this lecture, achieve decomposition with functions
" in a few lectures, achieve decomposition with classes

= decomposition relies on abstraction to enable
construction of complex modules from simpler ones

2/11/20 6.0001 LECTURE 4 11

ABSTRACTION'S
VIRTUOUS CYCLE

start with primitives (e.g., 4, 3, +, *)

= have ways to combine into more complex expressions
(e.g., (4+3)*8 +3%*(8-3))

= about to add ways to capture complex expressions

def crazy(a, b, c): We will see how this
— captures a process in a
return (atb)*c + b**(c-b) function shortly

" now can treat functioncrazy as if it is a built-in
primitive
" repeat cycle

2/11/20 6.0001 LECTURE 4 12

com-put-er
ex-pert

[kem'pyooder ‘ek spart] noun

someone who has not read the instructions, but

F N | O N who will nevertheless feel qualified to install
l | ‘ ‘ S a program and, when it does not function
correctly, pronounce it incompatible with the
operating system

" write reusable pieces of code, called functions or procedures

" functions are not run until they are “called” or “invoked” in a
program
= compare to code in a file that runs as soon as you load it

" function characteristics:
* has a name (there is an exception we won’t worry about for now)

* has (formal) parameters (O or more) Names for input values

* has a docstring (optional but recommended) | pescribes behavior

> a comment delineated by “”” (triple quotes) that provides a
specification for the function — contract relating output to input

* has a body Instructions to evaluate using inputs

* returns something (typically) Output given back to invoker

13

2/11/20 6.0001 LECTURE 4

HOW TO WRITE & CALL
(INVOKE) A FUNCTION

0(6 e el . .
\ke\\ﬁ“ (\3(0 3«\6‘ e“‘s May have 0, 1 or more some special strings
.] Q""‘((%\)«\ parameters reserved, cannot use
def ls_even‘(1) ® Separated by commas as name of function
mwiww
&6&\00
Qo . L . XON
\(\6";{\(@5 ' Input: i, a positive int C\;{\@‘\O
Qe L0 0% 0o
e*‘e(\{\o“ Returns True 1f 1 i1s even, otherwise False 600‘9‘
oCr -
&\) 06\\ "oy
0
: .. : W\
print("inside is even") PR
return i%2 == 0 e O x0® \‘3\0"'
= 0 < \\) .(\%
el W »Q(\e '\d\
\3‘ \(\8\ 690
is even(3) (\3«\ ((\exe

2/11/20 6.0001 LECTURE 4 14

IN THE FUNCTION BODY

def is even(i):
Input: 1, a positive 1int

Returns True 1f 1 i1s even, otherwise False

mwiiw

print("inside is even")

e if function invoked in shell,
TS, J— .
return||i%2 == 0 value returned to shell; in

\ . ,

o N @ which case value printed

WO @ o0® + if function invoked withi
& o ke if function invoked within
e“a\,\) ot other computation, value

N .
o return to invoker

2/11/20 6.0001 LECTURE 4 15

DID YOU FINISH o _1erenT THELAST || so...
WRITING THE 5| ThreeDAYs seTTING [f| Youve
SOFTWARE? UP MY PROGRAMMING [i| DONE... ~ NOTHING
"}0- ENVIRONMENT. z| NOTHING? ~ YOUD

E |) | e
ENVIRONMENTS EAEE . m

= global environmentis place where user interacts with
Python interpreter

* contains bindings of variables to values from loading files,
from user interaction with interpreter, and Python built-ins

" invoking a function creates a new environment (frame)
* formal parameters bound to values passed to function

* body of function evaluated with respect to this frame

o any reference to a parameter uses value associated with parameter
binding

o frame inherits bindings from frame in which function called; thus

references to variables other than formal parameters get values
through this inheritance

2/11/20 6.0001 LECTURE 4 16

VARIABLE SCOPE

=*new scope/frame/environment created when function s called

*formal parameter gets bound to the value of actual input
parameter when functionis called

sscope is mapping of names to objects; defines context in which
body is evaluated —values of variables given by bindings of names

\
def f£(|x]|): ,\OW\'& «\exe‘ h 0%
x = x + 1 ¢&° > ?\‘(\C‘:\\’i\oﬁ
. . N\
print('in f£(x): x ="', X) ¢ e \e t
2
return x 2 c© 20 *\s‘\ﬂ O NG
N\’A\(\. y 3\'\1&5 ‘ 0(\60 & N q,&\oe
y = 3 RO * \‘3\@53 (® \ \e%a\
z = f() o o0 * e ™
y Q’a(* 36 C:a(\

2/11/20 6.0001 LECTURE 4 17

VARIABLE SCOPE

After evaluating def and
executing 15t assignment

def £(x): Global scope
(% = x + 1
print ('in f£(x): x ="', f Some NOTE: this code is
code not yet evaluated;
@r n x simply exists as text

X:

3
z = f£(x)

—

2/11/20 6.0001 LECTURE 4

VARIABLE SCOPE

After f invoked

def £ (| x =

x = x + 1

Global scope

print('in f(X): x =", dUInc

return X

Because we are evaluating
this expression in interpreter

y = 3

z =|f((g

2/11/20 6.0001 LECTURE 4

VARIABLE SCOPE

Evaluating body of f

Note where binding for x is changed: in
frame created by invocation of f, since
body evaluated with respect to this frame

in f(x): x = 4 printedout

/—_\ .

~ . state just before return
ecause we are evaluatlnA
def £ (x Y: | this expression in scope of f

X =K X

print('in f£(x): x ="', <)

return X

2/11/20 6.0001 LECTURE 4

VARIABLE SCOPE

During the return

def £(x) :

x = x + 1

Global scope

Some

print('in f(x): x ="', code

return X

3

VARIABLE SCOPE

After executing 2"? assignment

def £(x): Global scope

Xx = x + 1
Some

print('in f(x): x ="', code

return X

WHAT |IF THERE IS
NO return T

def is even(1):

NO GOING

wiwimwn

Input: 1, a positive 1int

Does not return anything

(O
IARANA (e‘\)
o

152 == 0

= Python returnsthe value None, if no returngiven

" represents the absence of a value
= if invoked in shell, nothing is printed

" no static semantic error generated

2/11/20 6.0001 LECTURE 4 23

YOUR TURN

CALM

AND

TAKE YOUR
TURN ALREADY

def add(x,vy):
return x+y
def mult(x,vVy):

print (x*y)

add (1, 2)
print (add (2, 3))
mult (3,4)

print (mult (4,5))

2/11/20

What is printed in the console if
your run this code as a file?

A) Nothing
B) 5
12

6.0001 LECTURE 4

return

VS.

print

= return only has meaning
inside a function

= only one return executed
inside a function

= code inside function but
after return statement not
executed

= has a value associated
with it, given to function
caller

2/11/20

= print can be used outside
functions

= can execute many print
statements inside a function

= code inside function can be
executed after a print
statement

= has a value associated with
it, outputted to the console

" print expression itself returns
None value

6.0001 LECTURE 4 28

FUNCTIONS AS
PARAMETERS BTN

= parameters can take on any type, even functions

def func af():
print ('inside func a')
def func b(y):
print ('inside func b')
return y
&
def func c(f, z): Qﬁa e
- e
print ('inside func c¢') \(35(\0 6‘2‘«\ (S
return f(z) \ﬁﬁu?‘yﬁgs OQ&? .
- AN P o™ dd“w‘
print (func a()) \%ﬁo -~ @N 20
Ch X
print (5 + [func b(2)) @ @0@/,‘&\6&\0
A\ el
print (func c(func b, 3)) R

2/11/20 6.0001 LECTURE 4 29

def

def

def

FUNCTIONS AS PARAMETERS

Global scope

func al():

- func_a ~ Some
print ('inside func a') code
func b(y): Some

func_b
print ('inside func b') — code

Some
code

return y

func c(f, z): €

print ('inside func c') NORo
return f(z)

—
print|{(func a/())
rint (5 + func b(2))

print (func c(func b,

3))

6.0001 LECTURE 4

No bindings,
as no
parameters

func_a scope

But note
form of
invocation

body prints ‘inside func_a’
on console
returns None

print outputs None

2/11/20

FUNCTIONS AS PARAMETERS

Global scope func_b scope
def func a():
~& 4 func_a ~ SOMe
print ('inside func a') code

def func b(y): Some

func_b
print ('inside func b'") - code

body printp ‘inside func_b’

on consolg

return y Sore
func_c code

def func c(f, z):
- value of gum returned,

print ('inside func c') None print digblays 7 on console

return f£(z)

print (func a()) returns 2

print (b + func_b(zg)
rint (func c(func b, 3))

2/11/20 6.0001 LECTURE 4

FUNCTIONS AS PARAMETERS

Global scope func_c scope body of
func_c
def func af(): -
— func_,a ~ S0me | ¥ Ul | causes print
print ('inside func a') code to console
. 4
def func b(y): Some body of
| o func_b code
print ('inside func b') func_b

return y Some | 3

causes print
to console

def func c(f, z):

func_c code
-A

. v 2 J !
print ('inside func c') MNone SSVIGISCE func b sc

return| £ (z)

print (func a())

print (5 + func b(2)

. Vd P
orint (func c(func b, 3)

2/11/20 6.0001 LECTURE 4

cpe

.
print displays 3 on
returns 3| -5nsole

def

def

def

print (func a())
print (5 + func b(2))

print (func c(func b,

FUNCTIONS AS PARAMETERS

Global scope

func a():

—a 0 func_a ~ Some
print ('inside func a') code
func b(y): Some

func_b
print ('inside func b'") - code

Some
code

return y

func c(f, z): TIRE_:

print ('inside func c') None
return f£(z)

3))

6.0001 LECTURE 4

2/11/20

func_c scope

f func_b

func_b scope

Nothing bound to these values,
so they are garbage collected

YOUR TURN

KEEP
CALM

AND

TAKE YOUR
TURN ALREADY

def sg(func, x) :

Yy = x**2

return func(y)
def f(x):

return x**2
calc = sqg(f,2)

print (calc)

2/11/20

What does this code
print?

A) 4
B) 8
C) 16

D) nothing, it will show
an error

6.0001 LECTURE 4

FUNCTIONS CAN
RETURN FUNCTIONS

def make prod(a): OR
def g(b):

return a*b

doubler = make prod(2)

return
J val = doubler(3)

print(val)
val = make prod(2)(3)

print(val)

SCOPE DETAILS

def make prod(a): Global scope make_prod NOTE: definition
o scope of gis done
def g(b): within scope of
make_prod make_prod, so
return a*b binding of g is
£ within that
return g frame/scope

val = make prod(29713)

print(val)

Returns pointer
to g

2/11/20 6.0001 LECTURE 4 37

SCOPE DETAILS

def make prod(a):
def g(b):

return |a*b

return g

val = make prod(2) (

print(val)

2/11/20

Global scope make_prod
scope

make_prod

Some
code

code can see both b and a
values

6.0001 LECTURE 4

g scope

38

SCOPE DETAILS

def make prod(a): Global scope make_prod
def g(b): >COPS

return a*b

make_prod

Some

return g

deuvier

doubler = make prod(
val = doubler(3)

print(val)

Returns pointer
to g

2/11/20 6.0001 LECTURE 4 39

SCOPE DETAILS

def make prod(a): Global scope make_prod doubler scope
def g(b): >Ccops

return |a*b

make_prod

Some

return g

doubler = make prod
val = |doubler(3)

print(val)

doubler code can see both b Returns value
and a values

2/11/20 6.0001 LECTURE 4 40

SCOPE EXAMPLE

= inside a function, can access a variable defined outside

" inside a function, cannot modify a variable defined
outside -- can using global variables, but frowned upon

def f(y):
oS x = 1
e’éé\\(\‘\ x +=1
%61¢§° print (x)
o
©
X = b
f(x)
print (x) X
&
2 5§.é§
5 0\0\

2/11/20

$

def g(y):

’\‘O(Oe o print

<§6b print{(x |+ 1)

X

g (x) | SO

@)

6.0001 LECTURE 4

def h(y) :
X +=
x =5 @
h (x) \@(\a‘o&
print(x{Adﬁégé@
\‘0‘(0 (& @
o e‘\O
6\/0 6\0
o™ e
\00 (60
O &€ Error
S

41

SCOPE EXAMPLE

= inside a function, can access a variable defined outside

" inside a function, cannot modify a variable defined
outside -- can using global variables, but frowned upon

def f(y): def g(y) : def h(y) :
x =1 print (x) x += 1
x += 1
print (x) X = 5
X = b h(x)
X = 5 g (x) print (x)
f(x) print (x)
print (x) \ 7L“?§;\\((®\] °
& &®

2/11/20 6.0001 LECTURE 4 42

HARDER SCOPE EXAMPLE

IMPORTANT

and
TRICKY!

Python Tutor is your best friend to
help sort this out!

http://www.pythontutor.com/

def

SCOPE DETAILS

g (x) :
def h () :

x = 'abc'
X = x + 1
print('g: x ="'
h ()

return X

Global scope

g

Some
code

def

SCOPE DETAILS

Global scope

g(x) :
def h(): ¢ e

€= 'abc' code

X = xX + 1

print('g: x ="', Xx)
h ()

return X

g scope

SCOPE DETAILS

def g(X) . 03 ope g Sscope
def h{():

S x = 'abc'! ode *

X = xX + 1

print('g: x ="', Xx)
h ()

return X

def

SCOPE DETAILS

g (x) : Global scope

def h() : g Some
< x = 'abc' code

e

print('g: x ="', Xx)

h ()

return X

def

SCOPE DETAILS

Global scope

g(x) :
def h(): ¢ eors

é 'abc' code

X = xX + 1

print('g: x ="', Xx)
h ()

return X

g scope

returns 4

def

SCOPE DETAILS

g (x) : Global scope
def h{(): g Some

x = 'abc' code
X = x + 1

print('g: x ="',
h()

return X

DECOMPOSITION &
ABSTRACTION

= powerful together

= code can be used many times but only has to be
debugged once!

Oh bother,
Amore arguments.

Functions
are F-U-N?

= . T CTRTEN)

2/11/20 6.0001 LECTURE 4 10)

Five Minute Break

© Steven Kazlowski ! Barcroft Medi

2/11/20

TOhUNDERSTAND
what recursion is
R E< l | R SlO N YOU MUST FIRST

understand recursion
Recursion is the process

) & V-
TR : recursion (n). et |
of repeating items in a (.) l !] o |
. See recursion.= .
self-similar way. foyml”
| -
@

MANUFACTURER FILES FOR BANKRUPTCY
3D PRINTER COMPANY ASKS
CLIENTS NOT TO PRINT 3D PRINTERS

e et
o

No exit
condition |

program

“mise en abyme”
Or
“Droste effect”
(1904)

ITERATIVE ALGORITHMS ,
SO FAR

* [ooping constructs (while and for loops) lead to
iterative algorithms

" can capture computation in a set of state variables
that update, based on a set of rules, on each iteration
through loop

Wy
B oa b
N o B

MULTIPLICATION —
ITERATIVE SOLUTION

= “multiply a * b” is equivalent to “add a to itself b times”
a +a + a + a + ... + a

—GIASBERGEN

= capture state by

* an iteration number (i) starts at b i M Ji Ji J
Update _ i €& 1i-1andstop When 0 resudisultresultr@sultrdsult; 4a
rules acurrent value of computation (result) starts at 0
5 result € result + a o
S
Qoo
o o
MAef mult_iter(|a, B|): Q\)@’&\O @(\a‘)\e
(result = 0 SRS SO (3{\0“
: xS W 2
while b > 0: we e“‘\‘a\ \060“\ Wrap inside a
result += a 00(((eo’&“a function, with
_ b -= 1 o return
Parameters set

_. return result

Code we would write ||| values for
to capture iteration computation

2/11/20 6.0001 LECTURE 4 54

MULTIPLICATION — (& o)
RECURSIVE SOLUTION — ——&~

I'd cover all the bases.”

= recursive step a*b|=a +a+at+ta+ .. +a
. ' N
* think how to reduce 0¥
problemtoa —a+atatat.+a W
simpler/smaller) v 7 o>
. W
version of same l‘ P
problem =a tfa* (oD e
" base case def mult(a, b): o
. o
* keep reducnjg if b == 1. W e
problem until reach a (e(,&%
simple case that can return a 520

be solved directly clse:
° — ¥l —
whenb=1,2a"b =2 return a + mult(a, b-1)

55

2/11/20 6.0001 LECTURE 4

OH, THAT REMINDS
ME OF THIS XKCD!

YOU SEE, THERE’S
ARELEVANT XKCD
FOR ABSOLUTELY
EVERY SITUATION.

WHAT IS

)

RECURSION?

ﬁ 8 = e i

OH YEAH?

IBET THERE ISN'T
AN XKCD ABOUT
RELEVANT XKCDS.

\
e

OF COURSE
THERE IS.

\
WE'RE INIT.

i

= Algorithmically: a way to design solutions to problems
by divide-and-conquer or decrease-and-conquer

* reduce a problem to simpler versions of the same problem

or problemsthat can be solved directly

= Semantically: a programming technique where a

function calls itself

* in programming, goal is to NOT have infinite recursion

o must have 1 or more base cases that are easy to solve directly
o must solve the same problem on some other input with the goal of

simplifying the larger input problem, ending at base case

2/11/20 6.0001 LECTURE 4

S

/

|’ * Wel hair
| «Lather

* Rinse

* Repeat

FACTORIAL

n! = n*(n-1)*(n-2)*(n-3)* ... * 1

= for what n do we know the factorial?

n=1 9 if n == : (,356
N

return 1

" how to reduce problem? Rewrite in terms of
something simpler to reach base case
n*(n-1)! > else:

2/11/20 6.0001 LECTURE 4 57

RECURSIVE deb tact(m):

if n ==

FUNCTION return 1

else:

SCOPE | return n*fact(n-1)
EXAMPI—E print(fact(4))

fact scope fact scope
(call w/ n=2) (call w/ n=1)

Global scope fact scope fact scope
(call w/ n=4) (call w/ n=3)

fact Some

2/11/20 6.0001 LECTURE 4 58

YOUR TURN

KEEP
CALM

AND

TAKE YOUR
TURN ALREADY

def fact(n):
1f n ==
return 1
else:

return n*fact (n-1)

2/11/20

If we evaluate fact(4), how
many times is the
procedure fact called?

A)O
B)1
C)2
D)3
E)4
F)5
G) infinitely many

6.0001 LECTURE 4

SOME OBSERVATIONS

= each recursive call to a function creates its on. €
own scope/environment \ RN

= bindings of variables in a scope are not
changed by recursive call Y,

= flow of control passes back to previous
scope once function call returns value

2/11/20 6.0001 LECTURE 4 61

ITERATION vs. RECURSION

def factorial iter(n): def factorial(n):
prod = 1 if n ==
for 1 in range(l,n+1): return 1
prod *= 1 else:
return prod return n*factorial(n-1)

" recursion may be simpler, more intuitive
" recursion may be efficient from programmer POV
" recursion may not be efficient from computer POV

Thereis a way to implementrecursive call in the Python
evaluator (called tail recursion) that is very efficient

2/11/20 6.0001 LECTURE 4 62

INDUCTIVE
REASONING

IT WAS THEORETICALLY
IMPOSSIBLE TO WORK
THIS WEEK.

\
O\

oy
v

=

www.dilbert.com scottadoms®sol.com

EVERYTHING I NEEDED
TO DO REQUIRED ME TO
DO SOMETHING ELSE
FIRST, UNTIL IT ALL
LOOPED BACK ON ITSELF
LIKE A MOBIUS STRIP.

Y

@ Scott Adams, IncJDISt. by UFS, Inc.

" how do we know that our code def mult iter(a, b):

will work (i.e. stop with right
answer)?

= for iterative code (loops) we

can reason usinga
decrementing function

= just use size of b in this case
"mult iterterminates

becauseb is initially positive,
and decreases by 1 each time

around loop; thus must
eventually becomeless than

1

= correct value is computed since

add b instances of a

2/11/20

6.0001 LECTURE 4

result =

0

while b > 0:
result += a
b -=1

return result

63

| IDONTALWAYS PROVE |
| ALGEBRAIC CONJECTURES

i, s

MATHEMATICAL INDUCTION S8

" to prove a statement indexed on integers is true for all
values of n:

* proveitistrue whennis smallestvalue (e.g.n=0o0rn=1)

* then prove thatif it is true for all values up ton, one can
show that it must be true for n+1

EXAMPLE OF INDUCTION

"0+1+2+3+..+n=(n(n+1))/2

= Proof:
*if n=0, then LHS is 0 and RHS is 0*1/2 =0, so true

* assume true for all values up to n, then need to show that
P +1+2+..+ n)+ (n+1) = ((n+1)(n+2))/2

!

o LHS is n(n+1)/2 + (n+1) by assumption that property holds for
problem of size n or smaller

o this becomes, by algebra, ((n+1)(n+2))/2
* hence expression holdsforalln>=0

2/11/20 6.0001 LECTURE 4 65

INDUCTIVE
REASONING

IT WAS THEORETICALLY
IMPOSSIBLE TO WORK
THIS WEEK.

\
O\

oy
v

=

EVERYTHING I NEEDED
TO DO REQUIRED ME TO
DO SOMETHING ELSE
FIRST, UNTIL IT ALL
LOOPED BACK ON ITSELF
LIKE A MOBIUS STRIP.

Y

www.dilbert.com scottadoms®sol.com

@ Scott Adams, Inc/JDISt. by UFS,

Inc. -

= how do we know that our
recursive code will work (i.e.
stop with right answer)?

* use induction

def mult(a,

*mult calledwithb=1 hasno

recursive call and stops

"mult called withb>1 makes
a recursive call with a smaller
version of b; so eventually will

halt when b ==

* by induction, if simpler version
of recursive call returns correct
value, then so does current call

2/11/20

6.0001 LECTURE 4

if b

b):

return a

else:

return a + mult(a,

66

b-1)

TOWERS OF HANOI

=" The story:
* 3 tall spikes

e stack of 64 different sized discs — start on one spike,
ordered from smallest to largest

* need to move stack to second spike (at which point
universe ends)

* only move one disc at a time, larger disc can’t cover
smaller disc

L=

By André Karwath aka Aka (Ownwork) [CC BY-SA 2.5 (http://creativecommons.org/licenses/by-sa/2.5)], via Wikimedia
Commons

2/11/20 6.0001 LECTURE 4 67

TOWERS OF HANOI

= having seen a set of examples of different sized stacks,
how would you write a program to print out the right
set of moves?

=" Think recursively!
* solve a smaller problem

* solve a basic problem
* solve a smaller problem

2/11/20 6.0001 LECTURE 4 68

def printMove(fr, to):

print('move from ' + str(fr) +

def Towers(n, fr, to, spare):
if n == 1:
printMove(fr, to)
else:
Towers(n-1, fr, spare, to)
Towers(1l, fr, to, spare)

Towers(n-1, spare, to, fr)

2/11/20 6.0001 LECTURE 4

to ' + str(to))

BTW, if move a disc every
millisecond, will take 5.8 X
108 years to complete

RECURSION WITH MULTIPLE
BASE CASES

= Fibonacci numbers

* Leonardo of Pisa (aka Fibonacci) modeled the following
challenge

> newborn pair of rabbits (one female, one male) are put in a pen

(¢]

rabbits mate at age of one month

(¢]

rabbits have a one month gestation period

(¢]

assume rabbits never die, that female always produces one new
pair (one male, one female) each month from its second month on.

o

how many female rabbits are there at the end of one year?

2/11/20 6.0001 LECTURE 4 70

at i

Demo courtesy of Prof. Denny Freeman and Adam Hartz

2/11/20 6.0001 LECTURE 4 71

Demo courtesy of Prof. Denny Freeman and Adam Hartz

2/11/20 6.0001 LECTURE 4 72

at i

Demo courtesy of Prof. Denny Freeman and Adam Hartz

2/11/20 6.0001 LECTURE 4 73

2/11/20

at i

")

Demo courtesy of Prof. Denny Freeman and Adam Hartz

6.0001 LECTURE 4

74

at i

A T A

ar i

Demo courtesy of Prof. Denny Freeman and Adam Hartz

2/11/20 6.0001 LECTURE 4 75

2/11/20

a5 &

A T

éﬁg\ at

at i

Demo courtesy of Prof. Denny Freeman and Adam Hartz

6.0001 LECTURE 4

76

2/11/20

at i

at i

Al T

Al T

Demo courtesy of Prof. Denny Freeman and Adam Hartz

6.0001 LECTURE 4

77

2/11/20

&t &t

35 4e BE i

arta alt arta 46

Al T a%y:a% 4z é%ﬁ%

2
A2 A

25 4

Demo courtesy of Prof. Denny Freeman and Adam Hartz

6.0001 LECTURE 4

78

2/11/20

ar i)

et

é%%g é%%g é%%g 2%?%
ﬁ%%ﬁ é%%g é.%%&

Y ity

Al i

ﬁ%i%

E1Y

A

@t
Al i

%&2% ﬁé&

A

&
Al T

Demo courtesy of Prof. Denny Freeman and Adam Hartz

6.0001 LECTURE 4

79

: e, L SRS
i !
i _
: W
o © | K Phota
P

= T

i
i

g ;’ ; .\"‘." -
«,/V A o
T "
0% LS

A i

e A

-

L]

S

L

L

a5

9

=

=%

e A

=5

al 1), jat I

e A

[(

e KA

e

et

g

g

o by T BT S

'

et e e

)i

e KA

(

al I, |at I Al in

T T
| (\ES zi/ L

=

é% .

arT

Y-

At e e 9

HE

sy of Prof. Denny Freeman and Adam Hartz

FIBONACCI

:{% RczEs GALA);IES
After one month (call it 0) — 1 female Month | Females
: 0

After second month —still 1 female (now 8
pregnant)

| O
After third month —two females, one pregnant, O
one not O
In general, females(n) = females(n-1) + O
females(n-2)

o Every female alive at month n-2 will produce one
female in month n;

o These can be added those alive in month n-1 to
get total alive in month n

2/11/20 6.0001 LECTURE 4

FIBONACC e
= Base cases:

* Females(0)=1
* Females(1)=1

= Recursive case
* Females(n) = Females(n-1) + Females(n-2)

\] |)
| |

This many does This many does

alive at timen-1 alive at timen-2;

each pregnant
next month, so
this many new
does whelped at
timen

2/11/20 6.0001 LECTURE 4 82

FIBONACCI RECURSIVE CODE
(MULTIPLE BASE CASES)

def fib(x):
"""assumes x an int >= 0
returns Fibonacci of x"""
1f x == 0 or x == 1:

return 1

else:

return fib(x-1) + fib(x-2)

TAKE HOME MESSAGES

= procedures (or functions) allow us to suppress detail
and capture computation within a black box

= jteration works well with methods that are
characterized by state variables

= recursionis a powerfultool that works well when
solving one problem reduces to solving a simpler
version of the same problem, plus some simple
operations

2/11/20 6.0001 LECTURE 4 84

