
PROGRAM EFFICIENCY
John Guttag
(download slides and .py files to follow along!)

6.0001 LECTURE 9

6.0001 LECTURE 10 1

Today

 Formally evaluate programs

 Efficiency in time

 Orders of growth

 Examples of different complexity cases

 Some important algorithms

 Lists and indirection

6.0001 LECTURE 10 2

Assigned Reading

 Today
◦ Chapter 9

◦ 10.1 – 10.2

 Monday
◦ 10.3

◦ Chapter 11

6.0001 LECTURE 10 3

Efficiency Is Important

 Separate time and space efficiency of a program

 Tradeoff between them: can use up a bit more

memory to store values for quicker lookup later

 Challenges in understanding efficiency

◦ A program can be implemented in many different ways

◦ Want to separate implementation from choice of more
abstract algorithm

◦ Not always easy to separate memory usage from time

6.0001 LECTURE 10 4

Time and Space Are Related

Often a tradeoff, can decrease one
at the expense of the other

From a practical perspective,
space way more complicated
◦ Often a threshold function

◦ Doesn’t matter how much use
as long as it less than X

Time more straightforward, and
usually more important
◦ Modern machines have memory

hierarchies
◦ Often a dramatic impact on

performance

6.0001 LECTURE 10 5

Cache: 10’s cycles
Main memory: 100’s cycles
Secondary memory: 1,000,000’s cycles

EVALUATING ALGORITHMS

 Focus on idea of counting operations in an algorithm, but

not worry about small variations in implementation

 Focus on how algorithm performs when size of problem

gets arbitrarily large

 Look at the worst case asymptotic run time of a program,

as the input grows to a large value

6.0001 LECTURE 10 6

Measuring Order of Growth

 Big Oh notation measures an upper bound on the
asymptotic growth, often called order of growth

 Big Oh or O() is used to describe worst case
• Worst case tends to occur often and is the bottleneck

when a program runs

• Express rate of growth of program relative to the input

• Evaluate algorithm not machine or implementation

• Based on counting operations
• Need to know how much to “charge” for each builtin

operation

6.0001 LECTURE 10 7

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&ved=2ahUKEwj928m7y_TkAhWvhOAKHeElCVkQjRx6BAgBEAQ&url=http%3A%2F%2Fwww.raisingsupaman.com%2F2014%2F04%2Fthree-reasons-you-must-make-a-surprise-visit-to-your-childs-school%2F&psig=AOvVaw1i46_UXpkcJo7CCR8xqSHY&ust=1569796924710157

Complexity of Some Python Operations

6.0001 LECTURE 10 8

 Lists: n is len(L)
• index O(1)
• store O(1)
• length O(1)
• append O(1)
• == O(n)
• remove O(n)
• copy O(n)
• reverse O(n)
• iteration O(n)
• in list O(n)

 Dictionaries: n is len(d)

worst case (very rare)
• index O(n)
• store O(n)
• length O(n)
• delete O(n)
• iteration O(n)

 average case
• index O(1)
• store O(1)
• delete O(1)
• iteration O(n)

A Technicality

• When we say that the complexity of f is O(n), we mean
that its asymptotic growth is not worse than linear in n

• It is an upper bound, not necessarily a tight bound

• In practice, we are usually looking for something close
to a tight bound
• Upper bound, worst case not worse than

• Lower bound, worst case not better than

6.0001 LECTURE 10 9

Big 𝜭 (Theta)

 When we have a tight bound, f(n),
we can say that an algorithm is
order 𝜭(f(n))

 add_digits is in O(len(s))
◦ No worse than linear in len(s)

◦ Perhaps faster

◦ Also technically correct to say in
O(len(s)2) (but not helpful)

 add_digits is order 𝜭(len(s))
◦ No worse than linear in len(s)

◦ No better than linear in len(s)

6.0001 LECTURE 10 10

COMPLEXITY CLASSES ORDERED LOW TO HIGH

6.0001 LECTURE 10 11

O(1) : constant

O(log n) : logarithmic

O(n) : linear

O(n log n): loglinear

O(nc) : polynomial

O(cn) : exponential

COMPLEXITY GROWTH

CLASS N = 10 N = 100 N = 1000 N = 1000000

O(1) 1 1 1 1

O(log n) 1 2 3 6

O(n) 10 100 1000 1000000

O(n log n) 10 200 3000 6000000

O(n2) 100 10000 1000000 1000000000000

O(2n) 1024 12676506
00228229
40149670
3205376

1071508607186267320948425
0490600018105614048117055
3360744375038837035105112
4936122493198378815695858
1275946729175531468251871
4528569231404359845775746
9857480393456777482423098
5421074605062371141877954
1821530464749835819412673
9876755916554394607706291
4571196477686542167660429
8316526243868372056680693
76

Good Luck!!

6.0001 LECTURE 10 12

6.0001 LECTURE 10 13

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&ved=2ahUKEwj4qLOZzvTkAhWKMd8KHUTXBmMQjRx6BAgBEAQ&url=https%3A%2F%2Ftowardsdatascience.com%2Fbig-o-d13a8b1068c8&psig=AOvVaw0F9h3r9pqXSz-6Vr0ExM5k&ust=1569797640464550

CONSTANT
COMPLEXITY

6.0001 LECTURE 10 14

CONSTANT COMPLEXITY

 Complexity independent of inputs

 Very few interesting algorithms in this class, but can
often have pieces that fit this class

 Can have loops or recursive calls, but number of
iterations or calls independent of size of input

6.0001 LECTURE 10 15

CONSTANT COMPLEXITY: EXAMPLE 1

 Add x to y

def add(x, y):

return x+y

 O(1)

6.0001 LECTURE 10 16

LINEAR
COMPLEXITY

6.0001 LECTURE 10 17

LINEAR COMPLEXITY

 Simple iterative loop algorithms

 Loops must be a function of input

 Linear search a list to see if an element is present

 Recursive functions with one recursive call and
constant overhead for call

6.0001 LECTURE 10 18

LINEAR COMPLEXITY: EXAMPLE 1

 Add characters of a string, assumed to be composed
of decimal digits

def add_digits(s):

val = 0

for c in s:

val += int(c)

return val

 O(len(s))

 O(n) where n is len(s)

6.0001 LECTURE 10 19

LINEAR COMPLEXITY: EXAMPLE 2

 Multiply x by y

def mul(x, y):

tot = 0

for i in range(y):

tot += x

return tot

 complexity in terms of x: O(1)

 complexity in terms of y: O(y)

6.0001 LECTURE 10 20

LINEAR COMPLEXITY: EXAMPLE 3

fact_recur O(n) because the number of function calls is
linear in n

 Iterative and recursive factorial implementations are
the same order of growth

 If you time them, notice that fact_recur is slower than
iterative version because of memory allocation

6.0001 LECTURE 10 21

LINEAR SEARCH

def linear_search(L, e):

found = False

for i in range(len(L)):

if e == L[i]:

found = True

return found

 Must look through all elements to decide it’s not there

 O(len(L)) for the loop * O(1) to test if e == L[i]

 Overall complexity is O(n) – where n is len(L)

 O(len(L))

6.0001 LECTURE 10 22

LINEAR SEARCH ON SORTED LIST

def search(L, e):

for i in L:

if i == e:

return True

if i > e:

return False

return False

 Must only look until reach a number greater than e

 O(len(L)) for the loop * O(1) to test if e == L[i]

 Overall complexity is O(n) – where n is len(L)

6.0001 LECTURE 10 23

POLYNOMIAL
COMPLEXITY

6.0001 LECTURE 10 24

POLYNOMIAL COMPLEXITY (OFTEN QUADRATIC)

 Most common polynomial algorithms are quadratic,
i.e., complexity grows with square of size of input

 Commonly occurs when we have nested loops or
recursive function calls

6.0001 LECTURE 10 25

QUADRATIC COMPLEXITY: EXAMPLE 1

def g(n):

""" assume n >= 0 """

x = 0

for i in range(n):

for j in range(n):

x += 1

return x

 Computes n2 very inefficiently

When dealing with for loops, look at the ranges

 Nested loops, each iterating n times

 O(n2)

6.0001 LECTURE 10 26

QUADRATIC COMPLEXITY: EXAMPLE 2

 Find if L1 is a subset of L2 (if all elements in L1 are in L2)

def is_subset(L1, L2):

for e1 in L1:

matched = False

for e2 in L2:

if e1 == e2:

matched = True

break

if not matched:

return False

return True

6.0001 LECTURE 10 27

QUADRATIC COMPLEXITY: EXAMPLE 2

6.0001 LECTURE 10 28

def is_subset(L1, L2):

for e1 in L1:

matched = False

for e2 in L2:

if e1 == e2:

matched = True

break

if not matched:

return False

return True

Outer loop executed
len(L1) times

Each iteration will execute
inner loop up to len(L2)
times

O(len(L1)*len(L2))

QUADRATIC COMPLEXITY: EXAMPLE 3

 Find intersection of two lists, return a list with each element
appearing only once

def intersect(L1, L2):

tmp = []

for e1 in L1:

for e2 in L2:

if e1 == e2:

tmp.append(e1)

unique = []

for e in tmp:

if not(e in unique):

unique.append(e)

return unique

6.0001 LECTURE 10 29

QUADRATIC COMPLEXITY: EXAMPLE 3

6.0001 LECTURE 10 30

def intersect(L1, L2):

tmp = []

for e1 in L1:

for e2 in L2:

if e1 == e2:

tmp.append(e1)

unique = []

for e in tmp:

if not(e in unique):

unique.append(e)

return unique

First nested loop takes
O(len(L1)*len(L2)) steps.

Second loop takes at most
O(len(L1)*len(L2)) steps.
Typically not this bad.

Overall O(len(L1)*len(L2))

EXPONENTIAL
COMPLEXITY

6.0001 LECTURE 10 31

EXPONENTIAL COMPLEXITY

6.0001 LECTURE 10 32

binary numbers of 5 digits took 3.504939377307892e-05 s
binary numbers of 10 digits took 0.0016635740175843239 s
binary numbers of 15 digits took 0.06862902035936713 s
binary numbers of 20 digits took 1.9542624829337 s
binary numbers of 25 digits took 53.613449009135365 s

binary numbers of 5 digits took 3.523286432027817e-05 s
binary numbers of 10 digits took 0.0010585528798401356 s
binary numbers of 15 digits took 0.0496662026271224 s
binary numbers of 20 digits took 1.7410518480464816 s
binary numbers of 25 digits took 51.55056634778157 s

Exponential Complexity

6.0001 LECTURE 10 33

Exponential Complexity

6.0001 LECTURE 10 34

EXPONENTIAL COMPLEXITY

 Many important problems are inherently exponential
◦ Will lead us to consider (mostly in 6.0002)

◦ Approximate solutions

◦ Algorithms that work well on special cases

6.0001 LECTURE 10 35

TEST YOURSELF

def all_digits(nums):

""" nums is a list of numbers """

digits = [0,1,2,3,4,5,6,7,8,9]

for i in nums:

is_in = False

for j in digits:

if i == j:

is_in = True

break

if not is_in:

return False

return True

6.0001 LECTURE 10 36

LIVE EXERCISE

O(1)?

O(len(nums))?

O(len(nums)*len(digits)?

O(len(nums)**2?

None of the above

http://bit.ly/60001-41

BIG OH SUMMARY

 Compare efficiency of algorithms
• notation that describes growth relative to size of inputs

• lower order of growth is better

• independent of machine or specific implementation

 Using Big Oh (or Θ)
• describe order of growth

• asymptotic notation

• upper bound

• worst case analysis

6.0001 LECTURE 10 37

5 Minute Break

6.0001 LECTURE 10 38

Complexity of Some Python Operations

6.0001 LECTURE 10 39

 Lists: n is len(L)
• index O(1)
• store O(1)
• length O(1)
• append O(1)
• == O(n)
• remove O(n)
• copy O(n)
• reverse O(n)
• iteration O(n)
• in list O(n)

 Dictionaries: n is len(d)

worst case (very rare)
• index O(n)
• store O(n)
• length O(n)
• delete O(n)
• iteration O(n)

 average case
• index O(1)
• store O(1)
• delete O(1)
• iteration O(n)

Constant Time Indexing Into a List

6.0001 LECTURE 10 40

 If list is all 32 bit ints

 ith element at location start + 4*i

…

start

Constant Time Indexing Into a List

6.0001 LECTURE 10 41

 If list is heterogeneous
◦ Indirection

◦ References to other objects

…

What About Bisection Search?

6.0001 LECTURE 10 42

NOT constant

NOT constant

A Better Way to Implement Bisection Search

6.0001 LECTURE 10 43

 reduce size of
problem by factor
of 2 each step

 keep track of low
and high indices
to search list

 avoid copying list

 complexity of
recursion is
O(log n) – where
n is len(L)

…

…

Amortized Analysis

Why bother sorting first, considering that complexity
of sorting is more than linear?

 In some cases, may sort a list once then do many
searches

 AMORTIZE cost of the sort over K searches

 We want (sort time + K*O(log n)) < K*O(n)

 for large K, SORT time becomes irrelevant

 How big does K have to be?
◦ Depends upon complexity of sorting

6.0001 LECTURE 10 44

Stupid Sort

6.0001 LECTURE 10 45

 best case: O(n) where n is len(L) to check if sorted

 worst case: O(?) it is unbounded if really unlucky

Selection Sort

 First step
• extract minimum element

• swap it with element at index 0

 Subsequent step
• in remaining sublist, extract minimum element

• swap it with the element at index 1

 Keep the left portion of the list sorted
• at ith step, first i elements in list are sorted

• all other elements are bigger than first i elements

6.0001 LECTURE 10 46

Why It Works

6.0001 LECTURE 10 47

 Maintains a loop invariant
◦ given prefix of list L[0:i] and suffix L[i+1:len(L)], then

prefix is sorted and no element in prefix is larger than
smallest element in suffix

1. base case: prefix empty, suffix whole list – invariant
true

2. induction step: move minimum element from suffix
to end of prefix. Since invariant true before move,
prefix sorted after append

3. when exit, prefix is entire list, suffix empty, so sorted

Complexity Analysis

6.0001 LECTURE 10 48

def selection_sort(L):

suffix = 0

while suffix != len(L):

for i in range(suffix, len(L)):

if L[i] < L[suffix]:

L[suffix], L[i] = L[i], L[suffix]

suffix += 1

 outer loop executes len(L) times

 inner loop executes len(L) – i times

 complexity of selection sort is O(n2) where n is len(L)

6.0001 LECTURE 12 48

Merge Sort

 Use a divide-and-conquer approach:
1. if list is of length 0 or 1, already sorted

2. if list has more than one element, split into two lists,
and sort each

3. merge sorted sublists

1. look at first element of each, move smaller to end
of the result

2. when one list empty, just copy rest of other list

6.0001 LECTURE 10 49

Merge Sort

 Split list in half until have sublists of only 1 element

6.0001 LECTURE 10 50

unsorted

unsorted unsorted

unsorted unsorted unsorted unsorted

unsor
ted

unsor
ted

unsor
ted

unsor
ted

unsor
ted

unsor
ted

unsor
ted

unsor
ted

merge merge merge merge merge merge merge merge

MERGE SORT

 divide and conquer

 merge such that sublists will be sorted after merge

unsorted

unsorted unsorted

unsorted unsorted unsorted unsorted

sort sort sort sort sort sort sort sort

merge merge merge merge

6.0001 LECTURE 10 51

MERGE SORT

 divide and conquer

 merge sorted sublists

 sublists will be sorted after merge

unsorted

unsorted unsorted

sorted sorted sorted sorted

merge merge

6.0001 LECTURE 10 52

MERGE SORT

 divide and conquer

 merge sorted sublists

 sublists will be sorted after merge

unsorted

sorted sorted

merge

6.0001 LECTURE 10 53

MERGE SORT

 divide and conquer – done!

sorted

6.0001 LECTURE 10 54

Merging

6.0001 LECTURE 10 55

Left in list 1 Left in list 2 Compare Result

[1,5,12,18,19,20] [2,3,4,17] 1, 2 []

[5,12,18,19,20] [2,3,4,17] 5, 2 [1]

[5,12,18,19,20] [3,4,17] 5, 3 [1,2]

[5,12,18,19,20] [4,17] 5, 4 [1,2,3]

[5,12,18,19,20] [17] 5, 17 [1,2,3,4]

[12,18,19,20] [17] 12, 17 [1,2,3,4,5]

[18,19,20] [17] 18, 17 [1,2,3,4,5,12]

[18,19,20] [] 18, -- [1,2,3,4,5,12,17]

[] [] [1,2,3,4,5,12,17,18,19,20]

Complexity of Merge

 Go through two lists, only one pass

 Compare only smallest elements in each sublist

 O(len(left) + len(right)) copied elements

 O(len(longer list)) comparisons

 Linear in length of the lists

6.0001 LECTURE 10 56

Recursive Merge Sort Implementation

6.0001 LECTURE 10 57

def merge_sort(L):

if len(L) < 2:

return L[:]

else:

middle = len(L)//2

left = merge_sort(L[:middle])

right = merge_sort(L[middle:])

return merge(left, right)

 divide list successively into halves

 depth-first such that conquer smallest pieces down
one branch first before moving to larger pieces

6.0001 LECTURE 10 58

8 4 1 6 5 9 2 0

8 4 1 6

8 4

8

base
case

4

base
case

1 6

1

base
case

6

base
case

Merge
4 8

Merge
4 8 & 1 6

1 4 6 8

Merge
1 6

5 9 2 0

5 9

5

base
case

9

base
case

2 0

2

base
case

0

base
case

Merge
5 9

Merge
5 9 & 0 2

0 2 5 9

Merge
0 2

Merge
1 4 6 8 & 0 2 5 9

0 1 2 4 5 6 8 9

Complexity Analysis

6.0001 LECTURE 10 59

 At first recursion level
• n/2 elements in each list

• O(n) + O(n) = O(n) where n is len(L)

 At second recursion level
• n/4 elements in each list

• two merges  O(n) where n is len(L)

 Each recursion level is O(n) where n is len(L)

 Dividing list in half with each recursive call
• O(log(n)) where n is len(L)

 Overall complexity is O(n log(n)) where n is len(L)

