STRINGS,
BRANCHING,
I TERATION

(download slides and .py files to follow along!)

6.0001 LECTURE 2

Checklist

=Tablet works
=Projector works

=Slides are posted
o Links work

=| have my lucky

2/5/20

6.0001 LECTURE 2

LAST TIME

= Syntax and semantics

= Scalar objects

= Simple operations

= Expressions, variables and values
sStorage and binding

" |nput & output

= Branching and conditionals

= Indentation

2/5/20 6.0001 LECTURE 2

For sqrt fans

"Check Wikipedia
o https://en.wikipedia.org/wiki/Methods of computing sq
uare roots

> There is a whole industry of initial guesses
o Leverage scientific or binary representations
° |terative methods

2/5/20 6.0001 LECTURE 2

https://en.wikipedia.org/wiki/Methods_of_computing_square_roots

TODAY

= Recap of assignment, branching

= String object type
" |[teration and loops

= Guess-and-check algorithms

2/5/20 6.0001 LECTURE 2

Assigned Reading

= Sections 2.3, 2.4
= Sections 3.1, 3.2

. Introduction to

sing Python

¢ ’Iication to Und}rsta/ndirig Data

/econ edition 7

/
John V. Gu

6.0001 LECTURE 1

TYPES OF OBJECTS (RECAP)

= Variables and expressions
°1nt
o float
°pbool
° NoneType €< New
°cstring € New
o ... and others we will see later

VARIABLES (RECAP)

= Need a way to refer to computed values abstractly —
give them a “name”

" name
o descriptive
o meaningful
> helps you re-read code
> should not be keywords

= value
o information stored

° can be updated

2/5/20 6.0001 LECTURE 2

STRINGS (RECAP)

= Made up from letters, special characters, spaces, digits

= Think of as a sequence of case sensitive characters

" Enclose in quotation marks or single quotes
today = 'Monday'

= Concatenate strings

this = "it 1is"
what = this + today
what = this + " " + today

= Do some operations on a string as defined in Python docs
announce = "It's " 4+ today * 3

2/5/20 6.0001 LECTURE 2

OPERATOR OVERLOAD

= Same operator used on different object types

" + operator
o E.g. Between two numbers: adds
o E.g. Between two strings: concatenates

= * operator
o E.g. Between two numbers: multiplies
o E.g. Between a number and a string: repeats the string

2/5/20 6.0001 LECTURE 2

STRING OPERATIONS

= Can compare strings with ==, >, < etc.
" compares letters one by one, order is alphabetical

" E.g."a’<’b’ return True, so does ‘alex’<’bea’
=" Try it in console if you’re not sure

= len () is a function used to retrieve the length of the
string in the parentheses

s = "abc"

len(s) =2 evaluatesto3

2/5/20 6.0001 LECTURE 2

STRINGS

= Square brackets used to perform indexing into a string
to get the value at a certain index/position

s = "abc"

index: 0 1 2 < indexing always starts at O
index: -3-2-1 < last element always at index -1

[0

S
S
S
s[3
s |
s |
<

2/5/20 6.0001 LECTURE 2

STRINGS

= Square brackets used to perform indexing into a string
to get the value at a certain index/position

s = "abc"
index: 0 1 2 < indexing always starts at O
index: -3-2-1 < last element always at index -1

evaluates to
evaluates to "b"
evaluates to "c"
trying to mdex out of bounds, error
evaluates to "c"
evaluates to "b"
evaluates to "a"

[0

w
A2 2 2222

2/5/20 6.0001 LECTURE 2

STRINGS

= Can slice strings using [start:stop:step]

= |f give two numbers, [start: stop], step=1 by default
= Get characters at start until stop-1

= You can also omit numbers and leave just colons

2/5/20 6.0001 LECTURE 2

Y¢ LIVE EXERCISE

SLICING STRINGS EXAMPLE

=Recall: s[start:stop:step]

s = "abcdetfgh"

2/5/20 6.0001 LECTURE 2

https://docs.google.com/forms/d/1eI6JAF4za8_vIu0MwwjoHKDjdLIpPXADw4H_mSXvk6A/edit

S

s[4

SLICING STRINGS EXAMPLE

x\’é‘soﬁ\\&
N ‘
o n " o o 307 g
= "abcdetfgh §O 00 o
index: 01 2 3 45 6 7 SN
index: -8 -7 -6 -5 -4 -3 -2 -1 oot
: 0] - evaluatesto "def",sameas s[3:6:1]
:6:2] 2 evaluatesto "df"
2] - evaluatesto “defgh",sameass[0:1len(s):1]

::—-1] -2 evaluatesto "hgfedbca', sameass[-1:-(len(s)+1):-1]

:1:-2]-> evaluatesto "ec"

2/5/20 6.0001 LECTURE 2

STRINGS

= Strings are “immutable” — cannot be modified

s = "car"
s[0] = 'b" —> gives an error
s = '"b'"+s[l:1len(s)] - is allowed,

s bound to new object

——

o

2/5/20 6.0001 LECTURE 2

BOOLS (RECAP)

= Boolean values
o True

o False

= Useful with conditions

o In branching:
If it’s hot, go to the beach, otherwise stay at home.

o |n repetitions
As long as it’s sunny, keep eating ice cream.

2/5/20 6.0001 LECTURE 2

A

If right clear, If right blocked, If right and If right , front,
go right go forward front blocked, left blocked,
go left go back

BRANCHING

1f <condition>:
<expression>
<expression>

1f <condition>:
<expression>
<expression>

else:
<expression>
<expression>

1f <condition>:
<expression>
<expression>

elif <condition>:
<expression>
<expression>

else:
<expression>
<expression>

" <condition> hasavalue True or False

= Evaluate expressions in that block if <condition> is True

2/5/20

6.0001 LECTURE 2

INDENTATION and BLOCKS

" Matters in Python

* How you denote blocks of code

X = int (input ("Enter a number for x: "))
y = int (input ("Enter a number for y: "))
1f x == vy:

print ("x and y are equal")
'= 0:
print ("therefore, x / v 1s", x/y)

1ty

ellif x < y:

print ("x is smaller")
else:

print("y 1s smaller™)
print ("thanks!™)

2/5/20 6.0001 LECTURE 2

Y% LIVE EXERCISE

INDENTATION and BLOCKS

" Matters in Python

* How you denote blocks of code

X = int (input ("Enter a number for x: ")) 5 5 0
y = 1nt (input ("Enter a number for y: ")) 5 0 0
1f x == vy:

print ("x and y are equal')
1ty = 0:
print ("therefore, x / y is", x/y)

ellif x < y:

print ("x 1s smaller")
else:

print ("y 1s smaller")
print ("thanks!")

2/5/20 6.0001 LECTURE 2

http://bit.ly/60001-10
https://docs.google.com/forms/d/1ofImqEH1f9RACy7saXc2ckX_96AlI39OZ1rUDHuYmkE/edit

INDENTATION and BLOCKS

" Matters in Python

* How you denote blocks of code

X = int (input ("Enter a number for x: "))
y = 1int (input ("Enter a number for y: "))
1f x == vy:

print ("x and y are equal")

1f y !'= 0:

print ("therefore, x / y 1is", x/y)
ellif x < y:
print ("x 1s smaller")
else:
print ("y 1s smaller")
print ("thanks!")

2/5/20 6.0001 LECTURE 2

5

5
True
<_
True
<_

5 0

0 0

False True
<_
False

False

<_

<- <-

CONTROL FLOW:
while LOOPS

while <condition>:

<expression>
<expression>

" <condition> evaluates to a Boolean

" [f <condition> is True, execute all the steps inside the
while code block

" Check <condition> again
= Repeat until <condition> isFalse

" [f <condition> is never False, then will loop forever!!

2/5/20 6.0001 LECTURE 2

Recall square root

16.0
3.0

X
g

tolerance = 0.0001

while abs(g X) > tolerance:

* g -
g=(g+x/ g) / .0
print (g)

&-P.;I
303:3:3:3:3:3:3:3:3:3:3:3:3:3:3

" Legend of Zelda —
Lost Woods

= Keep going right,
takes you back to this
same screen, stuck in
a loop

2/5/20

6.0001 LECTURE 2

while LOOP EXAMPLE

You are 1n the Lost Forest.
Ak Kk kK, Kkk*k*k kK%

Rl b b b b A b b i i b ¢

©

Rl b b b b A b b i i b ¢

Rl b b b b A b b i i i ¢

Go left or right?

PROGRAM:
where = input ("You're in the Lost Forest. Go left or right? ")
while where == "right":

where = input("You're in the Lost Forest. Go left or right? ")

print ("You got out of the Lost Forest!")

2/5/20 6.0001 LECTURE 2

CONTROL FLOW:
when while loops aren’tideal

" |[terate and print through numbers in a sequence, e.g. 0 to
4 (included)

a little complicated with while loop

CONTROL FLOW:

~or LOOPS

while VS.:

" [terate through numbers in a sequence

more complicated

with while loop

n = 0 Set loop variable outside while loop
while 3 Test loop variable in condition
print (n)
[n = n+1l] Increment Ic?op variable inside while loop
n =n+1 equivalentton+=1

shortcut with for loop

for n 1n range(5):
print (n)

2/5/20

6.0001 LECTURE 2

CONTROL FLOW: for LOOPS

for <variable> in range (<some num>) :
<expression>
<expression>

= Each time through the loop, <variable> takes avalue
= First time, <variable> starts at the smallest value
= Next time, <variable> getsthe prevvalue +1

= etc. until <variable> gets some_num -1

2/5/20 6.0001 LECTURE 2

range (start, stop, step)

" Default values are start = Oand step = 1 and optional
" Loop until value reaches stop - 1
mysum = 0

for 1 in range (7, 10):
mysum += 1
print (mysum)

mysum = 0

for 1 in range(5, 11, 2):
mysum += 1

print (mysum)

2/5/20 6.0001 LECTURE 2

break STATEMENT

" Immediately exits whatever loop it is in

= Skips remaining expressions in code block

= Exits only innermost loop!

X = 16
for i in range(x):
if 1x1 >= X:
break
print(i)

2/5/20 6.0001 LECTURE 2

for VS

while LOOPS

for loops

* know number of
iterations

= can end early via
break

" uses a counter

= can rewrite a for loop
usingawhile loop

while loops

" (potentially) unbounded
number of iterations

" can end early viabreak

" can use a counter but
must initialize before loop
and increment it inside loop

" may not be able to
rewrite a while loop using
a for loop

2/5/20 6.0001 LECTURE 2

STRINGS AND LOOPS

s = "demo loops — fruit loops”

for index in range(len(s)):

if s[index] == 'i1' or s[index] == 'u'
print("There is an i or u") o o
0006 eg’b((\
vgﬁﬁiééoﬁ\cwﬁ\
for char in s: «S({\QQQ‘\OO“O«\(\\G
: \8
if char == 'i' or char == 'u': &\\\(\%e“@\
O

print("There is an 1 or u'")

February 5, 2020 6.0001 LECTURE 2

Five Minute Break

WY

Just keep coding. Just keep coding
Just keep coding, coding, coding._.

Trying to fix my code

6.0001 LECTURE 2

ALGORITHMS

|GUESS-and-CHECK |

BISECTION SEARCH
APPROXIMATION

GUESS-AND-CHECK

= Process called exhaustive enumeration

= Applies to a problem where ...
> You are able to guess a value for solution
> You are able to check if the solution is correct
> You can keep guessing until
> Find solution or
> Have guessed all values

February 5, 2020 6.0001 LECTURE 2

GUESS-AND-CHECK
— square root

= Basic idea:

o Given an int, call it x, want to see if there is another int
which is its square root

o Start with a guess and check if it is the right answer
> To be systematic, start with guess =0, then 1, then 2, etc

" If x is a perfect square, we will eventually find its root
and can stop

But what if x is not a perfect square?
> Need to know when to stop

o Use algebra — if guess squared is bigger than x, then can
stop

2/5/20 6.0001 LECTURE 2

GUESS-AND-CHECK
— square root

guess = 0
X = 1nt(input ("Enter an integer: "))
e
while guess**2 < x: &ﬁ¢w¢*
R x27
guess = guess + 1 @ﬁs
1f guess**2 == x:

print ("Square root of", x, "is", guess)
else:

print(x, "i1s not a perfect square")

2/5/20 6.0001 LECTURE 2

GUESS-AND-CHECK
— square root

= Does this work for any integer value of x?

= What if x is negative?
o while loop immediately terminates

o Actually turns out to be correct
(if you don’t believe in imaginary numbers)

= Could check for negative input, and handle differently

2/5/20 6.0001 LECTURE 2

GUESS-AND-CHECK
— square root

guess = 0

neg flag = False

x = 1int (input ("Enter a positive integer: "))

if x < 0
X neg flag = True
while guess**2 < x:

guess = guess + 1
1f guess**2 == x:

LA

print ("Square root of", Xx, 1s", guess)
else:

print (x, "is not a perfect square")

[if neg flag:

print ("Just checking... did you mean", -x, "?"J

2/5/20 6.0001 LECTURE 2

while LOOP OR :

~or LOOP?

= Already saw that code looks cleaner when iterating

over sequence of values
o Don’t set up the iterant yourself
o Less likely to introduce errors

as with a while loop

= Consider an example that uses a for loop and an

explicit range of values

2/5/20 6.0001 LECTURE 2

GUESS-AND-CHECK
— cube root

cube = int (input ("Enter an integer: ")) o
&t
Ne%
9§€5
for guess in range (): RN\l
Vwﬁegﬁ
if guess**3 == cube: R\

print ("Cube root of", cube, "i1s", guess)

February 5, 2020 6.0001 LECTURE 2

GUESS-AND-CHECK
— cube root

cube = int (input ("Enter an integer: "))
eS
\ \\3(\6\ ""\Qe
for guess in range(&bs(cube)+1): 0¢§N&“é?
< e 0Of)
if guess**3 == [abs (cube)|: (Y\\S(;(OO‘S
. < (,\)\0 e(s
1if cube < 0: . xe9
\\)
guess = -guess

print ("Cube root of "+str(cube)+" i1s "+str (guess))

February 5, 2020

6.0001 LECTURE 2

GUESS-AND-CHECK
— cube root

cube = int (input ("Enter an integer: ")) “Owﬁ6
for guess in range (abs (cube) +1) : | é@qéf;Qﬁﬁe
if guess**3 >= abs (cube) : ﬂ?«(«\:\\o\):is“e(
break ¥§Zﬁﬁ®

1f guess**3 != abs (cube):

print (cube, "1s not a perfect cube')

else:
if cube < O:
guess = —guess

print ("Cube root of "+str(cube)+" i1is "+str (guess))

February 5, 2020

6.0001 LECTURE 2

ANOTHER EXAMPLE

= Remember those word problems from your
childhood?

= For example:
o Alyssa, Ben, and Cindy are selling tickets to a fundraiser

> Ben sells 20 fewer than Alyssa

> Cindy sells twice as many as Alyssa

> 1000 total tickets were sold by the three people
> How many did Alyssa sell?

= Could solve this algebraically, but we can also use
guess-and-check

2/5/20 6.0001 LECTURE 2

GUESS-AND-CHECK WORD
PROBLEM

for alyssa 1n range(1001) :

ben = max(alyssa - 20, 0)
cindy = alyssa * 2
1f ben + cindy + alyssa == 1000:

print ("Alyssa sold " + str(alyssa) + " tickets")

print ("Ben sold " + str(ben) + " tickets")

print ("Cindy sold " + str(cindy) + " tickets™")

Fredo’s guess and check

SUMMARY

= Strings provide a new data type
o Strings can be indexed and sliced

o Strings are immutable

" Looping mechanisms
cwhile and for loops

> Can loop over ranges of numbers
> Can loop over elements of a string

= Exhaustive search (aka guess-and-check) provides a
simple algorithm for solving problems where the set of
potential solutions is enumerable

2/5/20 6.0001 LECTURE 2

