NUMBERS,
APPROXIMATIONS,
and BISECT\ON

(download slides and .py files to follow alon
6.0001 LECTURE 3

Eric Grimson

Last Time

" new data structure — strings

" jteration and loops — while, for

= guess and check algorithms

2/9/20 6.0001 LECTURE 3 p

Today

= 3 short digression:
° representing numbers

= approximate solutions

= guess & check algorithms using approximations

= bisection methods

2/9/20 6.0001 LECTURE 3 3

Assigned Reading

but no, I'm not going to say ‘spoiler alert’
every time something interesting happens.”

="Today:
> Sections3.3-3.5 — -
=Next lecture: ‘ ntroductic_:n to
o Section4.1-4.3 PP aggputation

" <and Programming

sing Python

'/ With'Application t6'Understandirg Data

See https://mitpress.mit.edu/books/introduction-computation-and-programming-

using-python-second-edition for errata sheet
2/9/20 6.0001 LECTURE 3 4

Numbers in Python

" int: integers, (or whole numbers), like the ones you
learned about in elementary school

* float:=reals={or-numibberswith-digits-afterthe-cecimal-
rthfieet I o i

2/9/20 6.0001 LECTURE 3 5

A Closer Look at Floats DETOUR

*Python (and all programming languages) uses “floating
point” to approximate real numbers

"The term “floating point” refers to way these numbers
are stored in computer (more later about this)

*You would hope that approximating real numbersin
computations usually shouldn’t matter

2/9/20 6.0001 LECTURE 3 6

1+1 IS NEsRLY 3 S
2+2ISPRACTICANY 7

Does approximation
matter?

x =0 .

’&' 3‘) \
for i in range(10): $0x901\ 3((\6 ,&("‘
x += 0.1 5% _ x S

\ //* ((\ve
print(x == 1) * z\o\‘ 0‘6‘?’
e e, O
print(x, ‘==", 10*0.1) ‘\(\"0‘ 0‘\\" AL
VL0
o < 50" N
o <O @’ A0
e® v QQ \@(\ .
o2 ? CIINC\Y
7 o 0" N Q\‘\
X et AW
R R
’\0‘% "3 P;é 35

2/9/20 6.0001 LECTURE 3 7

Why?

=Representation of floating point numbersis function of
computer hardware, not programming language
implementation

=Usual representation: standard called IEEE 754 floating point

=Key things to understand

° In all modern computers, numbers (and everything else) are
represented as a sequence of bits (0 or 1). Think of these as
binary numbers (i.e., base 2)

> When we write numbers down, we are using a notation
designed to express rational numbers using base 10. E.g.,0.1
stands for the rational number 1/10

> This produces cognitive dissonance — and it will influence how
we write code

2/9/20 6.0001 LECTURE 3 8

THIS SAYS YOU'RE

I NEED You SUPPOSED To Do FOUR ISN'T
To SIGN OFF 100 SIT=UPS. You 100, JASON.
REALLY DID THAT

ALLOW ME
ALLOW ME To EXPLAIN
TO EXPLAIN THE TERM
THE CONCEPT “FAT
| OF BINARY CHANCE."

Why Binary?

= Easy to implement in hardware—build components
that can be in one of two states

Core
memory

4096 bit; 256 bit
$2.00 per bit

1960 ($0.62/bit) - 1971 (50.004/bit)

What does a bit of dynamic RAM cost today? $0.0000000002/bit

2/9/20

6.0001 LECTURE 3

There are only 10 types

of people in the world:
Those who understand binary
and those who don't.

Binary Numbers

"Base 10 representation of an integer
> sum of powers of 10, scaled by integers from 0to 9

1507 =1*103 + 5*10%2 + 0*101 + 7*10°
=1000+500+ 7

"Binary representationis same idea in base 2
> sum of powers of 2, scaled by integers from Oto 1

#1507,,=1*210+ 1%28 + 1%27 + 1*26 + 1*2> + 1*21 + 1*20
=1024 + 256+ 128 +64 +32+2+1

=10111100011,

2/9/20 6.0001 LECTURE 3 10

ON A SCALE OF 1 T® 10,
HOW LIKELY IS IT THAT
THIS QUESTION 1S
USING BINARY?

Converting Decimal e
Integer to Binary] %

" We inputintegersin decimal form, computer needsto
convert to binary, so it can store/manipulate the numbers

"Consider example of

o X =19;0= 1%2%+ 0*23 + 0*22 += 1001@

" |f we take remainder of x relativeto2 (19%2 in our
example), that gives us the smallest binary digit (bit)

" [f we then inteEer dividexby 2 (19//2 inourexample),
all the bits get shifted right

° 19//2 = 1%¥23 + 0*22 + 0*21 + 1*2° = 10011

" Repeat on the remainder; this gets next bit, and new
remainder, and so on

" Let’s us convert to binary form

2/9/20 6.0001 LECTURE 3 11

FEELING
A BIT OFF.

Doing this in Python

if num < O:

isNeg = True
num = abs (num)
else:

isNeg = False

risult = "' 6\\6?0\)’&,
if num == x| S
_ A . C’%\ o (\%\ \06(
result = '0 N x O
X) N\

while num > O: $O’Q,e' \"656 9\0(

result = str(num%2) + result gds C§b§

SN
num = num//2 'é§§5
\

if isNeg:
result = '-' 4+ result

2/9/20 6.0001 LECTURE 3 12

Hardware
Implementation

"Computer hardware s built around methods that can
efficiently store information as 0’s or 1’s (a voltage is
“high” or “low”; or a magnetic spinis “up” or “down”)
and that can efficiently perform arithmetic operations
on such representations

,23. \

"Fine for integer arithmetic

*But what about numbers with fractional parts (floats)?

2/9/20

6.0001 LECTURE 3 13

R <« NUMERATOR
4 € DENOMINATER

ra Ct I O S “You know, for something that sounds like two

killer robots, this is really disappointing.”

=\What does the decimal fraction 0.abc mean?
°ca*101 +b*102 + c*103

=For binary representation, we use the same idea
(where a, b, c are either 0 or 1)

0 a*21 +b*22 4 c*23

=Or to putin simpler terms, the binary representation
of a decimal fraction f would require finding the values
of a, b, ¢, etc. (all either 0 or 1) such that

of=0.5a+0.25b +0.125c + 0.0625d + 0.03125e + ...

2/9/20 6.0001 LECTURE 3 14

ERTOONS.COM

EQUINALENT FRACTIONS
‘ 4
3

_2. -i
-5 %" 17

1
& 2

\

=
E
“—é
i4

(
(Il

. ,u i
What About Fractions? ﬁ“ﬁ%

fIIkm bgfy bk

* How might we find that representation?
= |n decimal form: 3/8 =0.375 =3*101+ 7*102+ 5*10°3

= If we can multiply by a power of 2 big enough to turn
into a whole number, can convertto binary (using
previous method), and then divide by the same power
of 2 to restore

= (0.375*(2**3) =
= Convert 3 to binary, yielding 11,

= Divide by 2**3 (shift right three spots) to get 0.011,
Check:0.011,is1/4+1/8=3/8

2/9/20 6.0001 LECTURE 3 15

x = float(input (' Enter a decimal number between 0 and 1: '))

p =20 Find power
while ((2**p)*x)%1 != 0: of 2 to
print('Remainder = ' + str((2**p)*x - int((2**p)*x))) make
p +=1 integer
num = int(x*(2%**p)) Convert to
Int
result = ' Encode as
if num == 0: binary
result = '0' number
while num > O0:
result = str(num%2) + result
num = num//2
for i in range(p - len(result)): aigfgzﬂ
result = '0' + result
Insert
result = result[0:-p] + '.' + result[-p:] decimal
print('The binary representation of the decimal ' + str(x) + ' 1is

' + str(result))

2/9/20 6.0001 LECTURE 3

But ...

*Why did display of remainder suddenly jump from simple
fraction?to number with a bunch of zeroes and a tiny additional
amount:

"| am assuming that the representation for the decimal fraction |
provided as input is completely accurate and not already an
approximation as a result of number being read into Python

"Moreover, if there is no integer p such that x(2**p) is a whole
number, then internal representation is always an approximation,
and | can’t find the exact binary representation

"Hence, while the floating point conversion will work precisely for
numbers like 3/8, it will not work for numbers like 1/10

o The first example has a power of 2 that converts to whole number,
the second one doesn’t

2/9/20 6.0001 LECTURE 3 17

V(lll GOTTA PROBLEI
W
1l

i IW’

- ”))l S 'V'
i | o |
iR el @

Why is this a problem?

*What does the decimal representation 0.125 mean?
o1*101+ 2*1072 + 5*10°3

=sSuppose we want to representit in binary?
o 1*23 0.001 (only need a few bits)

"How how about the representation 0.1?
°In base 10: 1 * 10

o lnbase2:? 0.0001100110011001100110011...goes
on forever

Any finite number of bits gives us an approximation

2/9/20 6.0001 LECTURE 3 18

And the point is?

5|f everything ultimately is representedin terms of bits
we need to think about how to use binary
representation to capture numbers

"Integers are straightforward

"But real numbers (things with digits after the decimal
point) are a problem:

> Have to somehow approximate the potentially infinite
binary sequence of bits needed to represent them

o MORE IMPORTANTLY, have to consider how
approximation of numbers will impact algorithm design

2/9/20 6.0001 LECTURE 3

4

19

|l used to

hate math,
but then |
realized
' " decimals
Floating Point Numbers — [esdiim
" Floating point representationis a pair of integers e@‘)f
o Consists of a set of significant digits and a base 2 exponent Qx ‘oux\d‘:
o (1, 1) > 1*21 > 10, > 2.0 oaﬁ\gooz&\co &
W)
° (1,-1) > 1*21 > 0.1, > 0.5 S \\00 6‘3\%63\0
() 0 S
o (125,-2) > 125%22 > 11111.01, > 31.25 < & o
2 \0 X\

*"The maximum number of significant digits governs the
precision with which numbers can be represented

> When exceeded, numbers are rounded

"Most modern computers use 32 bits to represent significant
digits, so error will only be on order of 2*¥10°

2/9/20 6.0001 LECTURE 3 20

.and. i should care,

why

6.0001 LECTURE 3

Because You Can Get
Surprising Results

for 1 in range(10):
X += 0.125
print(x == 1.25)

<

2/9/20

for 1 in range(10):
X += 0.1
print(x == 1)

@

print(x, '=="', 10*0.1)

6.0001 LECTURE 3 22

The Moral of the Story

& ,Vwm 1S THE MORAL OF A STORY? |,
* "The Moral is the leSson or

message that a writer gives to
the reader at the end of a Story.
Tt often involves the main character
learning something

R

Never, ever, use == to test floats
Instead test whether they are within small amount of each other

What gets printed isn’t always what is in memory

Need to be careful in designing algorithms that use floats, to

account for approximate representations of numbers
2/9/20 6.0001 LECTURE 3 23

Effect of approximation
on our algorithms?

= Exact answer may not be accessible

= Need to find ways to decide when we have a “good
enough” answer — is it close enough to ideal answer?

= Need ways to deal with fact that exhaustive
enumeration can’t test every possible value, since set
of possible guesses to check is in principle infinite

2/9/20 6.0001 LECTURE 3

P

Finding Roots

= Last lecture we looked at using guess & check
methods to find the roots of perfect squares

= Suppose we want to find the square root of
any positive integer, or any positive number

o Answer may no longer be an integer, so need to
change how we generate guesses

o> Answer may not be found exactly, so need to
change how decide when we are done

" Back to original question: What does it mean
to find the square root of x?

o Find an r such thatr*r=x7?

o If x is not a perfect square, then not possible in
general to find an exact r that satisfies this
relationship, but may find an r so that |r*r—x | is
small

2/9/20 6.0001 LECTURE 3

Find the root of a
perfect food (truffle)

25

Approximation

"Find an answer that is “good enough”
o E.g., find a r such that r*r is within a given (small) distance of x

o By tradition, use epsilon for distance, so given x we want to find r
such that |r“-x|<e

"Algorithm
o Start with guess known to be too small —call it g
o Increment by some small value — call it a —to give a new guess g
o Check if g**2 is close enough to x (within €)
o Continue until get answer close enough to actual answer

sEssentially, we are looking at all valuesg + k*a for positive
integer values of k — so similar to exhaustive enumeration

> May not find exact answer because of choice of k, initial value of g

2/9/20 6.0001 LECTURE 3 26

B ©GOOD NUFF RD,

Approximation
Algorithms

"|n this case, we have two parameters to set — epsilon
(how close are we to answer?) and increment (how
much to increase our guess?)

=Performance will vary based on these values
° |n speed
° |n accuracy

=Decreasing increment size > slower program, but
more likely to get closer to real answer

" [ncreasing epsilon —> less accurate answer, but faster
program

2/9/20 6.0001 LECTURE 3 27

Implementation

X = 36
epsilon = 0.01
humGuesses = 0

ans = 0.0 o
increment = 0.0001 &
while abs(ans**2 - x) >= epsilon: e""’(\sz“"*
. X!
ans += increment W0 6”?
?

humGuesses += 1 °

print('numGuesses =', numGuesses)

1f abs(ans**2 - x) >= epsilon:
print('Failed on square root of', x)
else:

print(ans, 'is close to square root of', x)

2/9/20 6.0001 LECTURE 3 28

Reasoning About Loop
Termination

=Define a decrementing function
o Function maps variable(s) in
program toa number
o Show that value of function starts
out>=0
> Show that value is decreased each
time loop body is executed

> Show that loop is exited when value _
is<=0 antee termm

2/9/20 6.0001 LECTURE 3 29

Reasoning About Loop
Termination

Zeno of Elea: 495BC - 425 BC

=Zeno’s paradox

o Achilles gives a tortoise a head MY CLIENT caxBN*r»?_avg
' KILLED ANYONE. WITH THI
startina race_ ARROM] D T GN AROVE T
° Both run at different constant T'D LKE T EXAMINE
speeds YOUR PROOF, ZENO. YOU
o By time Achilles reaches tortoise’s MAY AR "U“C“H\Bmc' l'
—BUT NEVER REACH IT!

starting point, tortoise has moved
further distance

o Repeat argument
o Thus, Achilles can never catch %
tortoise

Decrementing function should be decreased each time in a way
that guarantees that it reaches O in a finite number of steps

30

2/9/20 6.0001 LECTURE 3

Approximation Algorithms

X = 36

epsilon = 0.01 Function: map ans to
numCuesses = 0 abs(ans**2 - x) - epsilon
ans = 0.0

increment = 0.0001
while abs(ans**2 - x) >= epsilon:
ans += increment
numGuesses += 1
print('numGuesses =', numGuesses)
1t abs(ans**2 - x) >= epsilon:
print('Failed on square root of', x)
else:

print(ans, 'is close to square root of', x)

Initial value > 07 Yes: X - epsilon

Decremented by positive amount |Yes: from x-ans¥**2
each iteration? to x - (ans+increment)**2

6.0001 LECTURE 3

Approximation Algorithms

X = 36

epsilon = 0.01
humGuesses = 0

ans = 0.0
increment = 0.0001

N5
NS
LA (\\
\e\\(\ O_O
"

while abs(ans**2 - x) >= epsilon:

ans += increment
numGuesses += 1
print('numGuesses =

, numGuesses)

1f abs(ans**2 - x) >= epsilon:

print('Failed on square root of', x)

else:

Does decrementing function
always eventually make this
true?

Will this test ever
return True?

print(ans, 'is close to square root of', x)

We should run it, and check

2/9/20

6.0001 LECTURE 3

32

Some Observations
= Didn’t find 6
= Took about 60,000 guesses

" Let’s try:
0 24
o2
012345
°c 54321

2/9/20 6.0001 LECTURE 3 33

A% 99 little bugs in the code.
»2 99 little bugs in the code.
‘5[‘ Take one down, patch it around.

Let’s Debug It

X = 54321

epsilon = 0.01

numGuesses = 0

ans = 0.0

increment = 0.0001

while abs(ans**2 - x) >= epsilon:

ans += increment

numGuesses += 1

1f numGuesses%100000 == O:
print('Current guess =', ans)
print('Current gquess**2 - x =', abs(ans*ans - Xx)

print("numGuesses =", numGuesses)

it abs(ans**2 - x) >= epsilon:
print('Failed on square root of', x)

else:

print(ans, 'is close to square root of', x)

127 little bugs in the code...

2/9/20 6.0001 LECTURE 3 34

Some Observations

=sDecrementing function eventually starts incrementing
> So didn’t exit loop as expected

=\We have over-shotthe mark

°|.e.,we jumped from a value too far away but too small to
one too far away but too large

*We didn’t account for this possibility when writing the
loop

=Let’s fix that

2/9/20 6.0001 LECTURE 3 35

Let’s Debug It

X = 54321
epsilon = 0.01
humGuesses = 0
ans = 0.0
increment = 0.0001
while abs(ans**2 - x) >= epsilon and ans**2 <=
ans += 1increment
humGuesses += 1
1f numGuesses%50000 ==
print('Current guess =', ans)
print('Current guess**2 - x =',
abs(ans*ans - X))
print('numGuesses =', numGuesses)
if abs(ans**2 - x) >= epsilon:
print('Failed on square root of', x)
else:

print(ans, 'is close to square root of', x)

2/9/20 6.0001 LECTURE 3 36

Some Observations

*Now it stops, but reports failure, because it has over-
shot the answer ,\\ooQ

"Let’s try resetting increment to 0.00001

2/9/20 6.0001 LECTURE 3 37

Rabbits jump and they
live for 8 years.
Dogs run and

Lessons Learned in Ly Skt
Approximation Algorithms i

[Lesson learned.]

"Need to be careful that looping mechanism doesn’t
jump over exit test and loop forever

sTradeoff exists between efficiency of algorithm and
accuracy of result

*Need to think about how close an answer we want
when setting parameters of algorithm

=To find a good answer, this method can be painfully
slow

° |s there a faster way that still gets good answers?

2/9/20 6.0001 LECTURE 3 38

Five Minute Break

k376009124

Chance to Win Bucks™

=sSuppose | attach a hundred dollar bill to a particular
page in the text book

*|f you can guess page in 8 or fewer guesses, you get

the “Benjamin” \/-\066
\)\,
*If you fail, you lose a late day 6@@‘9
S

=Would you want to play? o

o Hint: the book is 447 pages long o
*Now suppose on each guess | told you whether you e‘,a@
were correct, or too low or too high R
. : : 5 R &«,‘
Would you want to play in this case- +°

1 2 3 4 5 6 7
447 = 223 > 111> 55227 >13>6 > 3

2/9/20 6.0001 LECTURE 3 40

Bisection Search

sSuppose we are given a problem where there is an inherent
order to the range of possible answers, and that thereis a
maximum and minimum possible so that the range of
possible answers forms a coherent interval

*Thus we know answer lies within some interval
o Guess midpoint of interval

o |f not answer, then check if answer is greater than or less than
midpoint

> Change interval
o Repeat

"Process cuts set of things to check in half at each stage

o Exhaustive search reduces set of possible answers from N to N-
1 on each step; bisection search reduces from N to N/2

2/9/20 6.0001 LECTURE 3 41

Log Growth [s Better

"Process cuts set of things to check in half at each stage
o Characteristic of a logarithmic growth

="We can replace the algorithm that is linear in the
number of possible guesses with one is that logarithmic
on the number of possible guesses

> This should be much more efficient)

2/9/20 6.0001 LECTURE 3 42

Y

]

Bisection Search TP EEEEEEEEEEED

= Suppose we are looking for square root of x, so we know
that the answer lies between O and x

= Rather than exhaustively trying things starting at O,
supposeinstead we pick a number in the middle of this
range

F

g

= |f we are lucky, this answer is close enough

2/9/20 6.0001 LECTURE 3 43

/

L

8 _10‘13‘}4}8«19‘21 24‘3’?‘40 45‘71

Bisection Search v

" If not close enough, is guess too big or too small?

" [f g**2 > x, then know g is too big; so now search

e —

new g g

= And if, for example, this new g is such that g**2 < x,
then know too small; so now search

H_{F

newg nextg g
" At each stage, reduce range of values to search by half
Replace algorithm that is linear in the number of possible guesses
with one is that logarithmicin the number of possible guesses

2/9/20 6.0001 LECTURE 3 44

An analogy

=sSuppose we forced you to sit in alphabetical order in
26-100, from front left corner to back right corner

= To find a particular student, | could ask the personin
the middle of the hall their name

"Based on the response, | can either dismiss the back
half or the front half of the entire hall

"And | repeat that process until | find the person| am
seeking

2/9/20 6.0001 LECTURE 3 45

VE=2

It’s all fun and games

Fast Square Root

X = 54321
epsilon = 0.01
numGuesses = 0

fow = 0.0
high = x
ans = Chigh + Tow)/2
while abs(ans**2 - x) >= epsilon: $
print('"Tow = ' + str(low) + ' high = ' + str(high)\
+ 'ans = ' + str(ans))
humGuesses += 1
1f ans**2 < x:
Tow = ans
else:
high = ans
ans = (high + low)/2.0
print('numGuesses = ' + str(numGuesses))

print(str(ans) + ' is close to square root of ' + str(x))

2/9/20 6.0001 LECTURE 3 46

Log Growth Is Better!

"Brute force search for root of 54321 took over 23M guesses

="With bisection search, reduced to 30 guesses!

"We'll spend more time on this later, but we say the brute force
method is linear in size of problem, because number to steps
grows linearly as we increase problem size

=Bisection search is logarithmic in size of problem, because
number of steps grows logarithmically with problem ssize

o search space (if finding root of x, with step of size a, then N = x/a)

o first guess: N/2
o second guess: N/4
o kth guess: N/2k

> done when N/2kis 1; or in roughly k = log,N steps

2/9/20 6.0001 LECTURE 3 'y

Bisection Search:
Cube Root

cube = 27

epsilon = 0.01
numGuesses = 0

low = 0

high = cube

ans = (high + low)/2.0

while abs{ans**3 - cubg) >= epsilon:
if |ans**3 < cube
low = ans
else:
high = ans
ans = (high + low)/2.0
numGuesses += 1

print(numGuesses =', numGuesses)
print(ans, 'is close to the cube root of', cube)

2/9/20 6.0001 LECTURE 3 48

VE=2

It’s all fun and games

Fast Square Root

X = 0.5
epsilon = 0.01
numGuesses = 0

Tow = 0.0
high = x
ans = Chigh + Tow)/2
while abs(ans**2 - x) >= epsilon: $
print('"Tow = ' + str(low) + ' high = ' + str(high)\
+ 'ans = ' + str(ans))
numGuesses += 1)
if ans**2 < x: . Wwork:
low = ans of % 90€° T
else:) \Nhat \la\ues
high = ans ¥o
ans = Chigh + low)/2.0
print('numGuesses = ' + str(numGuesses))

print(str(ans) + ' is close to square root of ' + str(x))

2/9/20 6.0001 LECTURE 3 49

Does it always work?

" Try running code for x suchthat 0 < x<1

" [f x< 1, weare searching from 0 to x but know square
root is greater than x and less than 1

= Modify the code to choose the search space
dependingon value of x

= As we will seein a later lecture, careful thought about
test cases is important in ensuring that algorithm
performs as expected on all legal inputs

2/9/20 6.0001 LECTURE 3 10)

x = 0.5
epsilon = 0.01
numGuesses = 0
if x >= 1:
low = 1.0
high = x
else:
low = x
high = 1.0
ans = (high + low)/2

while abs(ans**2 - x) >= epsilon:
print('low = ' + str(low) + ' high = ' + str(high)\
+ ' ans = ' + str(ans))

numGuesses += 1
if ans**2 < Xx:
low = ans

else:
high = ans
ans = (high + low)/2.0
print('numGuesses = ' + str(numGuesses))

Brint‘str‘an52 + ' is close to square root of ' + str‘xzz

2/9/20 6.0001 LECTURE 3 51

Some Observations |

= Bisection search radically reduces computation time —
being smart about generating guesses is important

= Search space gets smaller quickly at the beginning and
then more slowly (in absolute terms, but not as a
fraction of search space) later

o Can see tradeoff between accuracy and speed

= Works on problems with “ordering” property — value
of function being solved varies monotonically with
input value

> Here function is ans**2; whichgrows as ans grows

= Can we do this even more efficiently?

2/9/20 6.0001 LECTURE 3 52

Newton-Raphson

" General approximation algorithm to find roots of a polynomial in
one variable

f(x) =ax"+a, X"t +..+a;x+a,
= Want to find r such that f(r) = 0

" For example, to find the square root of 24, find the root of f(x) =
x> — 24

= Newton developed method in 1685; method created sequence
of polynomials, whose final solution is the desired root

= Raphson developed a much cleaner method that found
successive approximations to the root, published in 1690

= We really use Raphson’s method, but Newton (being much more
famous) also gets credit (often method is just referred to as
Newton’s method, even though we use Raphson’s version)

2/9/20 6.0001 LECTURE 3 53

Intuition for Newton-Raphson

f(x)

Initial Guess

”l'.'

F{ixz)

After Second Iteration

fix) root f(Xl)/f’(Xl)

2/9/20 6.0001 LECTURE 3 54

Newton-Raphson

= General approximation algorithm to find roots of a
polynomial in one variable

f(x) =ax"+a, X" +...+a,x+a,

= Raphson showed that if g is an approximation to the
root, then

g — f(g)/f'(g)
is a better approximation; where f’ is derivative of f

2/9/20 6.0001 LECTURE 3

55

Newton-Raphson Root Finder

=Simple case: cx? + k

="First derivative: 2cx

=So if polynomial is x? - k, then derivative is 2x

"Newton-Raphson says given a guess g for root of k, a
better guess is

g — (g2 —k)/2g

2/9/20 6.0001 LECTURE 3 56

Newton-Raphson Root Finder

*Another way of generating guesses, which we can check;
very efficient
epsilon = 0.01

y = 24.0
guess = y/2.0

numGuesses = 0

while abs(guess*guess - y) >= epsilon:
numGuesses += 1
guess = guess - (((guess**2) - y)/(2*guess))

print (‘numGuesses = ‘ + str(numGuesses))

print('Square root of + str(y) + ' is about + str(guess))
2/9/20 6.0001 LECTURE 3 57

"\

terative Algorithms -

= Guess and check methods build on reusing same code

o Use a looping constructto generate guesses, then check
and continue

= Generating guesses
o Exhaustive enumeration

° Bisection search
> Newton-Raphson (for root finding)

2/9/20 6.0001 LECTURE 3 58

Summary

seek “good enough” answer using approximations

*When testing floating point numbers (e.g., as part of
an approximate answer), important to understand how
computer representsthese in binary, and why we use
“close enough” and not “=="

=Bisection search is a great way to reduce a linear
algorithm to a logarithmic one

2/9/20 6.0001 LECTURE 3 59

