STRINGS,

BRANCHING,
[TERATION

(download slides and .py files to follow along!)

6.0001 LECTURE 2

Checklist

"Tablet works v
"Projector works \/

=Slides are posted
o Links work

=Left is which way? Right is which way? \/

2/5/20 6.0001 LECTURE 2

LAST TIME

"Computers are dumb, execute step by step
=Syntax and semantics

= Scalar objects

= Simple operations

= Expressions, variables and values
sStorage and binding

" |nput & output

" Branching and conditionals

" Indentation

2/5/20 6.0001 LECTURE 2

Step by step execution
"Python tutor by Philip Guo

=http://pythontutor.com/

=Sqrt example

2/5/20

For sgrt fans

"Check Wikipedia
o https://en.wikipedia.org/wiki/Methods of computing sq
uare roots

> There is a whole industry of initial guesses
o Leverage scientific or binary representations
o |terative methods

2/5/20 6.0001 LECTURE 2 5

TODAY

= Recap of assighment, branching
= String object type

" |[teration and loops

= Guess-and-check algorithms

2/5/20 6.0001 LECTURE 2

Assigned Reading

" Sections 2.3, 2.4
= Sections 3.1, 3.2

“Introduction to

" Computation

* «and Programming
sing Python

With Application to"Undg.rrséding Data

g -
.
> :

secon edigzén | .!“"

John V. Gdttag

6.0001 LECTURE 1 v

TYPES OF OBJECTS (RECAP)

" Variables and expressions
c1nt
cfloat
°pbool
- NoneType €< New

o string €< New

o ... and others we will see later

VARIABLES (RECAP)

" Need a way to refer to computed values abstractly —
give them a “name”

" name
o descriptive
> meaningful
> helps you re-read code
> should not be keywords

= value
o information stored

o can be updated

2/5/20 6.0001 LECTURE 2

STRINGS (RECAP)

" Made up from letters, special characters, spaces, digits

" Think of as a sequence of case sensitive characters

" Enclose in quotation marks or single quotes
today = 'Monday'

= Concatenate strings

this = "1t 18"
what = this + today
what = this + " " + today

" Do some operations on a string as defined in Python docs
announce = "It's " 4+ today * 3

2/5/20 6.0001 LECTURE 2 10

OPERATOR OVERLOAD

= Same operator used on different object types

" + operator
o E.g. Between two numbers: adds
o E.g. Between two strings: concatenates

= * operator
o E.g. Between two numbers: multiplies
o E.g. Between a number and a string: repeats the string

2/5/20 6.0001 LECTURE 2

11

STRING OPERATIONS

= Can compare strings with ==, >, < etc.
" compares letters one by one, order is alphabetical
" E.g.’a’<b’ return True, so does ‘alex’<‘bea’
" Try it in console if you’re not sure

" len () is a function used to retrieve the length of the
string in the parentheses

s = "abc"

len(s) =2 evaluatesto3

2/5/20 6.0001 LECTURE 2 12

STRINGS

= Square brackets used to perform indexing into a string
to get the value at a certain index/position

s = "abc"

idex 002
51~

w N P O
AN

® 0O 0 0 »h »h O

2/5/20 6.0001 LECTURE 2 13

STRINGS

= Square brackets used to perform indexing into a string

to get the value at a certain index/position

" abc LA

012
-3-2-1 < last element always at index -1

2/5/20

S

index:

index:

O]

w N -

® 0O 0 0 »h 0 O

\ 22 2222 2

evad
evad
evad

trying to index out of bounds, error

evad
evad
evad

< indexing always starts at 0

uates to "a"
uates to "b"

uatesto C

uates to "c"
uates to "b"
uates to "a"

6.0001 LECTURE 2

14

STRINGS

" Can slice strings using [start:stop:step]

" |f give two numbers, [start:stop], step=1 by default
" Get characters at start until stop-1

" You can also omit numbers and leave just colons

2/5/20 6.0001 LECTURE 2 15

Y% LIVE EXERCISE

SLICING STRINGS EXAMPLE

"Recall: s[start:stop:step]

S = "abdﬂefbh"

O Vv 275 L5, 7

S

s[4:

SLICING STRINGS EXAMPLE /—\

= "abcdetgh"
index: 01 2 3 45 67
index: -8 -7-6-5-4-3 -2-1

6] — evaluatesto "def",sameas s[3:6:1]
:6:2] -2 evaluatesto "df"

t:] - evaluatesto “defgh",sameass[0:len(s):1]

::—-1] -2 evaluatesto "hgfedbca",sameas s[-1:-(len(s)+1):-1]

1:-2]-2> evaluatesto "ec"

2/5/20 6.0001 LECTURE 2 17

STRINGS

= Strings are “immutable” — cannot be modified

s = "car"

/l/ w./‘z("7 5{031 (”;’/

STRINGS

= Strings are “immutable” — cannot be modified
(but variables can be re-bound)

s = "car" oy
s[0] = 'b' /(7‘ - gives an error
s = &Jr(l:len (s)]1 — is allowed,
wew VO s bound to new object
v
,Lp/ / (/

6.0001 LECTURE 2 19

Strings recap

sSequence of characters

=Access and slice with []

sStandard operations: +, *, ==, >, <

"Immutable

2/5/20

6.0001 LECTURE 2

20

BOOLS (RECAP)

= Boolean values
o True

o False

= Useful with conditions

o |n branching:
If it’s hot, go to the beach, otherwise stay at home.

o |n repetitions
As long as it’s sunny, keep eating ice cream.

2/5/20 6.0001 LECTURE 2

21

S

If right clear, If right blocked, If right and If right , front,
go right go forward front blocked, left blocked,
go left go back

BRANCHING

if <condition£i)

. <expression>
"\!/4\‘ V2 p .
<expression>

1f <condition>:
<expression>
<expression>

else:
<expression>
<expression>

1f <condition>:
<expression>
<expression>

<expression>
<expression>

else:
<expression>
<expression>

’/P<E£EE><condition>:

I
v

" <condition> hasavalue True or False

" Evaluate expressions in that block if <condition> is True

2/5/20

6.0001 LECTURE 2

25

INDENTATION and BLOCKS

= Matters in Python

" How you denote blocks of code

x = int (input ("Enter a number for x: "))

5
y = int (input ("Enter a number for y: ")) S
ELE\;E§;£>§7: T

print ("x and y are equal')

1ty !'= 0: | rve
print ("therefore, x / v is", x/y) | ﬂZD

ellf x < y:
print ("x 1s smaller")
else:
print ("y 1s smaller™)
print ("thanks!™) cxecu

2/5/20 6.0001 LECTURE 2

L

e

pAS)

Y% LIVE EXERCISE

INDENTATION and BLOCKS

= Matters in Python

* How you denote blocks of code

x = int (input ("Enter a number for x: ")) 5 5 0 ©
y = int (input ("Enter a number for y: ")) 5 0 0 L
1f x == y: ol -
print ("x and y are equal')
1ty !'= 0:
print ("therefore, x / vy 1is", x/y)
ellf x < y: T
print ("x 1s smaller") v

else:
print ("y 1s smaller™)
print ("thanks!") v/

2/5/20 6.0001 LECTURE 2 27

X = int (input ("Enter a number for x: "))
y = int (input ("Enter a number for y: "))
if ==
print ("x and y are equal")
if y !'= 0:
print ("therefore, x / y is", x/y)
Y0/%1fx<% = 2 oo UL e Ve
print ("x is smaller")m> S e~ e~
W=
print ("y 1s smaller")
print ("thanks!") @%5C“¥ﬂ

71::)

\\ oo ﬁ?A TA»CDWVKLL”

WL‘J/\

INDENTATION and BLOCKS

= Matters in Python

" How you denote blocks of code

X = 1int (input ("Enter a number for x:
y = 1int (input ("Enter a number for vy:
1f x == vy:

print ("x and y are equal')
|

1ty !'= 0:

print ("therefore, x / y is",

ellf x < y:

print ("x 1s smaller")

else:

print ("y 1s smaller")

print ("thanks!")

2/5/20

6.0001 LECTURE 2

x/Y)

5

5
True
<-
True
<_

5 0

0 0

False True
<-
False

False

<_

<- <-

28

CONTROL FLOW:
while LOOPS

while <condition>: \k\ —
. W W 'e) e
<expression>
. oA
<expression> \- .

" <condition> evaluates to a Boolean

" |If <condition> is True, execute all the steps inside the
while code block

" Check <condition> again
" Repeat until <condition> isFalse

" |[f <condition> is never False, then will loop forever!!

2/5/20 6.0001 LECTURE 2

31

Recall square root

16.0
3.0

X
g

tolerance = 0.0001

> tolerance:

while abs(g x g = x)
g=1(g+x7/9) /2.0

290009990 999989 . |cgend of Zelda -
2333333332223 =0
22333233333332333)
2000090099999998 |, . i ot

33l takes you back to this

B3I FIIFIFIIIIIID same screen, stuck in
P BF P bR BF TR ER PP BF P B B EP B B BF a loop

PE DR P bR BF TR ER BP B P BF B EP bR B BF

P bR DR B B2 B BF BF EP BP BF BP BF BF BP BF

6.0001 LECTURE 2

while LOOP EXAMPLE

You are 1n the Lost Forest.
P i i b i b i g i i g gl

R AR A i A i i b i i i i ¢

©

R A A b b i i i i i i

R A A A b i i i i i i

Go left or right?

PROGRAM:
where = i1nput ("You're 1n the Lost Forest. Go left or right? ")
while where == "right":

where = 1nput("You're 1n the Lost Forest. Go left or right? ")

print ("You got out of the Lost Forest!")

2/5/20 6.0001 LECTURE 2 34

CONTROL FLOW:
when while loops aren’tideal

" [terate and print through numbers in a sequence, e.g. 0 to
4 (included)

a little complicated with while loop

o= O
\,\J\Ai\a SR

V(w\\/ C‘?L\

SR

QQK . oA A (O&‘/\ c (5>
m\x\«6>u

|

CONTROL FLOW:
while vs. for LOOPS

" [terate through numbers in a sequence

more complicated with while loop

n = 0 Set loop variable outside while loop
while [n < 5]: Test loop variable in condition
print (n)
[n = n+1l] Increment I(?op variable inside while loop
n = n+l equivalentton+=1

shortcut with for loop
for n 1in range(bd) :
print (n)

2/5/20 6.0001 LECTURE 2 36

CONTROL FLOW: for LOOPS

for <variable> 1n range (<some num>) :
<expression>
<expression>

" Each time through the loop, <variable> takes avalue
= First time, <variable> starts at the smallest value
" Next time, <variable> gets the prevvalue +1

= etc. until <variable> gets some_num -1

2/5/20 6.0001 LECTURE 2 37

range (start, stop, step)

" Default values are start = 0and step = 1 and optional
" Loop until value reaches stop - 1
mysum = 0

for 1 in range (7, 10):
mysum += 1
print (mysum)

mysum = 0

for 1 1n range (b, 11, 2):
mysum += 1

print (mysum)

2/5/20 6.0001 LECTURE 2 38

break STATEMENT

" Immediately exits whatever loop itis in
= Skips remaining expressions in code block

= Exits only innermost loop!

X = 16
for 1 in range(x):
1f 1x1 >= X:
break
print(i)

2/5/20 6.0001 LECTURE 2

39

for VS while LOOPS

for loops while loops
= know number of " (potentially) unbounded
iterations number of iterations

. N '
= can end early via can end early via break

break = can use a counter but
must initialize before loop

" uses a counter and increment it inside loop

" can rewritea for loop " may nhot be able to

usingawhile loop rewrite a while loop using

a for loop

2/5/20 6.0001 LECTURE 2 42

STRINGS AND LOOPS

s = "demo loops — fruit loops"”
for index in range(len(s)):

1f s[index] == '1' or s[index] == 'u':

print("There 1is an 1 or u")

STRINGS AND LOOPS

s = "demo loops — fruit loops"” wd\ c\)7(7
for index in range(len(s)): /ﬁ [Z}
if s[index] == 'i' or s[index] 'y Z e ”
print("'There 1s an 1 or
(1066 3((\6
o) e°
i h . "\(\es 3‘6 6 ‘O((\(?)
or char in s: s‘\\QQ .'\00& \\0(\\0

' \&
if char == 'i' or char == 'u': &\\\(\%e“Q\\
«
print('There is an 1 or u")
N \ \ L Vo
\/\a(;ah ¢ C&AO\ { wi\ e (\ggJ«c
Z/ag}\/ &wx(’ @L)’@L e& = O QFZLC’/\

February 5, 2020 6.0001 LECTURE 2

Recap: Control flow and blocks

=|f, else, elif
"while : unbounded, more general

=for
° In range
° |In string

"(plus break if (really) needed)
"Block defined by indentation

2/5/20 6.0001 LECTURE 2 45

Five Minute Break

\
“
\
P]
——F
rAors———ewn
SRS .
TR
)
———
I eT—————
jessemr

Just keep coding. m keep coding.
Just keep coding, coding, coding_

Trying to fix my code

6.0001 LECTURE 2 47

ALGORITHMS

o BISECTION SEARCH
q - APPROXIMATION

GUESS-AND-CHECK

* Process called exhaustive enumeration

= Applies to a problem where ...
> You are able to guess a value for solution
> You are able to check if the solution is correct
> You can keep guessing until
> Find solution or
> Have guessed all values

February 5, 2020 6.0001 LECTURE 2

GUESS-AND-CHECK
— square root

= Basic idea:

o Given an int, call it x, want to see if there is another int
which is its square root

o Start with a guess and check if it is the right answer
> To be systematic, start with guess =0, then 1, then 2, etc

" If x is a perfect square, we will eventually find its root
and can stop

" But what if x is not a perfect square?
> Need to know when to stop

o Use algebra — if guess squared is bigger than x, then can
stop

2/5/20 6.0001 LECTURE 2 50

GUESS-AND-CHECK
— square root

guess = 0
X = 1nt (input ("Enter an 1nteger: "))
eQ
whilile guess**2 < x: &Q¢N¢$
_ A2
guess = guess + 1 @ﬁ&
1f guess**2 == Xx:

print ("Square root of", x, "1s", guess)
else:

print(x, "is not a perfect square")

2/5/20 6.0001 LECTURE 2

51

GUESS-AND-CHECK
— square root

" Does this work for any integer value of x?

" What if x is negative?
> while loop immediately terminates

o Actually turns out to be correct
(if you don’t believe in imaginary numbers)

" Could check for negative input, and handle differently

2/5/20 6.0001 LECTURE 2 52

GUESS-AND-CHECK
— square root

guess = 0

neg flag = False

X = int(input ("Enter a positive 1integer: "))

1f x < 0O:
neg flag = True

while guess**2 < x:

guess = guess + 1
1f guess**2 == x:
print ("Square root of", x, "1s", guess)
else:
print (x, "1s not a perfect square")
1f neg flag:
[print ("Just checking... did you mean", -Xx, "?"J

2/5/20 6.0001 LECTURE 2 53

while LOOPOR for LOOP?

" Already saw that code looks cleaner when iterating
over sequence of values

> Don’t set up the iterant yourself as with a while loop
o Less likely to introduce errors

= Consider an example that uses a for loop and an
explicit range of values

2/5/20 6.0001 LECTURE 2 54

GUESS-AND-CHECK
— cube root

cube = 1int (input ("Enter an 1nteger: "))

for guess 1n range (cube+l) :

1f guess**3 == cube:

print ("Cube root of", cube, "i1s", guess)

GUESS-AND-CHECK
— cube root

cube = 1int (input ("Enter an 1nteger: ")) <O
X
we®
e
for guess in range(kube+ﬂ): NN\
A k¢
1f guess**3 == cube: NC\e

print ("Cube root of", cube, "i1s", guess)

February 5, 2020 6.0001 LECTURE 2

GUESS-AND-CHECK
— cube root

cube = 1Int (input ("Enter an integer: "))

for guess 1n range (abs(cube)+1):
1T guess**3 == abs (cube) :
1f cube < 0O:
guess = —guess

print ("Cube root of "+str(cube)+" 1s "+str(guess))

February 5, 2020

6.0001 LECTURE 2

GUESS-AND-CHECK
— cube root

cube = 1Int (input ("Enter an integer: "))
\e>
, 1 \ﬁﬁéﬁﬂe
for guess 1n range (abs (cube)+1) : d¢fN&@$?
> < e O O
if guess**3 == |abs (cube) {Wﬁiﬁo&&
- g < Cﬁ) eX°
if cube < O: . xe9
\\
X guess = -guess |

print ("Cube root of "+str(cube)+" 1s "+str(guess))

February 5, 2020

6.0001 LECTURE 2

GUESS-AND-CHECK
— cube root

cube = int (input ("Enter an integer: ")) vowﬁé
for guess 1n range (abs (cube)+1) : | gﬁgﬁf;qﬁéa
if guess**3 >= abs (cube): *\e(((\:\p‘)\;i@e(
break w§;§@2
1f guess**3 != abs (cube) :

print (cube, "is not a perfect cube™)

else:
1f cube < O0:

guess = —-guess

print ("Cube root of "+str (cube)+" 1s "+str (guess))

February 5, 2020

6.0001 LECTURE 2

ANOTHER EXAMPLE

" Remember those word problems from your
childhood?

" For example:
> Alyssa, Ben, and Cindy are selling tickets to a fundraiser

o Ben sells 20 fewer than Alyssa

o Cindy sells twice as many as Alyssa

> 1000 total tickets were sold by the three people
> How many did Alyssa sell?

" Could solve this algebraically, but we can also use
guess-and-check

2/5/20 6.0001 LECTURE 2

61

Fredo’s guess and check

6.0001 LECTURE 2

Fredo’s guess and check

6.0001 LECTURE 2

Fredo’s guess and check

6.0001 LECTURE 2

SUMMARY

= String data type
o Strings can be indexed and sliced

o Strings are immutable

=|f elif else

"Looping mechanisms
c while and for loops
o Can loop over ranges of numbers
o Can loop over elements of a string

=*Indentation and blocks

= Exhaustive search (aka guess-and-check) provides a simple
algorithm for solving problems where the set of potential
solutions is enumerable

2/5/20 6.0001 LECTURE 2

