Introduction,
Optimization Problems,
and a little Python

(download slides and .py files from Stellar to follow along)

John Guttag

MIT Department of Electrical Engineering and
Computer Science

Elephant In (Virtual) Room

—
L
oc
)
T
(O]
w
=
(o]
o
o
=
O

We Are In a Different Place

= By MIT rules, no physical gatherings allowed

= \Will broadcast lectures live over Zoom

> Monday, Wednesday 3:05 — 4:25 (some lectures may end
earlier)

> Your audio and video should be off

o Use the chat facility to raise questions
o Be aware that all can see what you write

= All lectures will be recorded and available online within a
day of being delivered

= All office hours will be virtual
> Help with problem sets and material
o Mechanism and hours are posted online

= All exams will be online
= Per MIT emergency rules, PE/NE grading for all students

6.0002 LECTURE 1

Where Are You?

= Poll 1

6.0002 LECTURE 1 4

Please Do NOt Use!

AllHomework.riet
Any Homework, Any Time

Hire/Pay an expert to do your class assignments, homework or online exam

Get a FREE no-obligations price quote!

Hire an expert to take your online class

Need to hire someone to take an online class for you?

Just let us know what the class is about and we will find the right person who will log in to the class,
finish the class by participating in all discussions, responses and completing all the required
assignments. We can also get you a guaranteed grade for the whole class. No matter what subject
you are dealing with, we have an expert who will gladly take up your class and give you guaranteed
results. Everything from English proficiency testing to online classes on Astronomy, we can take the
class for you and give you the best results at the best rates. We know that online classes can be
extremely difficult since there is a lack of interaction between students and teachers in an online
environment. Hiring a subject expert to take an online class is simply a matter of common sense
because students may feel pressured by a lack of direct contact with the teachers. Further, the
online experience may not be the best for certain subjects unless you are an expert on the topics
being discussed. Our experts have taken dozens of online classes and have years of practice in
their respective fields as tutors and educators.

The easiest way to get the grade you want

The process of hiring an expert to take an online class for your is very simple. You just have to send us your course information and we will find a subject
expert to give you a no-obligation price estimate as well as grade guarantee. You then have the option to pay for the services of your hired expert over
the internet if the price is ok with you. Once the payment is received, your homework expert will complete all the required elements of the class
including discussion postings, responses, completing the exams and deliver the final solutions to you with guaranteed results. That's it.

6.0002 LECTURE 1 5

6.0002 Prerequisites

sExperience writing object-oriented programs in Python 3
=Familiarity with concepts of computational complexity
=Familiarity with some simple algorithms

=6.0001 sufficient, but not necessary

Poll 2
| took 6.0001 this term
| took 6.0001 a previous term
| took 6.0001 ASE
None of the above

6.0002 LECTURE 1 6

Some Administrative Stuff

= Stellar course site
o https://sicp-s1.mit.edu/spring20

= Post privately on Ed rather than emailing staff

= Course uses Python 3 and Anaconda

6.0002 LECTURE 1 7

https://sicp-s1.mit.edu/fall19

Course Policies

= Collaboration

o Okay: Helping others debug, discussing general attack on
problem

= NOT okay:
o Looking at code (from others in class or previous years)
o Allowing others to look at your code
o Side-by-side coding (including virtual side-by-side)
o We run code similarity program on all problem sets

Ill

"Provide names of all “collaborators”

=Extensions on problem sets
> Will consider requests that come with support from S”3
o Late days, 3 to use at your discretion

6.0002 LECTURE 1 8

Problem Sets and Finger Exercises

" Five problem sets
o Total 45% of final grade

"Finger exercises on MITx

° Mandatory exercises total 10% of final grade
o One per week

> No extensions on due dates

= All due dates Cambridge time (EDT)

6.0002 LECTURE 1 9

Quizzes

= Micro-quizzes
o 4 thirty-minute quizzes (worth 45%, best 3 out of 4)
o Plus one trial quiz to test our and YOUR system

o Start at 3:55PM EDT on scheduled days

> Will be allowed to take them at any time during a 12-hour
window (but be aware that they are timed)

> No makeups except under extraordinary circumstance

= Quizzes will cover material from lectures, problems
sets, and assigned readings

= Rules for quizzes
> No help from anybody

> No access to materials other than Spyder IDE and quiz
itself

6.0002 LECTURE 1 10

We Are Relying on Your Honor

= At end of each quiz, you will be asked to check a box
saying:
o “I have neither given nor received aid on this quiz, and |
have obeyed all restrictions regarding access to materials.

| will not discuss the quiz W|th any student who has not
already taken it.” /

6.0002 LECTURE 1

Relevant Reading

= Today
o Section 12.1

° Section 5.4 (lambda functions) = 0L E TR TS
Ccyputation

" For Wednesday and Programming

° Chapter 13 “Using Python
o Section 5.3.2 /7T I e—

o

7 4

second edition
John \7téag

6.0002 LECTURE 1 12

How Does 6.0002 Compare to 6.00017

" Programming component of assignments a bit
easier

> Focus more on the problem to be solved than on
programming

= Lecture content is more abstract

° Includes things not needed for problem sets, but
relevant for quizzes

= Lectures will be faster paced
= Less about learning to program

= More about dipping your toe into
computational modeling

6.0002 LECTURE 1

Honing Your Programming Skills

=Quite a few additional bits of Python

sSoftware engineering

=Using packages

"How do you get to Carnegie Hall?

3 10.‘vc;u
| \‘ rfactice
actice

ractice

6.0002 LECTURE 1

Computational Models

= Using computation to help understand the world in
which we live

= Experimental devices that help us to understand
something that has happened or to predict the future

- m '...__%J'
r = =i

= Optimization models

= Simulation models

= Statistical models

6.0002 LECTURE 1 15

What Is an Optimization Model?

= An objective function that 1s to be maximized or
minimized, e.g.,
o Minimize money spent traveling from Boston to NYC

o \\\\\W\\\\\\\ BE837\

lll”!

= A set of constraints (possibly empty) that must be
honored, e.g.,
o Expected transit time < 5 hours

6.0002 LECTURE 1 16

Optimization Problems

= Anytime you are trying to maximize or minimize
something, you are solving an optimization problem

Rolling Efficient Frontiers (Relative Total Return vs DJIA)

FUEL RAIL
ALl

O-RING

FILTER

" __ELECTRICAL
CONNECTOR

ELECTRIC

INTAKE
MANIFOLD

PINTLE CAP

Copyright 200\Eordfuelinjection.com

Leading Upper Camber MMean Camber

L TLower Camber — Chord "C"

6.0002 LECTURE 1

Imagine that You Are a Burglar

=10,
Credi{Qne'

i

PLATINUM

PREFERRED CARD MEMBER VISA

6.0002 LECTURE 1

Knapsack Problems

= You have limited strength, so there is a maximum
weight knapsack that you can carry

= You would like to take more stuff than you can carry

= How do you choose which stuff to take and which to
leave behind?

= Two variants
o Continuous or fractional knapsack problem

> 0/1 knapsack problem

Versus

6.0002 LECTURE 1

A Fun 0/1 Knapsack Problem FOOTBALL

%)
Player Salary \V/

Patrick Mahomes @ JAX (9) $ 7200
Leonard Fournette vs KC (31) $6100
Dalvin Cook vs ATL (28) $ 6000
Curtis Samuel vs LAR (22) $ 4200

Tyler Lockett vs CIN (10) $ 6000
Marvin Jones @ ARI (13) $ 4800

Zach Ertz vs WAS (4) $6100
Kerryon Johnson @ ARI (27) $ 5800
Baltimore Ravens @ MIA (24) $ 3800

$50000

Ill

Objective function: Maximize total “score” for roster
Constraints:
Total cost < S50k

1 QB, 2 RB, 3 WR, 1TE, 1 Flex, 1 Team Defense

6.0002 LECTURE 1 20

Poll 3

" |s it a knapsack problem?

6.0002 LECTURE 1 21

A Not-So-Much-Fun Knapsack Problem

Calorie
Capacity

6.0002 LECTURE 1

0/1 Knapsack Problem, Formalized

"Each item is represented by a pair, <value, weight>

*"The knapsack can accommodate items with a total
weight of no more than w

"A vector, /, of length n, represents the set of
available items. Each element of the vector is an
item

=A vector, V, of length n, is used to indicate whether
or not items are taken. If V[i] =1, item [[i] is taken.
If V[i] =0, item [[i] is not taken

6.0002 LECTURE 1 23

0/1 Knapsack Problem, Formalized

Find a V that maximizes

n-1

E V0il* I[i] value

i=0

subject to the constraint that
n-1

N VIil* I[i] weight < w
=0

Going from an informal understanding of a problem to a
rigorous problem statement is an important skill to develop.

Vague PS-> Rigorous PS -> Algorithm -> Code

T T T

Real World 6.0002 PSet 6.0001 PSet

(6.0002 lectures)

6.0002 LECTURE 1 24

Many Closely Related Problems

= Multiple knapsack problem

* Integer knapsack problem Knapfadia

= Multiple constraint knapsack problem

= Bin-packing problem

Combinatorial Auctions
and Knapsack Problems

As Aaryun of Optmistion Mesods

VDM verag O WA

6.0002 LECTURE 1

Complementary Knapsack Problem

minimizes
Find a V that maxdmizes

nz VIil* Ili)l value

subject to the constraint that
n-1 2

N VIil* I[i] weight<w

- this b€ \nteres"‘“g?

Wwhy m'\%'“‘

6.0002 LECTURE 1 26

How Close Was a Presidential Election?

= 2016 popular vote
o Trump: 62,984,828 5y . B
> Clinton: 66,853,514 [T T e e

= Electoral college
° Trump: 304
o Clinton: 227

\ ® Clinton
' ? W Trump
W Powell
[Spctted Eagl
[Paul

[Kasich

[l Sanders

Could outcome have been changed if, prior to
election, some Clinton supporters had moved
to a different state?

6.0002 LECTURE 1 27

How Close Was a Presidential Election?

= 2008 popular vote
o Obama: 69,498,516
o McCain: 59,948,323

=Electoral college
o Obama: 365
o McCain: 173

Could outcome have been changed if, prior to
election, some McCain supporters had moved
to a different state?

6.0002 LECTURE 1 28

Poll 4

= How few votes does the winner need?

6.0002 LECTURE 1 29

How Close Was the Election?

| ’ cT 7) =S s Ve s e O cT 7
MD 10 7 V. B

_-" DC 3

‘ B Obama - " L ’ ~~ ‘ | _‘I;.. _4 o
k H McCain ’\\ - S [Spctted Eagl
) - . [Paul
\/ A 3 ’ [Kasich
2008) - S 5 2016 [l Sanders

.o “ 0\
4 'l

Assume two candidates, and winner-take-all.
Assume that candidate Winner won the election.
What is the smallest number of voters for candidate

Loser that could have changed the outcome by moving
to a different state?

6.0002 LECTURE 1 30

Complementary Knapsack Problem

Objective function to minimize: Number of votes moved
from Winner to Loser

Constraint: Loser has at least the number of electoral
votes needed to win

6.0002 LECTURE 1 31

More Formally

minimizes
Find a V that maxdrizes
-1 V[i] = 1 for states won by Winner
1k I0+ I[i].value is the total number of
2 V[l] I[l] value additional votes needed to flip
=0 state to Loser

subject to the constraint that

U= . . > I[i].weight is the number of
2 VIi|* I[i]weight<w electoral college votes of
i=0 state /

w the number of additional
electoral college votes
needed to win

6.0002 LECTURE 1 32

Reduction to Knapsack Problem

=Solve 0/1 knapsack problem with
o Same set of items
o w = total # of electoral votes — # of votes needed to win

= The states not selected are the ones to which voters
should move

Transforming a new problem to a problem with a well-
known solution is an important problem-solving technique

https://stackoverflow.com/questions/7949705
/variation-on-knapsack-minimum-total-value-
exceeding-w/7950524#7950524

6.0002 LECTURE 1 33

Solving 0/1 Knapsack Problem: Brute Force

= 1. Enumerate all possible combinations of items. That
is to say, generate all subsets of the set of items. This is
called the power set (see 6.0001 lecture 10).

= 2. Remove all of the combinations whose total units
exceeds the allowed weight.

= 3. From the remaining combinations choose any one
whose value is the largest.

6.0002 LECTURE 1 34

Often Not Practical

"How big is power set when the set is of size 1007
> 1,267,650,600,228 (~1.25 trillion)?
> 1,267,650,600,228,229,401 (~1.25 quintillion)?
> 1,267,650,600,228,229,401,496,703 (~1.25 septillion)?
> 1,267,650,600,228,229,401,496,703,205,376

o Poll 5: What is the word for a number of this magnitude?

6.0002 LECTURE 1 35

Why is the Powerset So Big?

= Recall

o A vector, V, of length n, is used to indicate whether or not
items are taken. If V[i] = 1, item I[i] is taken. If V[i] =0, item I[i]
is not taken

= How many possible different values can V have?

o As many different binary numbers as can be represented
in n bits

= For example, if there are 100 items to choose from,
the power set is of size 219°

> 1,267,650,600,228,229,401,496,703,205,376

6.0002 LECTURE 1 36

Are We Just Being Stupid?

= Alas, no
= 0/1 knapsack problem is inherently exponential

= But don’t despair

6.0002 LECTURE 1

Greedy Algorithm Often a Practical Alternative

*while knapsack not full
put “best” available item in knapsack

=*But what does best mean?
o Most valuable

o Least expensive
o Highest value/units

6.0002 LECTURE 1 38

An Example

= You are about to sit down to
a meal

= You know how much you G }v
value different foods, e.g., N P

you like donuts more than = wes m“;::::;, S e

| I e DRI :,.":;".‘..‘
app eS Whopper & cheese Double Pepperoni :T::::: Scampl &
. 721 calories (13 Inch) Popcorn chicken 950 calorl
. d Egg Chicken Royale m“"':"' — (kids portion) BBQ Chich
= But you have a calorie —_—t
’ 300 calories (';Wh‘;:)"m" 260 calories ;ﬂ":::i.l
budget, e.g., you don’t want ' e B ommirpecne swaen

i Margherita (9 inch) 258 calorles beans
s 1,128 calorles 380 calorl

to consume more than 750
calories

" Choosing what to eat is a
knapsack problem

6.0002 LECTURE 1 39

A Menu

m-mmmmmm

Value 89

calories 123 154 258 354 365 150 95 195

" Let’s look at a program that we can use to decide what
to order

6.0002 LECTURE 1 40

Class Food

class Food(object):
def __init__ (self, n, v, w):
self._name = n
self. _value = v
self._calories = w
def getValue(self):
return self._value
def getCost(self):
return self._calories
def density(self):
return self.getValue()/self.getCost()
def __str__(self):
return self. _name + ': <' + str(self._value)\
+ ', ' + str(self. _calories) + '>'

6.0002 LECTURE 1 41

Build Menu of Foods

def buildMenu(names, values, calories):

"""names, values, calories lists of same length.
name a list of strings

values and calories lists of numbers

returns list of Foods"""
menu = []
for i in range(len(values)):
menu.append(Food(names[i], values[i],
calories[i]))

return menu

6.0002 LECTURE 1 42

Five Minute Break (for those watching live)

* Note: o.. 6@2({1‘\\ brain.
Allow éjl‘-'llﬂxesfor knowledge
| fo Seak in before topping up.

6.0002 LECTURE 1 43

Implementation of Flexible Greedy

v

def greedy(items, maxCost, keyFunction):
"""Assumes items a list, maxCost >= 0,
keyFunction maps elements of items to numbers"""
itemsCopy = sorted(items, key = keyFunction, *—
reverse = True)

result = []
totalValue, totalCost = 0, 0
for it in itemsCopy:
if (totalCost + it.getCost()) <= maxCost:

result.append(it)
totalCost += it.getCost()
totalValue += it.getValue()

return (result, totalValue)

Why use sorted rather than sort?
How does complexity grow relative to len(items)?

6.0002 LECTURE 1 44

Algorithmic Efficiency

Poll 6: Efficiency of greedy

def greedy(items, maxCost, keyFunction):
"""Assumes items a list, maxCost >= 0,
keyFunction maps elements of items to numbers
—— itemsCopy = sorted(items, key = keyFunction,
reverse = True)

result = []

totalValue, totalCost = 0.0, 0.0

for i in range(len(itemsCopy)): <

if (totalCost+itemsCopy[i].getCost()) <= maxCost:

result.append(itemsCopy[i])
totalCost += itemsCopy[i].getCost()
totalValue += itemsCopy[i].getValue()

return (result, totalValue)

6.0002 LECTURE 1 45

Using greedy

def testGreedy(items, constraint, metric):
metrics = {'value': Food.getValue, ‘density’':Food.density,
‘cost': lambda x: 1/Food.getCost(x)}
try:
taken, val = greedy(itemS3~gonstraint, metrics[metric])

except:
print('Unknown metric', metric) ?
return

print(‘'Total value of items taken ="', val)

for item in taken:
print(’ ', item)

6.0002 LECTURE 1

In Honor of Prof. Grimson

M Qf'\/ had o
|itHe lambda ...

6.0002 LECTURE 1 47

lambda

" lambda used to create anonymous functions
> Tambda <id,, id,, ... id >: <expression>
o Returns a function of n arguments

def divide(x, y):
if y = 0:
return None
else:
return x/y
print(divide(2, 3))
print((lambda x, y: None if y ==0 else x/y)(2, 3))

= Can be very handy, as in testGreedy

" Possible to write amazing complicated lambda
expressions

" Don’t—use def instead

6.0002 LECTURE 1 48

Using greedy

def testGreedy(items, constraint, metric):
metrics = {'value': Food.getValue, ‘density’':Food.density,
‘cost': lambda x: 1/Food.getCost(x)}

try:

taken, val = greedy(items, constraint, metrics[metric])
except:

print('Unknown metric', metric)

return

print(‘'Total value of items taken ="', val)
for item in taken:
, item)

print(’

6.0002 LECTURE 1 49

Testing Different Definitions of “Best”

def testGreedys(foods, maxUnits):

metric = input('Chose a metric (cost, value, or density):

print('Use greedy by', metric, 'to allocate', maxUnits,
'calories')
testGreedy(foods, maxUnits, metric)

names = ['wine', 'beer', 'pizza', 'burger', 'fries',
'cola', 'apple', 'donut', 'cake'l]

values = [89,90,95,100,90,79,50,10]

calories = [123,154,258,354,365,150,95,195]

foods = buildMenu(names, values, calories)

testGreedys(foods, 750)

6.0002 LECTURE 1

g

50

Running the Tests

names = ['wine', 'beer', 'pizza', 'burger’', 'fries’,

‘cola', 'apple', 'donut', ‘'cake']
values = [89,90,95,100,90,79,50,10]
calories = [123,154,258,354,365,150,95,195]
foods = buildMenu(names, values, calories)
testGreedys(foods, 750)

Run code

6.0002 LECTURE 1

51

Why Different Answers?

= Sequence of locally “optimal” choices don’t always
yield a globally optimal solution

" |s greedy by density always a winner?
o Try testGreedys(foods, 1000)

6.0002 LECTURE 1 52

The Pros Greedy

= Easy to implement

= Computationally efficient
= Poll 7

6.0002 LECTURE 1 53

The Con of Greedy

= Does not always yield the best solution
> Don’t even know how good the approximation is

= Suppose we want to find a truly optimal solution?

6.0002 LECTURE 1 54

Brute Force Algorithm

= 1. Enumerate all possible combinations of items.

= 2. Remove all of the combinations whose total units
exceeds the allowed weight.

= 3. From the remaining combinations choose any one
whose value is the largest.

6.0002 LECTURE 1

Use a Search Tree to Do This

6.0002 LECTURE 1

How Computer Scientists Draw Trees

6.0002 LECTURE 1

Search Tree Implementation

=" The tree is built top down starting with the root

= The first element is selected from the still to be
considered items
o If there is room for that item in the knapsack, a node is

constructed that reflects the consequence of choosing to

take that item. By convention, we draw that as the left
child

> We also explore the consequences of not taking that
item. This is the right child

= The process is then applied recursively to non-leaf
children

= Once tree generated, chose a node with the highest
value that meets constraints

6.0002 LECTURE 1

lllustrative Example

= With calorie budget of 750 calories, chose an optimal
set of foods from the menu

m-mm

Value 90

calories 154 258 354

6.0002 LECTURE 1

A Search Tree Enumerates Possibilities
Left-first, depth-first

«‘L =z enumeration
Take Don’tTake /

Val =170 Val =120 Val=140 Val=90 Val = 80 Val = 30 Val =50 Val=0
Cal =766 Cal =766 Cal=508 Cal=145 Cal=612 Cal =258 Cal =354 Cal=0

def maxVal(toConsider, avail):
"""Assumes toConsider a list of items,
avail a weight
Returns a tuple of the total value of a solution
to the @/1 knapsack problem and the items of
that solution"""
if toConsider == [] or avail == 0:
result = (@0, ()) #0 value, nothing taken
elif toConsider[@].getCost() > avail: #cannot afford current item
#Explore right branch only
result = maxVal(toConsider[1:], avail)
else:

6.0002 LECTURE 1 61

def maxVal(toConsider, avail):
"""Assumes toConsider a list of items,
avail a weight
Returns a tuple of the total value of a solution
to the @/1 knapsack problem and the items of
that solution"""
if toConsider == [] or avail == 0:
result = (0, ()) #0 value, nothing taken
elif toConsider[@].getCost() > avail: #cannot afford current item
#Explore right branch only
result = maxVal(toConsider[1:], avail)
else:
nextItem = toConsider[0]
#Explore left branch
withVal, withToTake = maxVal(toConsider[1:],
avail - nextItem.getCost())
withVal += nextItem.getValue()
#Explore right branch
withoutVal, withoutToTake = maxVal(toConsider[1:], avail)

6.0002 LECTURE 1 62

def maxVal(toConsider, avail):
"""Assumes toConsider a list of items,
avail a weight
Returns a tuple of the total value of a solution
to the @/1 knapsack problem and the items of
that solution"""
if toConsider == [] or avail == 0:
result = (0, ()) #0 value, nothing taken
elif toConsider[@].getCost() > avail: #cannot afford current item
#Explore right branch only
result = maxVal(toConsider[1:], avail)
else:
nextItem = toConsider[0]
#Explore left branch
withVal, withToTake = maxVal(toConsider[1:],
avail - nextItem.getCost())
withVal += nextItem.getValue()
#Explore right branch
withoutVal, withoutToTake = maxVal(toConsider[1:], avail)
#Choose better branch
if withval > withoutVal:
result = (withvVal, withToTake + (nextItem,))
else:
result = (withoutVal, withoutToTake)
return result

6.0002 LECTURE 1 63

