
GRAPH-THEORETIC	
MODELS
(download	slides	and	.py files	to	follow	along)

Eric	 Grimson

MIT	Department	Of	E lectrical	 Engineering	 and	
Computer	Science

6.0002	LECTURE	3 1April	6,	2020

§Today
◦ Section	12.2

§Next	time
◦ Section	15.1-15.4.1
◦ Section	15.5

Relevant	Reading

6.0002	LECTURE	3 2April	6,	2020

§Programs	that	help	us	understand	real	world	settings	and	
solve	instances	of	practical	problems
◦ Framework	on	which	to	build	computational	thinking
◦ Provides	a	computational	(in	silico)	complement	to	physical	(in	
vitro	or	in	vivo)	experiments	and	mathematical	models

§Saw	how	we	could	map	the	informal	problem	of	choosing	
what	to	eat	into	an	optimization	problem,	and	how	we	
could	design	a	program	to	solve	it
◦ A	decision	tree	can	help	find	a	good	solution	to	such	problems	
◦ Can	try	different	metrics	to	optimize	within	decision	tree	
structure

§Now	want	to	look	at	broader	class	of	models	– graphs
◦ Nice	way	to	formulate	many	problems,	mapping	from	problem	
description	to	rigorous	computational	structure	to	algorithms

◦ Lead	to	powerful	solutions	to	optimization	problems

Computational	Models

6.0002	LECTURE	3 3April	6,	2020

What is	a	Graph?

6.0002	LECTURE	3 4

bar line

histogram pie

These	 are	all	visual	 presentations	 of	information;	
we	want	a	structure	 that	supports	 computation

April	6,	2020

Cartesian

§Set	of	nodes	(vertices)
◦ Might	have	properties	associated	with	them

§Set	of	edges	(arcs)	each	connecting	a	pair	of	nodes
◦ Undirected	(graph)

What is	a	Graph?

6.0002	LECTURE	3 5

E
B

C

DA

April	6,	2020

§Set	of	nodes	(vertices)
◦ Might	have	properties	associated	with	them

§Set	of	edges	(arcs)	each	connecting	a	pair	of	nodes
◦ Undirected	(graph)
◦ Directed	(digraph)
◦ Source	(parent)	and	destination	(child)	nodes

◦ Unweighted	or	weighted

What is	a	Graph?

6.0002	LECTURE	3 6

10

12
3

April	6,	2020

5

§A	special	kind	of	directed	graph	in	which	any	pair	of	
nodes	is	connected	by	a	single	path	from	the	node	
closer	to	the	root	to	the	node	further	from	the	root
◦ Recall	the	search	trees	we	used	to	solve	knapsack	
problem

Trees:	An	Important	 Special	Case

6.0002	LECTURE	3 7April	6,	2020

Root

Leaves

An	Australian	 tree?

§Capture	and	reason	about	relationships	among	entities
◦ Routes	between	Boston	and	San	Jose
◦ How	the	atoms	in	a	molecule	are	related	to	one	another
◦ Ancestral	relationships	(family	trees)
◦ Business/social/political	connections
◦ …

Why	Graphs?

6.0002	LECTURE	3 8

?
Redacted

New	York	Magazine

April	6,	2020

§Computer	networks
◦ How	can	I	efficiently	route	
information	from	one	node	to	
another?

§Transportation	networks
◦ How	can	I	efficiently	get	to	a	
particular	destination?

§Electrical	network
◦ How	can	I	efficiently	transmit	
electricity	between	source	and	
sink?

§Social	networks
◦ How	can	I	understand	diffusion	of	
misinformation,	identify	clusters	of	
people	with	similar	characteristics

Graphs	model	a	wide	range	of	systems

April	6,	2020 6.0002	LECTURE	3 10

The	first	three	examples	 all	ask	about	 finding	an	
efficient	 path	between	 two	nodes;	 the	 last	example	
suggests	 that	there	can	be	other	questions

§Finding	connections	between	
faculty	members’	research
◦ Size	of	node	is	number	of	
articles

◦ Edges	are	co-authored	papers

§Analyzing	text	information,e.g.,	
“Wizard	of	Oz”:
◦ size	of	node	reflects	number	of	
scenes	in	which	character	
shares	dialogue

◦ edges	represent	interactions
◦ color	of	clusters	reflects	natural	
interactions	with	each	other	but	
not	others

Graphs	can	answer	more	than	path	problems

6.0002	LECTURE	3 11

mapr.com
April	6,	2020

§Not	only	do	graphs	capture	relationships	in	connected	
networks	of	items,	they	support	inference on	those	
structures

Why	Graphs	Are	So	Useful

6.0002	LECTURE	3 12April	6,	2020

• Find	sequences	of	links	between	
elements	(aka	the	path	problem)

• Finding	least	expensive	path	between	
elements	(aka	the	shortest	path	
problem)

• Partitioning	graph	into	subgraphswith	
minimal	connections	between	them	(aka	
graph	partition	problem	or	graph	clique	
problem)

• Finding	the	most	efficient	way	to	
separate	sets	of	connected	elements	(aka	
the	min-cut/max-flow	problem)
You’ll	see	these	 problems	 in	6.042,	
6.046,	and	other	classes	

Graph	Theory	Saves	Me	Time	Every	Day

6.0002	LECTURE	3 13April	6,	2020

*!#$&

Some	path	problems	are	easier	than	others

April	6,	2020 6.0002	LECTURE	3 14

§Model	road	system	using	a	digraph
◦ Nodes:	points	where	roads	end	or	meet	(intersections)
◦ Edges:	weighted	connections	between	points	(streets)
◦ Expected	time	between	nodes	for	each	edge
◦ Distance	between	nodes
◦ Maximum	minimum	speed	between	nodes

§Solve	a	graph	optimization	problem
◦ Shortest	weighted	path	between	my	house	and	my	office

Getting	Chancellor	Grimson	 to	his	Office

6.0002	LECTURE	3 15April	6,	2020

Poll:	 	
Which	
optimization	 do	
you	prefer

This image cannot currently be displayed.

First	Reported	Use	of	Graph	Theory

6.0002	LECTURE	3 16

§Bridges	of	Königsberg
problem	(1735)	
◦ Known	today	as	
Kaliningrad

◦ Two	islands	plus	two	
mainland	portions	of	
city	connected	by	7	
bridges

§Is	it	possible	to	take	a	
walk	that	traverses	
each	of	the	7	bridges	
exactly	once?

April	6,	2020

Leonhard	Euler’s	Model

6.0002	LECTURE	3 17

§Each	island	a	node

§Each	bridge	an	undirected	edge
§Model	abstracts	away	irrelevant	details
◦ Size	of	islands
◦ Length	of	bridges

§Is	there	a	path	that	contains	each	edge	exactly	once?

April	6,	2020

Poll:		
Do	you	think	that	such	a	path	exists?

§Not	the Königsberg	bridges	problem	itself

§Rather,	the	way	Euler	solved	it
§A	new	way	to	think	about	a	very	large	class	of	
problems

What’s	Interesting	About	This

6.0002	LECTURE	3 19April	6,	2020

§Building	graphs
◦ Nodes
◦ Edges
◦ Stitching	together	to	make	graphs

§Using	graphs
◦ Searching	for	paths	between	nodes
◦ Searching	for	optimal	paths	between	nodes

Implementing	 and	using	graphs

6.0002	LECTURE	3 20April	6,	2020

Node	&	edge	classes

April	6,	2020 6.0002	LECTURE	3 21

Setting	
attributes

Accessing
attributes

This	creates	 a	directed	 edge;	 to	create	an	undirected	 edge,	simply	 add	another	 from	dest to	src

§Digraph	is	a	directed	graph
◦ Edges	pass	in	one	direction	only	
◦ Need	to	represent	that	collection	of	edges

§Adjacency	matrix
◦ Rows:		source	nodes
◦ Columns:	destination	nodes
◦ Cell[s,	d]	=	1	if	there	is	an	edge	from	s	to	d

= 0	otherwise
◦ Note	that	in	digraph,	matrix	is	not symmetric
◦ Uses	O(|nodes|**2)	memory

§Adjacency	list
◦ Associate	with	each	node	a	list	of	destination	nodes	that	can	
be	reached	by	one	edge

◦ Uses	O(|edges|)	memory,	therefore	good	for	sparse	graphs

Common	Representations	of	Digraphs

6.0002	LECTURE	3 22April	6,	2020

A B C D

A 1

B 1

C 1

D 1 1

destination

source

A:	[D]
B:	[A]
C:	[B]
D:	[A,	D]

Class	WeightedDigraph,	part	1

6.0002	LECTURE	3 23April	6,	2020

Get	 list	of	destinations	
for	source	node	from	dict

Add	new	destination	
and	edge	weight	to	list	

Class	WeightedDigraph,	part	2

6.0002	LECTURE	3 24April	6,	2020

List	of	reachable	 nodes

d

d

Build	the	Graph

6.0002	LECTURE	3 25

def buildCityGraph():
g = WeightedDigraph (('Boston', 'Providence', 'New York', 'Chicago',

'Denver', 'Phoenix', 'Los Angeles’)) #Create 7 nodes
g.addEdge(Edge('Boston’, 'Providence'))
g.addEdge(Edge('Boston’, 'New York'))
g.addEdge(Edge('Providence’, 'Boston'))
g.addEdge(Edge('Providence’, 'New York'))
g.addEdge(Edge('New York’, 'Chicago'))
g.addEdge(Edge('Chicago’, 'Denver'))
g.addEdge(Edge('Chicago’, 'Phoenix'))
g.addEdge(Edge('Denver’, 'Phoenix'))
g.addEdge(Edge('Denver’, ’New York'))
g.addEdge(Edge('Los Angeles’, 'Boston'))
return g

g = buildCityGraph()
print(‘The city graph:’)
print(g)

April	6,	2020

Since	 just	using	 nodes	
as	names,	 can	use	
strings	 rather	than	
creating	 node	
instances

An	Example

6.0002	LECTURE	3 26

Boston

Providence New	York

Chicago Denver

Phoenix

Los	Angeles

Adjacency	Lists
Boston:	Providence(1),	New	York(1)
Providence:	Boston(1),	New	York(1)
New	York:	Chicago(1)
Chicago:	Denver(1),	Phoenix(1)
Denver:	Phoenix(1),	New	York(1)
Los	Angeles:	Boston(1)
Phoenix:

April	6,	2020

§Shortest	(unweighted)	path	from	n1	to	n2
◦ Shortest	sequence	of	edges	such	that
◦ Source	node	of	first	edge	is	n1
◦ Destination	of	last	edge	is	n2
◦ For	edges,	e1	and	e2,	if	e2	directly	follows	e1	in	the	sequence,	the	
source	of	e2	is	the	destination	of	e1

§Shortest	weighted	path
◦ Minimize	the	sum	of	the	weights	of	the	edges	in	the	path

§For	this	lecture,	we	are	mainly	going	to	focus	on	
unweighted paths

A	Classic	Graph	Optimization	Problem

6.0002	LECTURE	3 27April	6,	2020

n1

n2e2
e3

e1

§Finding	a	route	from	one	city	to	another

§Designing	communication	networks
§Logistics	of	material	handling

§Finding	a	path	for	a	molecule	through	a	chemical	
labyrinth

§…

Some	Shortest	Path	Problems

6.0002	LECTURE	3 28April	6,	2020

§Algorithm	1,	breadth-first	search	(BFS)

§Algorithm	2,	depth-first	search	(DFS)
§Algorithm	3,	Dijkstra’s algorithm

Finding	the	Shortest	Path

6.0002	LECTURE	3 29

All	use	divide-and-conquer:	 	if	we	can	find	a	path	from	a	source	to	
an	intermediate	node,	and	a	path	from	the	intermediate	node	to	
the	destination,	the	combination	is	a	path	(but	not	necessarily	the	
shortest)	from	source	to	destination	

April	6,	2020

Another	example	of	recursive	thinking!

§Start	at	an	initial	node	(call	it	the	current	node)

§Consider	all	the	edges	that	leave	that	node,	in	some	order

§Follow	the	first	edge
◦ Check	to	see	if	at	goal	node
◦ If	so,	stop

§If	not,	try	the	next edge	from	the	current node	that	has	not	
yet	been	examined

§Continue	until	either	find	goal	node,	or	run	out	of	options
◦ When	run	out	of	edge	options	for	current	node,	move	to	next	
node	at	same	distance	from	start,	and	repeat

◦ When	run	out	of	node	options,	move	to	next	level	in	the	graph	
(all	nodes	one	step	further	from	start),	and	repeat

Breadth	First	Search

6.0002	LECTURE	3 30April	6,	2020

Algorithm	1:	Breadth-first	Search	(BFS)

6.0002	LECTURE	3 32

def bfs(graph, start, end, toPrint = False):
visited = {}
pathQueue = [[start]]
visited[start] = True
while len(pathQueue) != 0:

#Get and remove oldest element in pathQueue
tmpPath = pathQueue.pop(0)
if toPrint:

print('Current BFS path:', printPath(tmpPath))
lastNode = tmpPath[-1]
if lastNode == end:

return tmpPath
for nextNode in graph.childrenOf(lastNode):

if nextNode not in visited:
newPath = tmpPath + [nextNode]
visited[nextNode] = True
pathQueue.append(newPath)

return None

Why	can	we	stop	here?

Because	we	are	using	a	FIFO	queue,	will	explore	all	paths	with	n	hops	
before	any	path	with	more	than	n	hops;	if	don’t	find	a	path,	return	None

April	6,	2020

Set	of	nodes	 already	seen

First	in,	first	out

Note:	 a	list	of	paths	 to	explore,	each	
of	which	is	a	list	of	nodes

Next	path	 in	queue

Add	path	 in	queue

Poll:	 	
If	we	skip	
marking	
visited	
nodes,	 and	
just	add	
paths	to	
queue,	 does	
this	still	
work?	

Current	BFS	path:	Boston

Current	BFS	path:	Boston->Providence

Current	BFS	path:	Boston->New	 York

Current	BFS	path:	Boston->New	 York->Chicago

Current	BFS	path:	Boston->New	 York->Chicago->Denver

Current	BFS	path:	Boston->New	 York->Chicago->Phoenix

Shortest	 path	from	Boston	 to	Phoenix	 is	Boston->New	 York->Chicago->Phoenix

#	can	stop	as	soon	as	find	a	successful	 path,	since	 guaranteed	 to	be	shortest

Output	(Boston	to	Phoenix)

6.0002	LECTURE	3 33April	6,	2020

Current	BFS	path:	Boston

Current	BFS	path:	Boston->Providence

Current	BFS	path:	Boston->New	York

Current	BFS	path:	Boston->New	York->Chicago

Current	BFS	path:	Boston->New	York->Chicago->Denver

Current	BFS	path:	Boston->New	York->Chicago->Phoenix

Boston

Providence New	York

Chicago Denver

Phoenix

Los	Angeles

Output	(Boston	to	Pheonix)

6.0002	LECTURE	3 34

Note	that	we	skip	a	
path	that	revisits	 a	
node,	creating	 a	
loop

April	6,	2020

Note	that	we	can	skip	a	path	
that	reaches	 an	already	
visited	 node,	as	can’t	be	
shorter

Visualizing	as	a	tree	search

April	6,	2020

6.0002	LECTURE	3

35

Bos

PhoDen

Chi

NYCBos

NYCPro

PhoDen

Chi

[BOS]
[BOS,PRO]
[BOS,NYC]
[BOS,PRO,NYC]	 	#no	loops
[BOS,NYC,CHI]
[BOS,NYC,CHI,DEN]
[BOS,NYC,CHI,PHO]
[BOS,NYC,CHI,DEN,PHO]

#shorter
path

Note	how	tree	helps	
us	visualize	 that	we	
explore	 all	paths	 of	
length	 n	before	
considering	 paths	of	
length	 n+1;	so	can	
stop	once	we	find	a	
solution

§Start	at	an	initial	node

§Consider	all	the	edges	that	leave	that	node,	in	some	
order

§Follow	the	first	edge,	and	check	to	see	if	at	goal	node
◦ If	so,	check	if	shorter	than	shortest	already	seen	and	save	

§If	not	at	goal	node,	repeat	the	process	from	new	node
§Continue	until	either	find	goal	node,	or	run	out	of	
options
◦ When	run	out	of	edge	options,	backtrack	to	previous	
node,	repeating	this	process

◦ When	run	out	of	node	options,	backtrack	to	the	previous	
node	and	try	the	next	edge,	repeating	this	process

Depth	First	Search

6.0002	LECTURE	3 36April	6,	2020

§ Uses	a	LIFO data	structure	(often	called	a	stack)	
instead	of	a	FIFO data	structure	(often	called	a	queue)

§ Finds	multiple	paths,	not	just	one

Implementation	 like	BFS,	except

April	6,	2020 6.0002	LECTURE	3 37

FIFO LIFO

Algorithm	2:	Depth-first	Search	(DFS)

April	6,	2020 6.0002	LECTURE	3 39

Different	from	BFS,	taking	 last path	 in	queue

Need	 to	check	 if	better	than	
current	best	path

Only	keep	 looking	 if	not	
too	long

Poll:		
If	we	don’t	
check	that	
nextNode
already	in	path	
before	adding	
new	paths	to	
queue,	will	this	
still	work?

Skip	to	
next	
iteration	
of	loops

But	still	 adding	new	paths	 at	end	of	queue

An	Example

6.0002	LECTURE	3 40

Adjacency	List
Boston:	Providence,	New	York
Providence:	Boston,	New	York
New	York:	Chicago
Chicago:	Denver,	Phoenix
Denver:	Phoenix,	New	York
Los	Angeles:	Boston
Phoenix:	

Boston

Providence New	York

Chicago Denver

Phoenix

Los	Angeles

April	6,	2020

Current	DFS	path:	Boston

Current	DFS	path:	Boston->New	York

Current	DFS	path:	Boston->New	York	->Chicago

Current	DFS	path:	Boston->New	York	->Chicago->Phoenix

Path	found

Current	DFS	path:	Boston->New	York	->Chicago->Denver

Current	DFS	path:	Boston->Providence

Current	DFS	path:	Boston->Providence->New	 York

Current	DFS	path:	Boston->Providence->New	 York->Chicago

Output	(Boston	to	Phoenix)

6.0002	LECTURE	3 41

Boston

Providence New	York

Chicago Denver

Phoenix

Los	Angeles

April	6,	2020

Need	to	keep	searching	 to	ensure	 there	 is	no	shorter	path

Visualizing	as	a	tree	search

April	6,	2020

6.0002	LECTURE	3

42

Bos

PhoDen

Chi

NYCBos

NYCPro

PhoDen

Chi

[]
[BOS,PRO]
[BOS,NYC,CHI,DEN]

Note	how	tree	helps	
us	visualize	 that	we	try	
to	explore	 one	path	in	
depth,	until	we	find	
goal,	hit	a	loop,	or	run	
out	of	options

Note	how	we	
remove	from	end	of	
queue,	 not	front

§Want	to	minimize	the	sum	of	the	weights	of	the	edges,	
not	just	the	number	of	edges

§DFS	can	be	easily	modified	to	do	this,	if	we	assume	
that	weights	are	non-negative	numbers
◦ But	slow

§BFS	is	fast	for	unweighted graphs,	but	cannot	work	for	
weighted	graphs,	since	shortest	weighted	path	may	
have	more	than	the	minimum	number	of	hops

§Gets	us	to	Dijkstra’s algorithm

What	About	a	Weighted	Shortest	Path

6.0002	LECTURE	3 43April	6,	2020

Let’s	take	a	short	break

April	6,	2020 6.0002	LECTURE	3 44

§ Generalization	of	breadth-first	search	that	does	not	
require	edges	to	have	equal	weight

§ Uses	a	priority queue	instead	of	a	FIFO	queue
◦ Priority	queue	uses	some	numerical	measure	to	insert	
new	items	in	queue	based	on	ordering	(typically	smallest	
first)	

◦ Still	takes	items	from	the	front	of	the	queue,	but	insertion	
no	longer	is	automatically	at	the	end	of	the	queue

Algorithm	3:	Dijkstra’s Algorithm

April	6,	2020 6.0002	LECTURE	3 45

§ unvisited:	list	of	nodes	that	have	not	yet	been	visited
◦ Initially	contains	all	nodes	in	graph

§ distanceTo:	a	dict mapping	each	node	to	the	minimum	
distance	found	so	far	for	a	path	from	start	node	to	that	
node
◦ Initially	zero	for	start	node	and	infinity	for	all	others

§ predecessor:	a	dict mapping	each	node	to	previous	node	
on	the	shortest	path	found	so	far	from	start	to	that	node
◦ Initially	None	for	all	nodes

§ Visit	nodes	in	increasing	order	of	distance	from	start	(as	in	
BFS),	updating	distanceTo and	predecessor	

§When	all	nodes	visited,	construct	shortest	path	using	
predecessor	by	working	backwards	from	end	node

Three	Key	Data	Structures	and	Basic	Idea

April	6,	2020 6.0002	LECTURE	3 46

§ For	current	node,	choose	an	unvisited	node	with	
shortest	distance	from	start	node,	(initially	 this	is	the	
start	node)
◦ This	is	the	metric	defining	the	priority	queue

§ Check	each	neighbor	of	current	node	(those	reachable	
in	one	step	from	current	node)
◦ Calculate	distance	from	starting	node	to	each	neighbor,	
using	path	passing	through	current	node

◦ Keep	shortest	distance	path	for	each	neighbor	(and	
update	predecessor and	distanceTo if	needed)

§ Repeat	for	all	nodes,	until	all	are	visited
§Will	show	implementation	that	assumes	all	edges	
have	equal	weights
◦ Almost	trivial	to	adapt	to	unequal	weights

Outline	of	Algorithm

April	6,	2020 6.0002	LECTURE	3 47

Initialization

April	6,	2020 6.0002	LECTURE	3 48

Main	Loop

April	6,	2020 6.0002	LECTURE	3 49

How	would	
this	change	
for	weighted	
edges?

Need	 to	check	
for	shorter	
path,	update	
information

Build	Path	from	predecessor

April	6,	2020 6.0002	LECTURE	3 50

Back	chaining	 to	
reconstruct	 path	from	
end	to	start

Example	 (Boston	to	Chicago)

April	6,	2020 6.0002	LECTURE	3 51

Boston

Providence New	York

Chicago Denver

Phoenix

Los	Angeles

For	simplicity,	just	looking	for	path	from		
Boston	to	Chicago	in	this	example

Move	Graph	Cut

April	6,	2020 6.0002	LECTURE	3 52

Boston

Providence New	York

Chicago Denver

Phoenix

Los	Angeles

distanceTo and	predecessor	 are	
guaranteed	 not	to	change	for	
nodes	 above	the	cut

Move	Graph	Cut

April	6,	2020 6.0002	LECTURE	3 53

Boston

Providence New	York

Chicago Denver

Phoenix

Los	Angeles

Move	Graph	Cut

April	6,	2020 6.0002	LECTURE	3 54

Boston

Providence New	York

Chicago Denver

Phoenix

Los	Angeles

Move	Graph	Cut

April	6,	2020 6.0002	LECTURE	3 55

Boston

Providence New	York

Chicago Denver

Phoenix

Los	Angeles

Move	Graph	Cut

April	6,	2020 6.0002	LECTURE	3 56

Boston

Providence New	York

Chicago Denver

Phoenix

Los	Angeles

Move	Graph	Cut

April	6,	2020 6.0002	LECTURE	3 57

Boston

Providence New	York

Chicago Denver

Phoenix

Los	Angeles

§BFS	will	stop	once	it	finds	a	path

§DFS	will	stop	once	it	has	found	a	path	and	has	explored	
all	paths	of	shorter	length

§Dijkstra visits	all	nodes	in	the	graph,	but	not	all	paths
§So	what	does	this	suggest	about	efficiency	of	the	
algorithms,	both	in	terms	of	complexity	and	in	terms	of	
practical	application?

Some	Observations

April	6,	2020 6.0002	LECTURE	3 58

Test	on	Some	Large	Graphs

April	6,	2020 6.0002	LECTURE	3 59

§ Suppose	edges	have	non-negative	weights?
◦ DFS	and	BFS	have	to	be	modified	to	explore	all	paths
◦ Dijkstra’s algorithm	(easily	modified)	does	not need	to	
explore	all	paths
◦ loop	over	outbound	edges,	not	just	neighbors;	
◦ add	weight	of	edge	when	considering	alternative	paths,	not	just	
count	of	hops

§ Dijkstra’s algorithm	also	easily	solves	the	“all	nodes	
shortest	path	problem”

So,	Why	Bother	with	Dijkstra’s Algorithm?

April	6,	2020 6.0002	LECTURE	3 60

Build	a	graph	with	weighted	edges

April	6,	2020 6.0002	LECTURE	3 61

Dijkstra’s Algorithm	with	Weights

April	6,	2020 6.0002	LECTURE	3 62

Was	 looping	 over	neighbours,	
which	are	nodes

Add	weight,	
not	 just	1Get	neighbour

Example	of	Weighted	Path

April	6,	2020 6.0002	LECTURE	3 63

§ Notice	that	end doesn’t	come	into	play	until	last	step	
of	algorithm

§ predecessor	can	be	used	to	quickly	find	a	path	from	
start	to	any node	in	graph

§ If	algorithm	is	run	using	each	node	as	start,	and	result	
is	stored,	can	quickly	find	shortest	path	between	any	
pair	of	nodes
◦ Need	not	start	from	scratch	for	each	starting	node

All	Nodes	Shortest	Path

April	6,	2020 6.0002	LECTURE	3 64

§ Graphs	are	cool
◦ Best	way	to	create	a	model	of	many	things
◦ Capture	relationships	among	objects

◦ Many	important	problems	can	be	posed	as	graph	
optimization	problems	we	already	know	how	to	solve

§ Depth	first	and	breadth	first	search	are	important	
algorithms
◦ Can	be	used	to	solve	many	problems

§ Dijkstra’s algorithm	better	for	finding	shortest	path	in	
large	graphs	with	(non-negative)	weighted	edges
◦ Many	variants	optimized	for	specific	applications
◦ Especially	useful	for	multiple	tasks

Summarizing

April	6,	2020 6.0002	LECTURE	3 65

April	6,	2020 6.0002	LECTURE	3 66

