
Knapsack Problems
and Dynamic
Programming

(download slides and .py files from Stellar to follow along)

John Guttag

MIT Department of Electr ical Engineering and
Computer Science

6.0002 LECTURE 2 1

§ Today
◦ Chapter 13
◦ Section 5.3.2 (List

comprehension)

§ For Monday
◦ Section 12.2

Relevant Reading

6.0002 LECTURE 2 2

Testing Different Definitions of “Best”

6.0002 LECTURE 1 3

Running the Tests

6.0002 LECTURE 1 4

Run code

§ Sequence of locally “optimal” choices don’t always
yield a globally optimal solution

§ Is greedy by density always a winner?
◦ Try testGreedys(foods, 1000)

Why Different Answers?

6.0002 LECTURE 1 5

§ Easy to implement

§ Computationally efficient

§ Poll 1

The Pros Greedy

6.0002 LECTURE 1 6

§ Does not always yield the best solution
◦ Don’t even know how good the approximation is

§ Suppose we want to find a truly optimal solution?

The Con of Greedy

6.0002 LECTURE 1 7

§ 1. Enumerate all possible combinations of items.

§ 2. Remove all of the combinations whose total units
exceeds the allowed weight.

§ 3. From the remaining combinations choose any one
whose value is the largest.

Brute Force Algorithm

6.0002 LECTURE 1 8

Use a Search Tree to Do This

6.0002 LECTURE 1 9

How Computer Scientists Draw Trees

6.0002 LECTURE 1 10

§ The tree is built top down starting with the root
§ The first element is selected from the still to be
considered items
◦ If there is room for that item in the knapsack, a node is

constructed that reflects the consequence of choosing to
take that item. By convention, we draw that as the left
child

◦ We also explore the consequences of not taking that
item. This is the right child

§ The process is then applied recursively to non-leaf
children
§ Once tree generated, chose a node with the highest
value that meets constraints

Search Tree Implementation

6.0002 LECTURE 1 11

§ With calorie budget of 750 calories, chose an optimal
set of foods from the menu

Illustrative Example

6.0002 LECTURE 1 12

Food beer pizza burger

Value 90 30 50

calories 154 258 354

A Search Tree Enumerates Possibilities

6.0002 LECTURE 1

13

Take Don’tTake

Left-first, depth-first
enumeration

Val = 170
Cal = 766

Val = 120
Cal = 766

Val = 140
Cal = 508

Val = 90
Cal = 145

Val = 80
Cal = 612

Val = 30
Cal = 258

Val = 50
Cal = 354

Val = 0
Cal = 0

Header for Decision Tree Implementation

6.0002 LECTURE 2 14

toConsider. Those items that nodes higher up in the tree
(corresponding to earlier calls in the recursive call stack)
have not yet considered

avail. The amount of space still available

Body of maxVal

6.0002 LECTURE 2 15

Does not actually build search tree
Local variable result records best solution found so far

Don’t explore paths
that exceed
constraint

Local variable
result records
best solution so far

§ Understanding maxVal

Poll 2

6.0002 LECTURE 2 16

§ Don’t actually build a search tree

§ Generate one path through the tree at a time
◦ Path encoded in recursive call stack

§ Keep track of best path so far
◦ In local variable result

Some Things to Note

6.0002 LECTURE 2 17

§ With calorie budget of 750 calories, chose an optimal
set of foods from the menu

Try It on Example from Lecture 1

6.0002 LECTURE 2 18

Food wine beer pizza burger fries coke apple donut

Value 89 90 30 50 90 79 90 10

calories 123 154 258 354 365 150 95 195

Run Code

6.0002 LECTURE 2 19

6.0002 LECTURE 2 20

§ Gave us a better answer than any of the greedies

§ Finished quickly

§ But 28 is not a large number
◦ We should look at what happens when we have a more

extensive menu to choose from

Search Tree Worked Great

6.0002 LECTURE 2 21

Code to Try Larger Examples

6.0002 LECTURE 2 22

§ When you want to see how things scale, you need large
test sets

§ You want to generate them, not type them

§ Generating them randomly
◦ Helps to avoid bias
◦ Can generate different test data each run

◦ Both good and bad
◦ Used random.seed to ensure same result each time

Random Test Data

6.0002 LECTURE 2 23

Run it

§ In theory, yes

§ In practice, no!

§ Dynamic programming to the rescue

Is It Hopeless?

6.0002 LECTURE 2 24

Returning to an Example from 6.0001

6.0002 LECTURE 2 25

Why is it taking so long?

How far do think we’ll get before our patience runs out?

Call Tree for Recursive Fibonnaci(6) = 13

6.0002 LECTURE 2 26

fib(6)

fib(5)

fib(4)

fib(3)

fib(2)

fib(1) fib(0)

fib(1)

fib(2)

fib(1) fib(0)

fib(3)

fib(2)

fib(1) fib(0)

fib(1)

fib(4)

fib(3)

fib(2)

fib(1) fib(0)

fib(1)

fib(2)

fib(1) fib(0)

§ Trade a time for space

§ Create a table to record what we’ve done
◦ Before computing fib(x), check if value of fib(x)

already stored in the table
◦ If so, look it up
◦ If not, compute it and then add it to table

◦ Called memoization

Clearly a Bad Idea to Repeat Work

6.0002 LECTURE 2 27

Using a Memo to Compute Fibonnaci

6.0002 LECTURE 2 28

Let’s Try It

6.0002 LECTURE 2 29

How far do think we’ll get before our patience runs out?

Let’s push our luck:

§ Memoization top-down
◦ Start from problem to be solved, the biggest problem
◦ Build memo as new sub-problems come up

§Tabular bottom-up
◦ Solve all sub-problems starting with smallest problem

Tabular Approach to DP

6.0002 LECTURE 2 30

Try it

§ If the original problem requires all subproblems to be
solved, tabular method usually better
◦ Tabular method easier to implement
◦ Tabulation usually faster. (Tabulation has no overhead for

recursion and can use a pre-allocated fixed size list.)

§If only some of the subproblems needs to be solved to
solve the original problem, memoization usually better
◦ More efficient because subproblems are solved lazily, only

perform the the computations that are needed

Tabularization vs. Memoization

6.0002 LECTURE 2 31

§ Why is it called dynamic programming?

Poll 3

6.0002 LECTURE 2 32

§Optimal substructure: a globally optimal solution can
be found by combining optimal solutions to local
subproblems
◦ For x > 1, fib(x) = fib(x - 1) + fib(x – 2)

§Overlapping subproblems: finding an optimal solution
involves solving the same problem multiple times
◦ Compute fib(x) or many times

When Does DP Help?

6.0002 LECTURE 2 33

§Do these conditions hold?

What About 0/1 Knapsack Problem?

6.0002 LECTURE 2 34

Five Minute Break

6.0002 LECTURE 2 35

§Optimal substructure: a globally optimal solution can
be found by combining optimal solutions to local
subproblems

§Overlapping subproblems: finding an optimal solution
involves solving the same problem multiple times

Does the Knapsack Problem Exhibit

6.0002 LECTURE 2 36

Search Tree

6.0002 LECTURE 2

37

Take Don’tTake

Val = 170
Cal = 766

Val = 120
Cal = 766

Val = 140
Cal = 508

Val = 90
Cal = 145

Val = 80
Cal = 612

Val = 30
Cal = 258

Val = 50
Cal = 354

Val = 0
Cal = 0

Optimal substructure?
Overlapping subproblems?

A Different Menu

6.0002 LECTURE 2 38

Food beer pizza burger juice

Value 90 30 50 85

calories 154 258 354 154

A Subtree

6.0002 LECTURE 2

39

Don’t TakeTake

Food beer pizza burger juice

Value 90 30 50 85

calories 154 258 354 154

Val = 0
Cals = 750

Val = 90
Cals = 596

Val = 90
Cals = 596

Val = 0
Cals = 750

Val = 0
Cals = 596

§ Given remaining weight, maximize value by
choosing among remaining items
§ Set of previously chosen items, or even value of that
set, doesn’t matter!

§ So, let’s give DP a shot
◦ Memoization or tabular?

Problem Being Solved at Each Node

6.0002 LECTURE 2 40

§ Add memo as a third argument

§ Key of memo is a tuple
◦ (items left to be considered, available weight)
◦ Items left to be considered represented by
len(toConsider)

§ First thing body of function does is check whether the
optimal choice of items given the the available weight
is already in the memo

§ Last thing body of function does is update the memo

Modify maxVal to Use a Memo

6.0002 LECTURE 2 41

Performance

6.0002 LECTURE 2 42

len(items) 2**len(items) Number of
calls in DP

2 4 7

4 16 25

8 256 427

16 65,536 5,191

32 4,294,967,296 22,701

Performance

6.0002 LECTURE 2 43

len(items) 2**len(items) Number of
calls in DP

2 4 7

4 16 25

8 256 427

16 65,536 5,191

32 4,294,967,296 22,701

64 18,446,744,073,709,551,616 42,569

128 340,282,366,920,938,463,463,374,607,431,768,211,
456

83,319

256 115,792,089,237,316,195,423,570,985,008,687,907,
853,269,984,665,640,564,039,457,584,007,913,129,
639,936

176,614

Performance

6.0002 LECTURE 2 44

len(items) 2**len(items) Number of
calls in DP

2 4 7

4 16 25

8 256 427

16 65,536 5,191

32 4,294,967,296 22,701

64 18,446,744,073,709,551,616 42,569

128 340,282,366,920,938,463,463,374,607,431,768,211,
456

83,319

256 115,792,089,237,316,195,423,570,985,008,687,907,
853,269,984,665,640,564,039,457,584,007,913,129,
639,936

176,614

512 Really really big number 351,230

1024 Absolutely huge 703,802

§Problem is inherently exponential

§Have we overturned the laws of the universe?

§Is dynamic programming a miracle?

How Can This Be?

6.0002 LECTURE 2 45

§ No, but computational complexity can be subtle

§ Algorithm falls into a complexity class called pseudo-
polynomial

A Miracle?

6.0002 LECTURE 2 46

Linear in value of x

But exponential in number bits used to represent x, i.e. in
length of input—2log(x)

But for some range of
values, we don’t care
about number of bits

§Running time of fastMaxVal is polynomial in number of
distinct pairs, <toConsider, avail>

§Number of possible values of toConsider bounded by
len(items)

§Possible values of avail a bit harder to characterize
◦ Bounded by number of distinct sums of weights

And fastMaxVal?

6.0002 LECTURE 2 47

More Distinct Combinations

6.0002 LECTURE 2 48

§Many problems of practical importance can be
formulated as optimization problems
§Greedy algorithms often provide adequate (though not
necessarily optimal) solutions
§Finding an optimal solution is usually exponentially
hard
§But dynamic programming often yields good
performance for a subclass of optimization problems—
those with optimal substructure and overlapping
subproblems
◦ Solution always correct
◦ Fast under the right circumstances

Summary of Lectures 1-2 (so far)

6.0002 LECTURE 2 49

Since I Have a Few Minutes, more Python

6.0002 LECTURE 2 50

Conditional Expressions (again)

6.0002 LECTURE 2 51

1) Evaluate c
2) If c is True, the value of the expression is e1
3) If c if False, the value of the expression is e2

List Comprehension

6.0002 LECTURE 2 52

List Comprehension

6.0002 LECTURE 2 53

List Comprehension

6.0002 LECTURE 2 54

Poll 5

Dictionary Comprehension

6.0002 LECTURE 2 55

§ What does the following print?

Today’s Puzzler

6.0002 LECTURE 2 56

Poll 6

“The 1950s were not good years for mathematical
research… I felt I had to do something to shield Wilson
and the Air Force from the fact that I was really doing
mathematics... What title, what name, could I choose?
... It's impossible to use the word dynamic in a
pejorative sense. Try thinking of some combination that
will possibly give it a pejorative meaning. It's impossible.
Thus, I thought dynamic programming was a good
name. It was something not even a Congressman could
object to. So I used it as an umbrella for my activities.
Richard Bellman, Eye of the Hurricane: an Autobiography

Why is It Called Dynamic Programming?

6.0002 LECTURE 2 57

