
Lecture 10: Validation,
Intro to ML and 
Clustering

(download slides and .py files from Stellar to follow along)

John Guttag

MIT Department of  Electr ical  Engineering and 
Computer Science
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§ Today
◦ Chapters 23-23

§ Wednesday
◦ Chapter 24

Relevant Reading
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§Finish up curve fitting
◦ curveFitting.py

§Start machine learning
◦ Lect10.py

Two Topics Today
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Four Curves Fit to the Same Data
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Does this mean 
that a 16th order 
polynomial is the 
best fit for the 
data?



§ Looks like an order 16 fit is really good – so should we 
just use this as our model?
◦ To answer, need to ask – why build models in first place?

§ 1) Help us understand process that generated the data
◦ E.g., the properties of a particular linear spring

§ 2) Help us make predictions about out-of-sample data
◦ E.g., predict the displacement of a spring when a force is 

applied to it
◦ E.g., predict the effect of treatment on a patient

§ A good model helps us do both of these things

Does Tightest = Best?
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§ To what extent is the model shaped by the underlying 
process we are trying to understand?

§ When the model is complex, it runs the risk of fitting 
the noise

The Key Question
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§ One way to separate out impact of noise on model is 
to take advantage of fact that each time we sample a 
system
◦ Signal will be roughly the same
◦ Noise will be different

§ Use set of data as a “training” set to fit a model

§ Use a second set of data as a “test” set, and see how 
well the model from the training set accounts for the 
test set

Training versus Testing
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Generate 2 Data Sets from Same Distribution
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Look at Fits to Training Data
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Training and Testing Errors
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§ 16-degree polynomial is an 
example of overfitting to the 
data

§ If we only look at how well 
model fits training data, we 
may not detect that model is 
too complex

§ Need to validate: Train on 
one data set, then test on a 
different set

The Moral of the Story
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Alas, We Can’t Simply Generate Data
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§ Use cross validation
◦ Split data into training and validation set

Alas, We Can’t Simply Generate Data
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Validating a Model
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Training and Test Splits
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Validating a Model
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degree = 2 model (rounded)
y = 2.99x2 + 0.07x + 4.11

Degree = 16 model (rounded)
y = -0.03x6 + 0.23x5 - 0.95x4 –
5.82x3 + 15.94x2 + 54.55x –
17.95

Poll



§ Training and test data just happened to have similar 
noise

§ n-fold cross validation
◦ Split data into training and test sets n times
◦ Look at behavior across all splits

We Could Have Gotten Lucky
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§ Choosing an overly-complex model leads to overfitting 
to the training data

§ Increases the risk of a model that works poorly on 
data not included in the training set

§ On the other hand choosing an insufficiently complex 
model has other problems
◦ As we saw when we fit a line to data that was basically 

parabolic

§ Applies to all data-driven models
◦ Not just linear regression

The Take Home Message
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Onto Machine Learning
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Machine Learning Is Everywhere
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Games Recommendation systems Drug discovery

Hedge fund stock 
predictionsCharacter recognition Voice assistants

Assisted driving Cancer diagnosisFace detection/recognition



Success stories: Speech & Language

§ Many applications already available
◦ Apple Siri
◦ Amazon Echo
◦ Baidu Deep Voice
◦ Google Translate
◦ Zoom captioning
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§ Face recognition

§ Postal service uses handwriting 
recognition

Success stories: Vision
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Finance
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Success stories: Game players
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AlphaGo
Early 2016



§ All useful programs “learn” something

§ In the first lecture of 6.0001 we looked at an algorithm 
for finding (learning?) square roots 

§ We recently looked at using linear regression to find 
(learn) a model of a collection of points

§ We could argue that root finding and curve fitting 
algorithms “learn” models to fit to data sets

§ But each algorithm is designed to meet a specific goal, 
and somehow machine learning should be broader 
than that

What Is Machine Learning?
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§ Early definition of machine learning:
◦ “Field of study that gives computers the ability to 

learn without being explicitly programmed.” Arthur 
Samuel (1959)
◦ Computer pioneer who wrote first self-learning 

program, which played checkers – learned from 
“experience”

◦ Invented alpha-beta pruning – widely used in 
decision tree searching

§ "A computer program is said to learn from experience 
E with respect to some class of tasks T and performance 
measure P if its performance at tasks in T, as measured 
by P, improves with experience E.” Tom Mitchell – CMU 
(1997)

What Is Machine Learning?
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What Is Machine Learning?
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Traditional Programming

Input
Program

Computation AnswerSpecification

ML Program
{<Input, Answer>} Computation

Input Computation Answer
Program

(Supervised) Machine Learning



What Is Machine Learning?
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https://xkcd.com/1838/



§ Memorization
◦ Accumulation of individual facts
◦ Limited by

◦ Time to observe facts
◦ Memory to store facts

§ Generalization
◦ Deduce new facts from old facts
◦ Limited by accuracy of deduction process

◦ Essentially a predictive activity
◦ Assumes that the past predicts the future

§ Extend deduction to programs that can infer useful 
information from implicit patterns in data

How Are Things Learned?
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§ Observe set of examples: training data

§ Infer something about process that generated that data –
learn a model that predicts data
◦ Regression: prediction is continuous

◦ E.g., predict what a student’s GPA will
◦ Classification: prediction is categorical

◦ E.g., predict whether a student will major in CS

§ Use inference to make predictions about previously unseen 
data: test data

Basic Paradigm
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All ML Methods Solve Optimization Problems
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Logistic  Regression
1958 (Cox)

Support Vector Machines
1963/1992 (Vapnik et al.)

Convolutional
Neural Networks

Recurrent
Neural Networks

Source: http://www.mdpi.com Source: www.frontiersin.org/articles/10.3389/fncom.2015.00036/full

Source: https://medium.com/@haydar_ai/learning-data-science-day-11-support-vector-machine-8ef06da91bfchttps://onlinecourses.science.psu.edu/stat507/node/18

Neural Networks
1957/1986/1998/2006/201

2



Unsupervised and Supervised Learning

§ Unsupervised learning
◦ Given set of unlabeled examples
◦ Convert each into a vector of features
◦ Cluster based on similarity of feature vectors (e.g., k 

means)

§ Supervised learning
◦ Given set of labeled examples
◦ Convert each into a vector of features
◦ Use algorithm to learn coefficient of variables to optimize 

tradeoff of selectivity and specificity
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§ AlphaGo used a Monte Carlo tree search algorithm to 
find moves, based on knowledge learned using an 
artificial neural network (ANN) trained  against humans 
and itself
◦ Uses reinforcement learning on an ANN to refine model

§ AlphaGo Zero had no human input
◦ Had rules for generating legal moves
◦ Learned by playing itself

Returning to DeepMind’s AlphaGo
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The Training of AlphaGo Zero
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§ Choosing training data and evaluation method

§ Representation of the features

§ Distance metric for feature vectors

§ Objective function and constraints

§ Optimization method for learning the model

All ML Methods Require:
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§ All models are wrong

At the End of the Day, ML Produces a Model
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Poll



§ How are we going to represent our 
training data?
◦ What features are important?
◦ How are they represented? 

(Typically we want features that 
can be mapped to numerical 
values, so we can measure 
distances between examples)
◦ Binary 
◦ Integers
◦ Floats

§ How do we measure distances 
between feature vectors 
representing instances?

Setting Up the Learning Framework
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§Features never fully describe the situation

§ Feature engineering
◦ Represent examples by feature vectors that will facilitate 

generalization
◦ Suppose I want to use 100 examples from past to predict, at 

the start of the subject, which students will get an A in 
6.0002

◦ Some features surely helpful, e.g., GPA, prior programming 
experience (not a perfect predictor), mathematical 
sophistication

◦ Others might cause me to overfit, e.g., birth month, eye color

§ Want to maximize ratio of useful input to irrelevant input in 
choice of features
◦ Signal-to-Noise Ratio (SNR)

Feature Representation
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§ Have sets of examples represented as points in a 
feature space

§ Intuition – examples with same label are close to one 
another in feature space
◦ Do similar examples form one cluster in feature space, or 

several?
◦ Which features are most important in grouping 

examples? 
◦ What does “close” mean?

§ Goal is to find way to group similar objects
◦ Use distance between examples to determine important 

features and to identify new instances by type

How Do We Learn to Assign Labels to Examples?
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§Deciding which features to include and which are 
merely adding noise to classifier

§Defining how to measure distances between training 
examples (and ultimately between classifiers and new 
instances)

§Deciding how to weight relative importance of 
different dimensions of feature vector, which impacts 
definition of distance

Feature Engineering
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You’ve seen this! – variant of overfitting



Measuring Distance: Minkowski Metric
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€ 

dist(X1,X2,p) = ( abs(X1k − X2k )
p )1/ p

k=1

len

∑

p = 1: Manhattan Distance
p = 2: Euclidean Distance

Need to measure 
distances between 
feature vectors

Typically use Euclidean 
metric; Manhattan may 
be appropriate if 
different dimensions 
are not comparable

§Poll

Poll



§ Minkowski distance is commonly used because it 
naturally supports gradient descent optimization 
methods

§ But there are other distance metrics that are 
sometimes more appropriate

§ One common metric:
◦ Earth mover’s distance

Other Distance Metrics
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§ Given two distributions (or histograms), 
what is the minimum amount of matter 
(dirt) that has to be moved (cost is 
amount to move times distance moved) 
to make the distributions match

Earth Mover’s Distance
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Break
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§ Cluster: a collection of examples that share a set of 
similar properties
◦ Ideally properties are numeric or can be converted to a 

numeric scale, so that clusters defined by sets of 
“nearby” examples

§ Goal is to use clusters to predict outcomes or labels 
for new examples
◦ Categorize new examples by assigning to “closest” cluster
◦ Categorize new examples by deriving an algorithm 

deduced from shared properties of examples within 
cluster

Clustering
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§ Assuming that examples with shared outcome/label 
all lie “near” one another in space of feature 
measurements
◦ What if clusters overlap in feature space? Or in some 

dimensions of feature space?
◦ What if some features are irrelevant, but confuse 

clustering? How can we identify the key features?
◦ What if the scales of different dimensions of feature 

space (different measurements) are very different?

§ We need:
◦ Way of deciding how “close” examples are
◦ Way of using “closeness” to group examples into clusters

Key Challenges with Clustering
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Clustering Is Optimization
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§ Why not divide variability by size of cluster?
◦ Big and bad is worse than small and bad

§ Is optimization problem simply finding a C that minimizes 
dissimilarity(C)?
◦ No, otherwise could put each example in its own cluster

§ Need a constraint, for example:
◦ Minimum distance between clusters
◦ Number of clusters (maximum overall, or specific 

number)

c is a cluster

C is a collection of 
clusters

Want to minimize 
dissimilarity



§ Hierarchical clustering

§ K-means clustering

Two Popular Methods for Clustering
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K-means Algorithm
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randomly chose k examples as initial centroids
while true:

create k clusters by assigning each
example to closest centroid

compute k new centroids by averaging
examples in each cluster

if centroids don’t change:
break

What is complexity of one iteration?

k*n*d, where n is number of points and d time required 
to compute the distance between a pair of points



An Example
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K = 4, Initial Centroids
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Choose 
centroids at 
random;

Assign each 
example to 
nearest 
centroid



Iteration 1
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Compute new 
centroids –
will not 
correspond to 
examples

Assign each 
example to 
nearest 
centroid, note 
switch in 
label



Iteration 2
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Iteration 3

6.0002 LECTURE 10 54



Iteration 4
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Iteration 5

6.0002 LECTURE 10 56

Centroids 
move, but no 
examples 
switch – can 
halt

Poll



§ Choosing the “wrong” k can lead to strange results
◦ Consider k = 3
◦

§ Result can depend upon
◦ Choice of initial centroids
◦ Number of iterations
◦ Greedy algorithm can find different local optima

Issues with k-means
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§ a priori knowledge about application domain
◦ There are two kinds of people in the world: k = 2
◦ There are five different types of bacteria: k = 5

§ Search for a good k
◦ Try different values of k and evaluate quality of results
◦ Run hierarchical clustering on subset of data

◦ Find a natural selection for number of clusters

How to Choose K
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Unlucky Initial Centroids
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Converges On
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Mitigating Dependence on Initial Centroids
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best = kMeans(points)
for t in range(numTrials):

C = kMeans(points)
if dissimilarity(C) < dissimilarity(best):

best = C
return best

Try multiple sets of randomly chosen initial centroids

Select “best” result



§ Risk of death from heart attack
§ Hypothesis is that certain 
measurable factors may be 
predictive of mortality
§ Is outcome (death) correlated with 
features?
◦ Correlated but not causal
◦ Probabilistic, not deterministic

◦ Could have all four conditions indicative 
of mortality, but be okay

◦ E.g., older people with multiple 
heart attacks at higher risk, but not 
deterministic

§ Approach: Cluster based on 
attribute values; examine purity of 
clusters relative to outcomes

An Example
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Why cluster?
• Are there sub-populations 

that might emerge from 
the data?

• Could these reflect 
different variants of 
disease?



§ Data 
◦ Large number of patients

◦ Heart rate in beats per minute
◦ Number of past heart attacks
◦ Age
◦ ST elevation (binary)

§ Outcome (death) based on features
◦ Probabilistic, not deterministic
◦ E.g., older people with multiple heart attacks at higher 

risk

§ Approach
◦ Cluster
◦ Examine purity of clusters relative to outcomes

An Example
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Data Sample
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HR   Att STE  Age Outcome
P000:[ 89.   1.   0.  66.]:1
P001:[ 59.   0.   0.  72.]:0
P002:[ 73.   0.   0.  73.]:0
P003:[ 56.   1.   0.  65.]:0
P004:[ 75.   1.   1.  68.]:1
P005:[ 68.   1.   0.  56.]:0
P006:[ 73.   1.   0.  75.]:1
P007:[ 72.   0.   0.  65.]:0
P008:[ 73.   1.   0.  64.]:1
P009:[ 73.   0.   0.  58.]:0
P010:[ 100.  0.   0.  75.]:0
P011:[ 79.   0.   0.  31.]:0
P012:[ 81.   0.   0.  58.]:0
P013:[ 89.   1.   0.  50.]:1
P014:[ 81.   0.   0.  70.]:0

Outcome: 1 means 
mortality

Want to see if can 
correlate outcome 
with values of 
attributes; but not 
used in clustering



Class Example
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Class Cluster
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Class Cluster, cont.
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Class Cluster, cont.
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A generator: see 

discussion in 

textbook



Evaluating a Clustering
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Patients
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kmeans
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Examining Results
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Examining Results
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Run It
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What do you think?  Good result?



§ Features at vastly different scales

§ ST elevation binary

§ Number of heart attacks low single digits

§ Heart rate double or triple digits

What’s the Problem
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Scaling
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Z-Scaling
Mean = ?
Std = ?Poll



What Z-scaling Does
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Scaling Data
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Result of Running It with Scaling
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Try patients = getData(True) #scale features 

Test k-means (k = 2)
Cluster of size 224, frac. pos. = 0.290, num. pos. = 65
Cluster of size 26, frac. pos. = 0.692, num. pos. = 18

Happy with sensitivity?
Where are most of the deaths?

Or at least happier?



One Way to Think About Question
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!"#!$%$&$%' =  !"#$ !"#$%$&'
!"#$ !"#$%$&' + !"#$% !"#$%&'" 

!"#$%&%$%'( =  !"#$ !"#$%&'"
!"#$ !"#$%&'" + !"#$% !"#$%$&' 

Percentage 
correctly 
found

Percentage 
correctly 
rejected

Cluster of size 224 with fraction of positives = 0.2902
Cluster of size 26 with fraction of positives = 0.6923

If we use cluster membership to classify, then
• first cluster has sensitivity of .78 but specificity of .05
• second cluster has sensitivity of .22 but specificity of .95

Picking second cluster misses most of the positives



§ Different subgroups of positive patients have different 
characteristics

§ How might we test this?

§T ry some other values of k

A Hypothesis
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Testing Multiple Values of k
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Test k-means (k = 2)
Cluster of size 224, frac. pos. = 0.290, num. pos. = 65
Cluster of size 26, frac. pos. = 0.692, num. pos. = 18

Test k-means (k = 4)
Cluster of size 26, frac. pos. = 0.692, num. pos. = 18
Cluster of size 86, frac. pos. = 0.081, num. pos. = 7
Cluster of size 76, frac. pos. = 0.711, num. pos. = 54
Cluster of size 62, frac. pos. = 0.065, num. pos. = 4

Test k-means (k = 6)
Cluster of size 49, frac. pos. = 0.020, num. pos. = 1
Cluster of size 26, frac. pos. = 0.692, num. pos. = 18
Cluster of size 45, frac. pos. = 0.089, num. pos. = 4
Cluster of size 54, frac. pos. = 0.093, num. pos. = 5
Cluster of size 36, frac. pos. = 0.778, num. pos. = 28
Cluster of size 40, frac. pos. = 0.675, num. pos. = 27



§ In the next lecture, we will see 
examples of supervised learning 
algorithms

§ And there will be a quiz

Coming Up

6.0002 LECTURE 10 83


