GRAPH THEORETIC
MODELS

(download slides and .py files to follow along)

Eric Grimson

MIT Department Of Electrical Engineering and
Computer Science

April 6,2020 6.0002 LECTURE 3




Relevant Reading

="Today
o Section 12.2

=sNext time 7 Introductic_)n to
o Section 15.1-15.4.1 Coggputation

o Section 15.5 ?‘“‘_’ programming
Using Python

With Application to Understanding Data

-

J

second editioﬂV’ A
John\7 ttag

April 6,2020 6.0002 LECTURE 3




Computational Models

"Programs that help us understand real world settings and
solve instances of practical problems

> Framework on which to build computational thinking

> Provides a computational (insilico) complementto physical (in
vitro or in vivo) experiments and mathematical models

=Saw how we could map the informal problem of choosing
what to eat into an optimization problem, and how we
could design a program to solve it

o A decision tree can helpfind a good solution to such problems

o Can try different metrics to optimize within decision tree
structure

*Now want to look at broader class of models — graphs

> Nice way to formulate many problems, mapping from problem
description to rigorous computational structure to algorithms

o Lead to powerful solutionsto optimization problems

April 6,2020 6.0002 LECTURE 3 3




What is a Graph?

Favorite Color

N

Green

bar

Distribution of Men's and Women's Incomes in 2016

Global Surface Temperature

1.4
12 :
——— 12-month Running Mean
s ] 32—month Running Mean
Lo = January-December Mean

Temperature Anomaly (°C)

1940 1960 1980

line

Favorite Ice Cream Flavors

30 ] A
1 Il (O'lO) % ‘I

(—1.5,—2.5)4-3
Cartesian

These are all visual presentations of information;
we want a structure that supports computation

April 6,2020

6.0002 LECTURE 3

2000

@ Vanila
@ Chocolate
® strawberry

@ Mint Chocolate
Chip



What is a Graph?

=Set of nodes (vertices)
o Might have properties associated with them

=Set of edges (arcs) each connecting a pair of nodes
o Undirected (graph)

April 6,2020 6.0002 LECTURE 3




What is a Graph?

=Set of nodes (vertices)
o Might have properties associated with them

=Set of edges (arcs) each connecting a pair of nodes
o Undirected (graph)
o Directed (digraph)
> Source (parent) and destination (child) nodes
°c Unweighted or weighted

April 6,2020 6.0002 LECTURE 3




Trees: An Important Special Case

= A special kind of directed graph in which any pair of
nodes is connected by a single path from the node
closer to the root to the node further from the root

o Recall the search trees we used to solve knapsack
problem Leaves

Root

An Australian tree?

April 6,2020 6.0002 LECTURE 3




Why Graphs?

=Capture and reason about relationships among entities
> Routes between Boston and San Jose

(0]

o

o

J. ,, ) o pliraniy
—y Farmarty masrwe

Rupert Murdoch
on

sz

adi Deng
s

Al
Tvanka Tram
PRLGYTS ShCATER
wite pemicst

i o
o0t et i
imnad v emmate st
by T Tomst n
ey =2 Tarsiin
Pt F

=

W i

Donald Ty 1

mp Jr.
[T A 1

Domat I contacted
Wk raka i Ovtutar 2036

TRUMP TOWER
Mrting heid 0
e

7y wl e,

—ed
] George

Campage oo e ek e S

= I e

Retrabacher nd Fiyem
et i n 2037

New York Magazine X iy

April 6,2020

=
o
Michael Flynn
’

e
Pyswss  wen o phan e
e ad vancions

Peter W. Smith
BARALL, 00 Dowet

e et Wi Wistyon Former
= December 3046 imens
ey

e i oo || oot s

ST
Rex Tillerson
[ rpreie
o it
o
sl
A Barsian hacher pemt. o Khnbyot
Pl Joff Sexsions
s s ' wreeaty staeis
s

How the atoms in a molecule are related to one another
Ancestral relationships (family trees)
Business/social/political connections

;,\/
&
E
Vo s Yuri Dubinin
Tarean Tenuns sovir
o 3
Abnmetinin Nas lettens M ey =
T ety
bt h

Rinat Akhmetshin
LanaTisT

P —
wennssinn | "
| Ao . "

oRuER Fssi
ARRSSSADOR TS 65, J s s
it e rums ﬁ
t o o e Bz
o - e mevting
- Notalia Veselnitskaya . | Aras Agalarov
e (e FRCHL COMEETED LiWTTR | weacastan wosn
weseintinnys werses = Famer
e et eatats et \ e
Emin Agalaros
yor sk ?"
s et
e of G Aoy T
R =R -
Dmitey

BAN e Gare T 3014
2 ALFA BANK
= Rpttotes ond Trump cloms Woeyve
Sk comcd o e ver et b hrws tenes batare
v 0 wiectian, b phume eades whare
ol Tieme v tomesring ‘
A
$ 5
-

[ )
MOSCOW

Trwmp cisited heve
i 19657 und 3043

Kirill Dmitriey
e

KGB
Pusin first roploger Daitriew's wie b 3 doputy to

» Py mpvareer amsghed
folcing Trumnp for pey
udes [ Gerbon e =
e e Bxraian )
G bt
» 4 Pty gt >
Tt el
Sergey Gorkov
HeTH
>
L s
-t
= S K
Jaseph Mifsud P
PROFESIIR. SUSPLCTLS 3PV A s 2086 o3
Oleg Deripaska
e
st
frapeseesy A enTEn pertpana
T e
. $10 mitos -
~
P gave Tiarnen e
e of Bansi's 6‘ [ Dmitry Firtash
" ouskecH
g s
E; v
Frtaes 3
e o wacass
Julian Assange A
orTen of wuncaEs T | ety
T—— e
et




ms

Graphs model a wide range of syste

=Computer networks <Pl i1 4\

> How can | efficiently route
information from one node to
another?

=Transportation networks

> How can | efficientlyget to a
particular destination?

=Electrical network

> How can | efficiently transmit

electricity between source and
sink?

=Social networks
> How can | understand diffusion of —

misinformation, identify clusters of oF A SOCIAL ¥

people with similar characteristics i T

BROKERAGE
Connecting
W

The first three examples all ask about finding an

efficient path between two nodes; the last example e
. i ¥ - other nod

suggests that there can be other questions Pl cuseess




Graphs can answer more than path problems

"Finding connections between
faculty members’research

> Size of node is number of
articles

o Edges are co-authored papers

*Analyzingtextinformation, e.g.,
“Wizard of Oz”:

o size of node reflects numbeé
scenes in which character
shares dialogue

o edges represent interactions

o color of clusters reflects natural

interactions with each other but
not others

April 6,2020

L] SRNIVASAN, MAN
YANIK. F
°
g AMILLL RICHARD
FORNARI, DANIEL HUMPHR'S, SUSAN °
OMAN, CHARLES
[ — TURKLE SHER
. — 0. \
INGH, NUM, .y
T ‘
CARR N
anTz, RCHARD D (. /
| / DE WECK, OLMER L
[ | /
THREE H KIDS
AMUEBHKIN @G S
DNE' LE! °
SEVERAL (IDNCHKINS Mé 9" Ty @”ER
ISTOPHI ol
MU@INS
§ BAR@TER
CHAVE. ALAN [ ]
HIGKORY
whpn
e UNCL@NRYPRO@SOR G@A
miss@ElLen
AUGTEM [ eme————
V ™ o OT.RS —
A — \ m

6.0002 LECTURE 3

Mmapr.com




Why Graphs Are So Useful

=Not only do graphs capture relationships in connected
networks of items, they support inference on those

structures

* Find sequences of links between
elements (aka the path problem)

* Findingleast expensive path between
elements (aka the shortest path
problem)

* Partitioninggraphinto subgraphs with
minimal connectionsbetween them (aka
graph partition problem or graph clique
problem)

* Findingthe mostefficientwayto
separatesets of connected elements(aka B~
the min-cut/max-flow problem) >
‘ You'll see these problems in 6.042, \

6.046, and other classes

April 6,2020 6.0002 LECTURE 3

l L0 O




Graph Theory Saves Me Time Every Day

International Air

April 6,2020 6.0002 LECTURE 3 13




Some path problems are easier than others

’ ,/ l\“o,
\/ ” '/ M \

o S R, .

~ \“

cmiSs WE wmvou,, m"lmow'wiim’: YOU/ARE

‘*\" i : -~ L o 0 74

“/AND HOW,T0.GET WHEREYOURE GOING”

N\
,‘-’\ . ~ g, '.
ot *4. -/ o Q : ". fr &, /5w ~ A

April 6,2020 6.0002 LECTURE 3




Getting Chancellor Grimson to his Office

"Model road system using a digraph
> Nodes: points where roads end or meet (intersections)

o Edges: weighted connections between points (streets)
0 o Expected time between nodes for each edge

A°
\/6.3&&6( e(T\' 6’{'\0(\ . Poll:
¥ «® © Distance between nodes Which
o® :{\00 . .. .. .
W e Maximum minimum speed between nodes Opt'm'zit'on do
YOu prerer

=Solve a graph optimization problem
o Shortest weighted path between my house and my office

April 6,2020 6.0002 LECTURE 3




First Reported Use of Graph Theory

=*Bridges of Konigsberg| & ¥
problem (1735) X

o Known today as
Kaliningrad

o Two islands plus two
mainland portions of | *&&
city connected by 7
bridges

=|s it possible to take a|
walk that traverses
each of the 7 bridges
exactly once?

April 6,2020 6.0002 LECTURE 3




Leonhard Euler’s Model

=Each island a node

sEach bridge an undirected edge

"Model abstracts away irrelevant details
o Size of islands

o Length of bridges

"|s there a path that contains each edge exactly once?

Poll:
Do you think that such a path exists?

April 6,2020 6.0002 LECTURE 3




What'’s Interesting About This

=*Not the Konigsberg bridges problem itself
=Rather, the way Euler solved it

=*A new way to think about a very large class of
problems

April 6,2020 6.0002 LECTURE 3




Implementing and using graphs

=Building graphs
> Nodes
o Edges
o Stitching together to make graphs

=Using graphs
o Searching for paths between nodes
o Searching for optimal paths between nodes

April 6,2020 6.0002 LECTURE 3 20




Node & edge classes

‘class Node(str): .
pass RULN

class Edge(object):

def __init__ (self, src, dest, weight = 1):
"""Assumes src and dest are nodes""" _
self. src = src — Setting
self. _dest = dest attributes
self._weight = weight

def getSource(self):
return self._src

def getDestination(self): | Accessing
return self._dest attributes

def getWeight(self):
return self._weight _

def __str__ (self):
return self.src + '->(' + self.getWeight() + ')'\

+ self.dest

J\

This creates a directed edge; to create an undirected edge, simply add another from dest to src

April 6,2020 6.0002 LECTURE 3 21




Common Representations of Digraphs

=Digraph is a directed graph
> Edges pass in one direction only destination

> Need to represent that collection of edges -nmm
A m 1

=Adjacency matrix

o Rows: source nodes b Y
o Columns: destination nodes c 1
o Cell[s, d] =1 if thereisan edge from stod T .
= 0 otherwise
o Note that in digraph, matrix is not symmetric A: [D]
> Uses O(|nodes|**2) memory Ef {g]]
=Adjacency list D: A, D]

o Associate with each node a list of destination nodesthat can
be reached by one edge

o Uses O(|edges|) memory, therefore good for sparse graphs

April 6,2020 6.0002 LECTURE 3 22




Class WeightedDigraph, part 1

class WeightedDigraph(object):

"""edges is a dict|mapping each node|to a| list|of éﬁﬁ o5
its children and weight of edge™ (foas(peﬁ%
def __init_ (self, nodes): AN
self._edges = {v: [l |for v in nodesf} C‘edes‘,‘(\ eo’@d
def addNode(self, node): O ot o
if node in self._edges: R
raise ValueError('Duplicate node') ¥QP«\¢‘N
else: e .\t
self._edges[node] = [] é@éﬁiwﬁﬁ«;gﬁﬂ
def addEdge(self, edge): 653(6(06 35:\ <
mon s mnmnn S \O S
g = G QiENT ) ey
dest = edge.getDestination() 25
S o if not (src in self._edges and dest in self._edges)
ey % raise ValueError('Node not in graph')
E®é@§9 . sg@fj_edggg[szglLappepd((dest, edge.getWeight()ﬂ)

Get list of destinations Add new destination
for source node from dict and edge weight to list

April 6,2020 6.0002 LECTURE 3 23




. ceC
Class WeightedDigraph, part 2 025
= \Z
def childrenOf(self, node): 6§/§§e&¥x\ RN
return [e[0]|f0r e 1n|self. edges [node]] ods(cﬁﬁf& He0o
aeT hasNode(sel7, node): List of reachable nodes $6 A\ -e‘vo&
return node in self._edges © (096“\(\0665
def getAllNodes(self): 408 e
return(list(self._edges.keys())) ) “Q@&
Jet—str_ (et
vals = []
for src in self._edges:
entry = src + ': °
for edge in self._edges[src]:
entry += edge[0] + '(' + str(edge[l]) o 5}
if entry[-2:] != ': ' here was at least one edge
vals. append(entry[ —2])
else:

vals.append(entry[:-1])
vals.sort(key = lambda x: x.split(':")[0])
result = "'
for v in vals:
result += v + '\n'
return result([:-1] #omit final newline

April 6,2020 6.0002 LECTURE 3




Build the Graph

def buildCityGraph():
g = WeightedDigraph (('Boston', 'Providence', 'New York', "Chicago',

'Denver', 'Phoenix', 'Los Angeles’)) #Create 7 nodes
g.addEdge(Edge('Boston’, 'Providence'))
g.addEdge(Edge('Boston’, 'New York')) Since just using nodes
g.addEdge(Edge('Providence’, 'Boston')) as names, can use
g.addEdge(Edge('Providence’, 'New York')) strings rather than

.addEdge (Edge( 'New York’, 'Chicago')) .
g.addEdge(Edge('Chicago’, 'Denverg)) fxeanng node
g.addEdge(Edge( 'Chicago’, 'Phoenix")) Instances
g.addEdge(Edge('Denver’, 'Phoenix'))
g.addEdge(Edge( 'Denver’, ’New York"))
g.addEdge(Edge('Los Angeles’, 'Boston'))
return g

g = buildCityGraph()
print(‘The city graph:’)
print(g)

April 6,2020 6.0002 LECTURE 3 25




An Example

Vv

Bosto\n<

Providence >( New York )«

Chicago >@
Los Angeles

djacency Lists

Denver: Phoenix(1), New York(1)
Los Angeles: Boston(1)
PDhoeniy

April ,2020 6.0002 LECTURE 3




A Classic Graph Optimization Problem

sShortest (unweighted) path fromn1 to n2 )
n

o Shortest sequence of edges such that g\
o Source node of firstedge is nl el ", '\‘nZ
o Destinationof last edgeis n2 e3

o For edges, el and e2, if e2 directly follows el in the sequence, the
source of e2 is the destinationofel

sShortest weighted path
> Minimize the sum of the weights of the edges in the path

"For this lecture, we are mainly going to focus on
unweighted paths

April 6,2020 6.0002 LECTURE 3 27




Some Shortest Path Problems

=Finding a route from one city to another
=Designing communication networks
= ogistics of material handling

*Finding a path for a molecule through a chemical
labyrinth

April 6,2020 6.0002 LECTURE 3




Finding the Shortest Path

=Algorithm 1, breadth-first search (BFS)
=Algorithm 2, depth-first search (DFS)

sAlgorithm 3, Dijkstra’s algorithm

All use divide-and-conquer: if we can find a path from a source to
an intermediate node, and a path from the intermediate node to

the destination, the combination is a path (but not necessarily the
shortest) from source to destination

Another example of recursive thinking!

April 6,2020 6.0002 LECTURE 3




Breadth First Search

=Start at an initial node (call it the current node)

Consider all the edges that leave that node, in some order

"Follow the first edge
o Check to see if at goal node

o |If so, stop

"|f not, try the next edge from the current node that has not
yvet been examined

"Continue until either find goal node, or run out of options

> When run out of edge optionsfor current node, move to next
node at same distance from start, and repeat

> When run out of node options, move to next levelin the graph
(all nodes one step further from start), and repeat

April 6,2020 6.0002 LECTURE 3 30




Algorithm 1: Breadth-first Search (BFS)

def bfs(graph, start, end, toPrint = False):
visited = {}| Set of nodes already seen
pathQueue = [[start]]
— Vvisited[start] = True
while Ten(pathQueue) != 0:
#Get and remove oldest elemen

Note: a list of paths to explore, each
of which is a list of nodes

in pathQueue

Poll: tmpPath = pathQueue.pop (0 Firstin, first out
If we skip 1t toPrint: Next path in queue

marking print('Current BFS path: , printPath(tmpPath))
visited 1_astNode = tmpPath[-1] Why can we stop here?

nodes, and 1f lastNode == end:e—

just add return tmpPath

paths to for nextNode 1n graph.childrenOf(lastNode):

queue, does 1f nextNode not 1n visited: <

this still newPath = tmpPath + [nextNode]

work? — visited[nextNode] = True

pathQueue.append(newPath) || Add path in queue
return_ None

Because we areusinga FIFO queue, will exploreall paths with n hops
before any path with morethan n hops;if don’t find a path, return None

April 6,2020 6.0002 LECTURE 3 32




Output (Boston to Phoenix)

Current BFS path: Boston

Current BFS path: Boston->Providence

Current BFS path: Boston->New York

Current BFS path: Boston->New York->Chicago

Current BFS path: Boston->New York->Chicago->Denver

Current BFS path: Boston->New York->Chicago->Phoenix

Shortest path from Boston to Phoenix is Boston->New York->Chicago->Phoenix

# can stop as soon as find a successful path, since guaranteed to be shortest

April 6,2020 6.0002 LECTURE 3 33




Output (Boston to Pheonix)

Note that we skip a %
path that revisits a Bosto\n<
node, creating a
loop

Note that we can skip a path W > >( New York )«

that reaches an already

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

visited node, as can’t be

shorter Chicago >@
CurrentBFS path: Boston
Current BFS path: Boston->Providence

Current BFS path: Boston->New York @
Current BFS path: Boston->New York->Chicago Los Angeles

Current BFS path: Boston->New York->Chicago->Denver

Current BFS path: Boston->New York->Chicago->Phoenix

April 6,2020 6.0002 LECTURE 3 34




[BOS]
Visualizing as a tree search [BOS,PRO]

[BOS,NYC]
[BOS,PRO,NYC] #no loops
[BOS,NYC,CHI]  #shorter
[BOS,NYC,CHI,DEN] Path
[BOS,NYC,CHI,PHO]
[BOS,NYC,CHI,DEN,PHO]

Note how tree helps
us visualize that we
explore all paths of
length n before
considering paths of
length n+1; so can
stop once we find a
solution

April 6,2020 .



i X
Depth First Search e
\¢)
oy 9%
C e e 2
=Start at an initial node “‘o\@a""’

=Consider all the edges that leave that node, in some
order

sFollow the first edge, and check to see if at goal node
° |f so, check if shorter than shortest already seen and save

*"|f not at goal node, repeat the process from new node

=Continue until either find goal node, or run out of
options
> When run out of edge options, backtrack to previous
node, repeating this process

> When run out of node options, backtrack to the previous
node and try the next edge, repeating this process

April 6,2020 6.0002 LECTURE 3 36




Implementation like BFS, except

= Uses a LIFO data structure (often called a stack)
instead of a FIFO data structure (often called a queue)

= Finds multiple paths, not just one

April 6,2020 6.0002 LECTURE 3 37




Algorithm 2: Depth-first Search (DFS)

def dfs(graph, start, end, toPrint = False):
"""Assumes graph is a Digraph; start and end are nodes
Returns a shortest path from start to end in graph"""
bestPath = None
initPath = [start]
pathQueue = [initPath] #7170
while len(pathQueue) != 0:
#Get and remove newest element in pathQueue
tmpPath = pathQueue.pop(-1) | pifferent from BFS, taking last path in queue
it toPrint:
print('Current DFS path:', printPath(tmpPath))
lastNode = tmpPath[-1]

if Ig:tNode.== end: Need to check if better than

Poll: * tgt;:zt:Path found') current best path
If we don’t if bestPath == None or len(tmpPath) < len(bestPath): | Skip to
check that bestPath = tmpPath next
nextNode [_continue | ~ _ : :
already in path [ 1T bestPath '= None and len(tmpPath) >= len(bestPath): Iteration
before adding continue . of loops
ew paths to or nextNode in graph.ch11dren5?T1astNode): —

paths to- if |nextNode not in tmpPath: Only keep looking if not
queue, will this newPath = tmpPath + [nextNode] too long
still work? pathQueue.append (newPath)|

return bestPath

But still adding new paths at end of queue

April 6,2020 6.0002 LECTURE 3 39




An Example

Vv

Bosto\n<

Providence >( New York )«

Chicago >@
Adjacency List

Boston: Providence, New York

Providence: Boston, New York @

New York: Chicago @
Chicago: Denver, Phoenix
Denver: Phoenix, New York

Los Angeles: Boston
Phoenix:

April 6,2020 6.0002 LECTURE 3 40




Output (Boston to Phoenix)

V

Bos®<

Chicago >( Denver

Current DFS path: Boston

Current DFS path: Boston->New York
Current DFS path: Boston->New York ->Chicago

Current DFS path: Boston->New York ->Chicago->Phoenix

Los Angeles

Path found Need to keep searching to ensure there is no shorter path

Current DFS path: Boston->New York ->Chicago->Denver

Current DFS path: Boston->Providence
Current DFS path: Boston->Providence->New York

Current DFS path: Boston->Providence->New York->Chicago

April 6,2020 6.0002 LECTURE 3 41




Visualizing as a tree search

// N
K A
April 6,2020

]
[BOS,PRO]
[BOS,NYC,CHI,DEN]

Note how we
remove from end of
gueue, not front

Note how tree helps
us visualize that we try
to explore one path in
depth, until we find
goal, hit a loop, or run
out of options

42



What About a Weighted Shortest Path

="Want to minimize the sum of the weights of the edges,
not just the number of edges

*DFS can be easily modified to do this, if we assume
that weights are non-negative numbers

o But slow

=BFS is fast for unweighted graphs, but cannot work for
weighted graphs, since shortest weighted path may
have more than the minimum number of hops

=Gets us to Dijkstra’s algorithm

April 6,2020 6.0002 LECTURE 3 43




Let’s take a short break

April 6,2020 6.0002 LECTURE 3




Algorithm 3: Dijkstra’s Algorithm

= Generalization of breadth-first search that does not
require edges to have equal weight

= Uses a priority queue instead of a FIFO queue

° Priority queue uses some numerical measure to insert
new items in queue based on ordering (typically smallest
first)

o Still takes items from the front of the queue, but insertion

__no longer is automat|callv at the end ofthe queue
Someone cut in fronfofmemﬂn fealiag
salad bar line today. I didn't do

anything because anyone who
wants a salad that badly terrifies me.
N

00"

£W Léave thls to I’'m s ’Brmsh

Ll know how to queue. \ b

April 6,2020 6.0002 LECTURE 3




Three Key Data Structures and Basic ldea

= unvisited: list of nodes that have not yet been visited
o Initially containsall nodesin graph

" distanceTo: a dict mapping each node to the minimum
distance found so far for a path from start node to that
node

o Initially zero for start node and infinity for all others

" predecessor: a dict mapping each node to previous node
on the shortest path found so far from start to that node

o Initially None for all nodes

" Visit nodes in increasing order of distance from start (as in
BFS), updating distanceTo and predecessor

= When all nodes visited, construct shortest path using
predecessor by working backwards from end node

April 6,2020 6.0002 LECTURE 3 46




Outline of Algorithm

= For current node, choose an unvisited node with
shortest distance from start node, (initially this is the
start node)

o This is the metric defining the priority queue

" Check each neighbor of current node (those reachable
in one step from current node)

o Calculate distance from starting node to each neighbor,
using path passing through current node

o Keep shortest distance path for each neighbor (and
update predecessor and distanceTo if needed)

= Repeat for all nodes, until all are visited

= Will show implementation that assumes all edges
have equal weights

o Almost trivial to adapt to unequal weights

April 6,2020 6.0002 LECTURE 3 47




Initialization

def Dijkstra(graph, start, end, toPrint = False):
graph: an unweighted (all edges have weight 1) digraph
start: a node in graph
end: a node in graph
returns a list representing shortest path from start to end,
and None if no path exists"""
#Easily modified to deal with non—-negative weighted edges

# Mark all nodes unvisited and store them.

# Set the distance to zero for our initial node
# and to infinity for other nodes.

unvisited = graph.getAllNodes()
distanceTo = {node: float('inf')|for node in graph.getAllNodes ()}
distanceTo[start] = 0
# Mark all nodes as not having found a predecessor node on path
#from start

predecessor = {node: None|for node in graph.getAllNodes()[}

April 6,2020 6.0002 LECTURE 3




: i
o

Main Loop "

while unvisited: oot

# Select the unvisited node with the smallest distance from

# start, it's current node_now.

@

current = min(unvisited,| key=1lambda node: distanceTo[nodel) dxﬂ

if toPrint: #for pedagocteat—pturposes 0
- e(.\(\
o®
# Stop, if the smallest distance
# among the unvisited nodes is infinity. H?“’“Kn”d
if distanceTol[current] == float('inf'): this change
break for weighted
edges?
# Find unvisited neighbors for the current node
# and calculate their distances from start through the Y@Nﬁ
# current node. d@N%
for neighbour in graph.childrenOf(current): coV

alternativePathDist = distanceTol[current]|+ 1 [fhops as d:

# Compare the newly calculated distance to the assigned.

# Save the smaller distance and update predecssor.

if alternativePathDist < distanceTol[neighbour]:
distanceTo[neighbour] = alternativePathDist
predecessor[neighbour] = current

# Remove the current node from the unvisited set.

Need to check
for shorter
path, update
information

unvisited.remove(current)
April 6,2020 6.0002 LECTURE 3




Build Path from predecessor

#Attempt to be build a path working backwards from end
path = []

current = end
while predecessor[current] != None:
path.insert (0, current)
current = predecessor[current] [ Back chaining to
if path '= []:
path.insert(®, current)
else:

return None
return path

reconstruct path from
end to start

April 6,2020

6.0002 LECTURE 3 50



Example (Boston to Chicago)

V

—

Boston)<

>( New York )«

Chicago >/E;;EE§>
200 o
25 o
ON 63 ‘ed 66(6%\0
O Q\o(‘" Los Angeles
R

For simplicity, just looking for path from
Boston to Chicago in this example

April 6,2020

6.0002 LECTURE 3

Value of current: Boston

Value of distanceTo:
Boston: 0
Providence: inf
New York: inf
Chicago: inf
Denver: inf
Phoenix: inf
Los Angeles: inf

Value of predecessor:
Boston: None
Providence: None
New York: None
Chicago: None
Denver: None
Phoenix: None

Los Angeles: None




Move Graph Cut

V

—

Boston )<

> New York )«
Chicago >@

@

Los Angeles

distanceTo and predecessor are
guaranteed not to change for
nodes above the cut

April 6,2020

6.0002 LECTURE 3

Value of current: Providence
Value of distanceTo:

Boston: 0

[?rovidence: 1]

New York: 1
Chicago: inf
Denver: inf
Phoenix: inf
Los Angeles: inf
Value of predecessor:
Boston: None
Providence: Boston]
New York: Boston
Chicago: None
Denver: None
Phoenix: None
Los Angeles: None

52



Move Graph Cut

V

‘\\\ Value of current: New York
Boston)< Value of distanceTo:
Boston: O

, Providence: 1
Providence >( New York )« New York: 1

Chicago: inf

Denver: inf
Chicago >/E;;EE£> Phoenix: inf
Los Angeles: inf

Value of predecessor:
Boston: None

@ Providence: Boston
New York: Boston
<E§{§E§EE@ Chicago: None
Denver: None

Phoenix: None
Los Angeles: None

April 6,2020 6.0002 LECTURE 3 53




Move Graph Cut

V

—

Boston )<

N

Providence

7

New York

Chicago

April 6,2020

@

Los Angeles

6.0002 LECTURE 3

Value of current: Chicago
Value of distanceTo:
Boston: 0
Providence: 1
New York: 1
| Chicago: 2 |
Denver: 1inftT
Phoenix: inf
Los Angeles: inf
Value of predecessor:
Boston: None
Providence: Boston
New York: Boston
(Chicago: New York
Denver: None
Phoenix: None
Los Angeles: None

54



Move Graph Cut

V

—

Boston )<

N

Providence

7

New York )«

Chicago

April 6,2020

v

@

Los Angeles

6.0002 LECTURE 3

Value of current: Denver
Value of distanceTo:
Boston: 0
Providence: 1

New York: 1
Chicago: 2
[Denver: 3 ]
Phoenix: 3

Los Angeles: inf
Value of predecessor:
Boston: None
Providence: Boston
New York: Boston
Chicago: New York
[Denver: Chicago ]
Phoenix: Chicago
Los Angeles: None

55



Move Graph Cut

N Value of current: Phoenix
Boston)< Value of distanceTo:
Boston: 0
: N - Providence: 1
"(New York New York: 1
Chicago: 2
Denver: 3
Chicago >/E;;EE§> Phoenix: 3
Los Angeles: inf
Value of predecessor:
Boston: None
@ Providence: Boston
New York: Boston
<£§{EE§§§§ Chicago: New York
Denver: Chicago

Phoenix: Chicago
Los Angeles: None

April 6,2020 6.0002 LECTURE 3 56




Move Graph Cut

V

—

Boston )<

> New York )«
Chicago >@

(phoens
Los Angele
R

Boston->New York—>Chicago

April 6,2020 6.0002 LECTURE 3

Value of current: Los Angeles
Value of distanceTo:

Boston: 0
Providence: 1
New York: 1
Chicago: 2
Denver: 3
Phoenix: 3

Los Angeles: inf

Value of predecessor:

Boston:
Prov1dence Boston
New York: |Boston
Chicago: [New York
Denver: 1Cago
Phoenix: Chicago
Los Angeles: None



Some Observations

=BFS will stop once it finds a path

=*DFS will stop once it has found a path and has explored
all paths of shorter length

=Dijkstra visits a

=So what does t
algorithms, bot

| nodes in the graph, but not all paths

nis suggest about efficiency of the

N in terms of complexity and in terms of

practical application?

April 6,2020

6.0002 LECTURE 3 58



Test on Some Large Graphs

Mean Time With Ave. Degree = 6 (20 trials)

0.175{ e BFS ®
0.150 -
@ O(|E| + |V
0.125 - ( | | | | )
0.100 - .
0.075 -
@
0.050 -
™
0.025 -
°
R . y T T . . : Mean Time With Ave. Degree = 6 (20 trials)
0 5000 10000 15000 20000 25000 30000 T =
Number of Modes 80 4 1jKstra
60
§ ™
O(|E| + |V] log |V]) -
(V]
®
20 - .
®
04 @ ®
0 5000 10000 15000 20000 25000 30000
Number of Nodes
6.0002 LECTURE 3 =

April 6,2020




So, Why Bother with Dijkstra’s Algorithm?

= Suppose edges have non-negative weights?
o DFS and BFS have to be modified to explore all paths
o Dijkstra’s algorithm (easily modified) does not need to
explore all paths
> loop over outbound edges, not just neighbors;

o add weight of edge when consideringalternative paths, notjust
countof hops

= Dijkstra’s algorithm also easily solves the “all nodes
shortest path problem”

April 6,2020 6.0002 LECTURE 3 60




Build a graph with weighted edges

def buildCityGraph_weighted():

"""Generate and return an example graph"""

g = WeightedDigraph(('Boston', 'Providencel, 'New York', 'Chicago’,

'Denver', 'Phoenix', 'Los/Angeléey'))

g.addEdge(Edge('Boston', 'Providence!/, 50))
g.addEdge(Edge('Boston', 'New York',/ 190))
g.addEdge(Edge('Providence', 'Bostog', 50))
g.addEdge(Edge('Providence', 'New Yprk',180))
g.addEdge(Edge( 'New York', 'Chicagd', 790))
g.addEdge(Edge('Chicago', 'Denver',| 1000))
g
g
g
g
r

.addEdge(Edge('Chicago', 'Phoenix'\ 1750))
.addEdge(Edge( 'Denver', 'Phoenix',
.addEdge(Edge( 'Denver', 'New York',
.addEdge(Edge('Los Angeles', 'Boston
eturn g

g = buildCityGraph_weighted()

print('The city graph:')
print(g)

April 6,2020 6.0002 LECTURE 3 61




Dijkstra’s Algorithm with Weights

while unvisited:
# Select the unvisited node with the smallest distance from
# start, it's current node now.
current = min(unvisited, key=lambda node: distanceTo[node])
if toPrint: #for pedagocical purposes
# oua

# Stop, if the smallest distance

# among the unvisited nodes is infinity.

if distanceTol[current] == float('inf"'):
break

# Find unvisited neighbors for the current node
# and calculate their distances Trom | Was looping over neighbours,
# current node. .
for edge in graph._edges[current]: | which are nodes
alternativePathDist = distanceTo[current]|+ edgell Add weight
Get neighbour neighbour = edge([0] _ ' _ &Nt
# Compare the newly calculated distance to the assi| hot justl
# Save the smaller distance and update predecssor.
if alternativePathDist < distanceTol[neighbour]:
distanceTo[neighbour] = alternativePathDist
predecessor[neighbour] = current

# Remove the current node from the unvisited set.
unvisited. remove(current)

April 6,2020 6.0002 LECTURE 3 62




Example of Weighted Path

Value of current: Los Angeles
Value of distanceTo:
Boston: 0
Providence: 50
New York: 190
Chicago: 980
Denver: 1980
Phoenix: 2730
Los Angeles: inf
Value of predecessor:
Boston: None
Providence: Boston
New York: Boston
Chicago: New York
Denver: Chicago
Phoenix: Chicago
Los Angeles: None
Boston->New York->Chicago

April 6,2020 6.0002 LECTURE 3 63




All Nodes Shortest Path

= Notice that end doesn’t come into play until last step
of algorithm

" predecessor can be used to quickly find a path from
start to any node in graph

= |f algorithm is run using each node as start, and result
is stored, can quickly find shortest path between any
pair of nodes

> Need not start from scratch for each starting node

April 6,2020 6.0002 LECTURE 3 64




Summarizing

= Graphs are cool

o Best way to create a model of many things
o Capturerelationshipsamongobjects

> Many important problems can be posed as graph
optimization problems we already know how to solve

= Depth first and breadth first search are important
algorithms

o Can be used to solve many problems

= Dijkstra’s algorithm better for finding shortest path in
large graphs with (non-negative) weighted edges

o Many variants optimized for specific applications

o Especially useful for multiple tasks

April 6,2020 6.0002 LECTURE 3 ()




April 6,2020 6.0002 LECTURE 3




