
STRINGS,
BRANCHING,
ITERATION
(download slides and .py files to follow along!)

6.0001 LECTURE 2

6.0001 LECTURE 2 12/5/20

Checklist
§Tablet works

§Projector works

§Slides are posted
◦ Links work

§I have my lucky

2/5/20 6.0001 LECTURE 2 2

LAST TIME
§ Syntax and semantics
§ Scalar objects
§ Simple operations
§ Expressions, variables and values
§Storage and binding
§ Input & output
§ Branching and conditionals
§ Indentation

6.0001 LECTURE 2 32/5/20

For sqrt fans
§Check Wikipedia

◦ https://en.wikipedia.org/wiki/Methods_of_computing_sq
uare_roots

◦ There is a whole industry of initial guesses
◦ Leverage scientific or binary representations
◦ Iterative methods

2/5/20 6.0001 LECTURE 2 4

https://en.wikipedia.org/wiki/Methods_of_computing_square_roots

TODAY
§ Recap of assignment, branching

§ String object type

§ Iteration and loops

§ Guess-and-check algorithms

6.0001 LECTURE 2 52/5/20

Assigned Reading
§ Sections 2.3, 2.4

§ Sections 3.1, 3.2

6.0001 LECTURE 1 6

TYPES OF OBJECTS (RECAP)
§ Variables and expressions

◦ int
◦ float
◦ bool
◦ NoneType ß New
◦ string ß New
◦ … and others we will see later

6.0001 LECTURE 2 72/5/20

VARIABLES (RECAP)
§ Need a way to refer to computed values abstractly –
give them a “name”
§ name

◦ descriptive
◦ meaningful
◦ helps you re-read code
◦ should not be keywords

§ value
◦ information stored
◦ can be updated

6.0001 LECTURE 2 82/5/20

STRINGS (RECAP)
§ Made up from letters, special characters, spaces, digits

§ Think of as a sequence of case sensitive characters

§ Enclose in quotation marks or single quotes
today = 'Monday'

§ Concatenate strings
this = "it is"
what = this + today
what = this + " " + today

§ Do some operations on a string as defined in Python docs
announce = "It's " + today * 3

6.0001 LECTURE 2 92/5/20

OPERATOR OVERLOAD
§ Same operator used on different object types

§ + operator
◦ E.g. Between two numbers: adds
◦ E.g. Between two strings: concatenates

§ * operator
◦ E.g. Between two numbers: multiplies
◦ E.g. Between a number and a string: repeats the string

6.0001 LECTURE 2 102/5/20

STRING OPERATIONS
§ Can compare strings with ==, >, < etc.
§ compares letters one by one, order is alphabetical
§E.g. ’a’<‘b’ return True, so does ‘alex’<‘bea’
§Try it in console if you’re not sure

§ len() is a function used to retrieve the length of the
string in the parentheses

s = "abc"

len(s) à evaluates to 3

6.0001 LECTURE 2 112/5/20

STRINGS
§ Square brackets used to perform indexing into a string
to get the value at a certain index/position
s = "abc"

s[0]
s[1]
s[2]
s[3]
s[-1]
s[-2]
s[-3]

6.0001 LECTURE 2 12

index: 0 1 2 ß indexing always starts at 0
index: -3 -2 -1 ß last element always at index -1

2/5/20

STRINGS
§ Square brackets used to perform indexing into a string
to get the value at a certain index/position
s = "abc"

s[0] à evaluates to "a"
s[1] à evaluates to "b"
s[2] à evaluates to "c"
s[3] à trying to index out of bounds, error
s[-1] à evaluates to "c"
s[-2] à evaluates to "b"
s[-3] à evaluates to "a"

6.0001 LECTURE 2 13

index: 0 1 2 ß indexing always starts at 0
index: -3 -2 -1 ß last element always at index -1

2/5/20

STRINGS
§ Can slice strings using [start:stop:step]

§ If give two numbers, [start:stop], step=1 by default

§ Get characters at start until stop-1

§ You can also omit numbers and leave just colons

6.0001 LECTURE 2 142/5/20

SLICING STRINGS EXAMPLE
§Recall: s[start:stop:step]

2/5/20 6.0001 LECTURE 2 15

s = "abcdefgh"

s[3:6]

s[3:6:2]

s[3::]

s[::-1]

s[4:1:-2]

LIVE EXERCISE

https://docs.google.com/forms/d/1eI6JAF4za8_vIu0MwwjoHKDjdLIpPXADw4H_mSXvk6A/edit

SLICING STRINGS EXAMPLE

2/5/20 6.0001 LECTURE 2 16

s = "abcdefgh"

s[3:6] à evaluates to "def", same as s[3:6:1]

s[3:6:2] à evaluates to "df"

s[3::] à evaluates to ”defgh", same as s[0:len(s):1]

s[::-1] à evaluates to "hgfedbca", same as s[-1:-(len(s)+1):-1]

s[4:1:-2]à evaluates to "ec"

If unsure what some

command does, try
 it

out in your console!

index: 0 1 2 3 4 5 6 7
index: -8 -7 -6 -5 -4 -3 -2 -1

STRINGS
§ Strings are “immutable” – cannot be modified
s = "car"

s[0] = 'b' à gives an error
s = 'b'+s[1:len(s)] à is allowed,

s bound to new object

6.0001 LECTURE 2 17

s

"car"

"bar"

2/5/20

BOOLS (RECAP)
§ Boolean values

◦ True
◦ False

§ Useful with conditions
◦ In branching:

If it’s hot, go to the beach, otherwise stay at home.
◦ In repetitions

As long as it’s sunny, keep eating ice cream.

2/5/20 6.0001 LECTURE 2 18

If right clear,
go right

If right blocked,
go forward

If right and
front blocked,

go left

If right , front,
left blocked,

go back

6.0001 LECTURE 2 202/5/20

BRANCHING
if <condition>:

<expression>
<expression>
...

if <condition>:
<expression>
<expression>
...

else:
<expression>
<expression>
...

if <condition>:
<expression>
<expression>
...

elif <condition>:
<expression>
<expression>
...

else:
<expression>
<expression>
...

§ <condition> has a value True or False

§ Evaluate expressions in that block if <condition> is True

6.0001 LECTURE 2 212/5/20

INDENTATION and BLOCKS
§ Matters in Python
§ How you denote blocks of code
x = int(input("Enter a number for x: "))
y = int(input("Enter a number for y: "))
if x == y:

print("x and y are equal")
if y != 0:

print("therefore, x / y is", x/y)
elif x < y:

print("x is smaller")
else:

print("y is smaller")
print("thanks!")

6.0001 LECTURE 2 222/5/20

INDENTATION and BLOCKS
§ Matters in Python
§ How you denote blocks of code
x = int(input("Enter a number for x: "))
y = int(input("Enter a number for y: "))
if x == y:

print("x and y are equal")
if y != 0:

print("therefore, x / y is", x/y)
elif x < y:

print("x is smaller")
else:

print("y is smaller")
print("thanks!")

6.0001 LECTURE 2 232/5/20

5
5

5
0

0
0

LIVE EXERCISE

http://bit.ly/60001-10
https://docs.google.com/forms/d/1ofImqEH1f9RACy7saXc2ckX_96AlI39OZ1rUDHuYmkE/edit

INDENTATION and BLOCKS
§ Matters in Python
§ How you denote blocks of code
x = int(input("Enter a number for x: "))
y = int(input("Enter a number for y: "))
if x == y:

print("x and y are equal")
if y != 0:

print("therefore, x / y is", x/y)
elif x < y:

print("x is smaller")
else:

print("y is smaller")
print("thanks!")

6.0001 LECTURE 2 242/5/20

5
5
True
<-
True
<-

<-

5
0
False

False

<-
<-

0
0
True
<-
False

<-

CONTROL FLOW:
while LOOPS
while <condition>:

<expression>
<expression>
...

§ <condition> evaluates to a Boolean

§ If <condition> is True, execute all the steps inside the
while code block

§ Check <condition> again

§ Repeat until <condition> is False

§ If <condition> is never False, then will loop forever!!

6.0001 LECTURE 2 272/5/20

Recall square root

6.0001 LECTURE 1 28

6.0001 LECTURE 2 29

§ Legend of Zelda –
Lost Woods

§ Keep going right,
takes you back to this
same screen, stuck in
a loop

2/5/20

while LOOP EXAMPLE
You are in the Lost Forest.

J

Go left or right?

PROGRAM:

where = input("You're in the Lost Forest. Go left or right? ")

while where == "right":

where = input("You're in the Lost Forest. Go left or right? ")

print("You got out of the Lost Forest!")

6.0001 LECTURE 2 302/5/20

CONTROL FLOW:
when while loops aren’t ideal
§ Iterate and print through numbers in a sequence, e.g. 0 to
4 (included)

a little complicated with while loop

6.0001 LECTURE 2 312/5/20

CONTROL FLOW:
while vs. for LOOPS
§ Iterate through numbers in a sequence

more complicated with while loop
n = 0
while n < 5:

print(n)
n = n+1

shortcut with for loop
for n in range(5):

print(n)

6.0001 LECTURE 2 322/5/20

Set loop variable outside while loop

Increment loop variable inside while loop
n = n+1 equivalent to n += 1

Test loop variable in condition

CONTROL FLOW: for LOOPS
for <variable> in range(<some_num>):

<expression>
<expression>
...

§ Each time through the loop, <variable> takes a value

§ First time, <variable> starts at the smallest value

§ Next time, <variable> gets the prev value + 1

§ etc. until <variable> gets some_num -1

6.0001 LECTURE 2 332/5/20

range(start,stop,step)
§ Default values are start = 0 and step = 1 and optional
§ Loop until value reaches stop - 1

mysum = 0
for i in range(7, 10):

mysum += i
print(mysum)

mysum = 0
for i in range(5, 11, 2):

mysum += i
print(mysum)

6.0001 LECTURE 2 342/5/20

break STATEMENT
§ Immediately exits whatever loop it is in

§ Skips remaining expressions in code block

§ Exits only innermost loop!

6.0001 LECTURE 2 352/5/20

for VS while LOOPS
for loops

§ know number of
iterations

§ can end early via
break

§ uses a counter
§ can rewrite a for loop
using a while loop

while loops
§ (potentially) unbounded
number of iterations
§ can end early via break
§ can use a counter but
must initialize before loop
and increment it inside loop
§ may not be able to
rewrite a while loop using
a for loop

6.0001 LECTURE 2 382/5/20

STRINGS AND LOOPS

s = "demo loops – fruit loops"

for index in range(len(s)):

if s[index] == 'i' or s[index] == 'u':

print("There is an i or u")

for char in s:

if char == 'i' or char == 'u':

print("There is an i or u")

6.0001 LECTURE 2 39February 5, 2020

These two code

snippets do the same

thing; bottom one is

more “pythonic”

Five Minute Break

6.0001 LECTURE 2 41

Trying to fix my code

February 5, 2020 6.0001 LECTURE 2 42

STRING

MANIPULATION

ALGORITHMS

GUESS-AND-CHECK
§ Process called exhaustive enumeration

§ Applies to a problem where …
◦ You are able to guess a value for solution
◦ You are able to check if the solution is correct
◦ You can keep guessing until

◦ Find solution or
◦ Have guessed all values

February 5, 2020 6.0001 LECTURE 2 43

GUESS-AND-CHECK
– square root
§ Basic idea:

◦ Given an int, call it x, want to see if there is another int
which is its square root

◦ Start with a guess and check if it is the right answer
◦ To be systematic, start with guess = 0, then 1, then 2, etc

§ If x is a perfect square, we will eventually find its root
and can stop
§ But what if x is not a perfect square?

◦ Need to know when to stop
◦ Use algebra – if guess squared is bigger than x, then can

stop

6.0001 LECTURE 2 442/5/20

GUESS-AND-CHECK
– square root
guess = 0

x = int(input("Enter an integer: "))

while guess**2 < x:

guess = guess + 1

if guess**2 == x:

print("Square root of", x, "is", guess)

else:

print(x, "is not a perfect square")

6.0001 LECTURE 2 452/5/20

Exit lo
op when

guess**2 >= x

GUESS-AND-CHECK
– square root
§ Does this work for any integer value of x?

§ What if x is negative?
◦ while loop immediately terminates
◦ Actually turns out to be correct

(if you don’t believe in imaginary numbers)

§ Could check for negative input, and handle differently

2/5/20 6.0001 LECTURE 2 46

GUESS-AND-CHECK
– square root
guess = 0

neg_flag = False

x = int(input("Enter a positive integer: "))

if x < 0:

neg_flag = True

while guess**2 < x:

guess = guess + 1

if guess**2 == x:
print("Square root of", x, "is", guess)

else:

print(x, "is not a perfect square")

if neg_flag:

print("Just checking... did you mean", -x, "?")

6.0001 LECTURE 2 472/5/20

while LOOP OR for LOOP?
§ Already saw that code looks cleaner when iterating
over sequence of values
◦ Don’t set up the iterant yourself as with a while loop
◦ Less likely to introduce errors

§ Consider an example that uses a for loop and an
explicit range of values

2/5/20 6.0001 LECTURE 2 48

GUESS-AND-CHECK
– cube root

cube = int(input("Enter an integer: "))

for guess in range(cube+1):

if guess**3 == cube:

print("Cube root of", cube, "is", guess)

February 5, 2020 6.0001 LECTURE 2 49

This ensures we get to

value of cube

GUESS-AND-CHECK
– cube root

cube = int(input("Enter an integer: "))

for guess in range(abs(cube)+1):

if guess**3 == abs(cube):

if cube < 0:

guess = -guess

print("Cube root of "+str(cube)+" is "+str(guess))

February 5, 2020 6.0001 LECTURE 2 50

This properly handles

cube roots of negative

integers

GUESS-AND-CHECK
– cube root

cube = int(input("Enter an integer: "))

for guess in range(abs(cube)+1):

if guess**3 >= abs(cube):

break

if guess**3 != abs(cube):

print(cube, "is not a perfect cube")

else:

if cube < 0:

guess = -guess

print("Cube root of "+str(cube)+" is "+str(guess))

February 5, 2020 6.0001 LECTURE 2 51

Terminate search once

know you have passed

possible answer

ANOTHER EXAMPLE
§ Remember those word problems from your
childhood?
§ For example:

◦ Alyssa, Ben, and Cindy are selling tickets to a fundraiser
◦ Ben sells 20 fewer than Alyssa
◦ Cindy sells twice as many as Alyssa
◦ 1000 total tickets were sold by the three people
◦ How many did Alyssa sell?

§ Could solve this algebraically, but we can also use
guess-and-check

2/5/20 6.0001 LECTURE 2 52

GUESS-AND-CHECK WORD
PROBLEM

for alyssa in range(1001):

ben = max(alyssa - 20, 0)

cindy = alyssa * 2

if ben + cindy + alyssa == 1000:

print("Alyssa sold " + str(alyssa) + " tickets")

print("Ben sold " + str(ben) + " tickets")

print("Cindy sold " + str(cindy) + " tickets")

2/5/20 6.0001 LECTURE 2 53

Fredo’s guess and check

2/5/20 6.0001 LECTURE 2 54

SUMMARY
§ Strings provide a new data type

◦ Strings can be indexed and sliced
◦ Strings are immutable

§ Looping mechanisms
◦ while and for loops
◦ Can loop over ranges of numbers
◦ Can loop over elements of a string

§ Exhaustive search (aka guess-and-check) provides a
simple algorithm for solving problems where the set of
potential solutions is enumerable

2/5/20 6.0001 LECTURE 2 55

