WELCOME!

(download slides and .py files to follow along)

6.0001 LECTURE 1
Frédo Durand

-]
6.0001 LECTURE 1 1

COURSE INFO

" Course site
cwww.mit.edu/~6.00/

olinks to MITx, Calendar, Grades, Psets, course
policies

" Last day we accept adds is Monday Feb 10

" Post privately on the forum if have problems with
schedule

" Course uses Python 3.5 and I

" Prerequisites
°High school math

°MIT-caliber brain
°Little or no programming expeM

6.0001 LECTURE 1 2

http://www.mit.edu/~6.00/

COURSE POLICIES

" Collaboration

> Okay
°Helping others debug
°Discussing general attack on problem

°Not okay
°Copying code (from others in class or previous years)
°Side-by-side coding
°Showing/sending code to others

°Provide names of all “collaborators” on submission

°We will be running a code similarity program on all
psets

" Extensions
> We consider extensions only with S©3 support

° Late days, 3 to use per half semester

6.0001 LECTURE 1 3

Grading, Problem Sets and Finger Exercises

" Problem sets
°Worth 30% of final grade

°5 problem sets, weekly, hand in online
cScore based on 2 components

1. How many test cases you pass (calculated
automatically)

2. Checkoff for code style and explanation of code
°Checkoffs starting with pset 1

°|In office hours for the 10 days following the initial
due date

" Finger exercises on MITx

°Worth 10% of final grade for mandatory finger
exercises

°One for each lecture, due by the beginning of the
next lecture

6.0001 LECTURE 1 4q

Grading, Exams and Quizzes

" Microquizzes

°During class, in the last 20 mins of some lectures
(see calendar)

°No makeups!
°Must have computer with wireless connection

°|f you need special accommodations, contact us
asap

-3 of them
Worth 20%
c-Best 2 out of 3

" Exam (in-class)
cWorth 40% on March 18 (see calendar)

°Exams will cover material from lectures, problem
sets, and assigned readings

6.0001 LECTURE 1 5

Fast-paced Subject

" Position yourself to succeed!
°Read psets when they come out

°Save late days for emergency situations

" Learning to program
°Can’t passively absorb programming as a skill
Download code before lecture and follow along
°Do MITx optional finger exercises
°Get help early
°Forum, office hours, HKN tutoring
°Optional recitations Fridays 10am, 11am, and

lpm

" Have fun

6.0001 LECTURE 1 6

TOPICS

" 6.0001
°Solving problems using computation

°Python programming language
°Organizing modular programs
°Some simple but important algorithms
°Algorithmic complexity

" 6.0002
°Using computation to model the world

°Simulation models
°Understanding data

6.0001 LECTURE 1

LET'S GO!

Assigned Readi

" Chapter 1 :
" Sections 2.1 - 2.3 L Introduction to
* Computation
afnd Programming

#Using Python

With Ap-plication to Unde,l'-s“tgnding Data

second edition &

https://mitpress.mit.edu/sites/default/files/Guttag _errata revised 083117.po

6.0001 LECTURE 1 9

TYPES OF KNOWLEDGE

" Declarative knowledge is statements of fact

" Imperative knowledge is a recipe or “how-to”

6.0001 LECTURE 1 10

A NUMERICAL EXAMPLE

Declarative knowledge:
"Square root of a number x isy such that y*y = x

6.0001 LECTURE 1 11

A NUMERICAL EXAMPLE

Imperative knowledge:

"Start with a guess, g

1) If g*g is close enough to x, stop and say g is
the answer

2) Otherwise make a new guess by averaging g
and x/g

3) Using the new guess, repeat process until
close enough

6.0001 LECTURE 1 12

A NUMERICAL EXAMPLE

"Start with a guess, ¢

1) If g*g is close enough to x, stop and say g is
the answer

2) Otherwise make a new guess by averaging g
and x/g

) Using the new guess, repeat process until

~rlncon anniinh

_-

6.0001 LECTURE 1 13

A NUMERICAL EXAMPLE

"Start with a guess, ¢

1) If g*g is close enough to x, stop and say g Is
the answer

2) Otherwise make a new guess by averaging g
and x/g

) Using the new guess, repeat process until

~lAancAa AnnAlin

_-
17

16/3 4.

4.17 17.36 3.837 4.0035

4.0035 16.0277 3.997 4.000002

6.0001 LECTURE 1 14

What We Have Here is an Algorithm

1) Sequence of simple
steps

2) Flow of control
process that specifies
when each step is
executed

3) A means of determining
when to stop

6.0001 LECTURE 1 15

In Python

X = 16.0
g = 3.0
tolerance =

while abs(g
g = (g + X
print (g)

0.0001

*
/

g- X)
g) /2.0

6.0001 LECTURE 1

> tolerance:

16

In Python

X = 16.0
g = 3.0
tolerance =

while abs(g
g = (g + X
print (g)

0.0001

*
/

g- X)
g) /2.0

6.0001 LECTURE 1

> tolerance:

17

WUIIIMPULGEI D GG 1TTTGLGIIITIGYD TG

Execute Algorithms

* Two things computers do: ey

° Performs simple operations iierance = 0.0001
100s of billions per second! white abs(g * g - x)
g=(g+x/4g) /2.0
° Remembers results print (g)

100s of gigabytes of storage!

> tolerance:

Linguistic trivia:

6.0001 LECTURE 1 18

WUIIIMPULGEI D GG 1TTTGLGIIITIGYD TG

Execute Algorithms

* Two things computers do: ey

° Performs simple operations iierance = 0.0001
100s of billions per second! white abs(g * g - x)
g=(g+x/4g) /2.0
° Remembers results print (g)

100s of gigabytes of storage!

> tolerance:

" What kinds of calculations?
° Built-in to the machine, e.qg., +
° Ones that you define as the programmer

6.0001 LECTURE 1 19

JV“ - s B N - WS i S

#programmer
#computerscience

CANT YOU DO
ANYTHING RIGHT?

6.0001 LECTURE 1

20

Computers are dumb and obedient
to the point of being unforgiving

"They do exactly what you tell them to do

"No creativity, no error fixing, no interpretation of
hand wavy instruction

°No vague things like add salt and pepper “to
taste”

6.0001 LECTURE 1 21

WUIIIMPULGEI I M G 1ALV YD TG

Execute Algorithms

" Fixed program computer
°Fixed set of algorithms

What we had until 1940’s

6.0001 LECTURE 1

22

WUIIIMPULGEI I M G 1ALV YD TG

Execute Algorithms

" Fixed program computer
°Fixed set of algorithms

What we had until 1940’s

" Stored program computer

o Machine stores and
executes instructions

" Key insight: Programs are
no different from other kinds
of data

6.0001 LECTURE 1 23

STORED PROGRAM COMPUTER

" Sequence of instructions stored inside
computer

> Built from predefined set of primitive
instructions

1) Arithmetic and logical
2) Simple tests
3) Moving data

" Special program (interpreter) executes each
instruction in order

°Use tests to change flow of control through
sequence e

° Stops when it 9 =30 5 Or
executes a hal'tolerance = 0.0001

while abs(g * g — x)
g=(g+x/4g) /2.0
print (g)

> tolerance:

6.0001 LECTURE 1 24

BASIC PRIMITIVES

" Turing showed that you can compute anything with a
very simple machine with only 6 primitives: left, right,

print, scan, ¢
MEMDETDIAI.
SCANMMER

i

DDDEHIH ﬂEIEIDL'IEII:IEJUII'EIUDDU[IDDHDDIJDEIU‘DHHDDHDUD
goo II'II!I DDEDDEHUDDDDDDUUDUUDEUQU Uﬂﬂﬂﬂﬂﬂﬂﬂ

iﬂlﬂ- DUU

l Z.'-:

nln YO C0j000
ERASER

AND WRITER TARE

LOGICAL COMTROL

" Real programming languages have
°More convenient set of primitives

> Ways to combine primitives to create new
primitives

" Anything computable in one language is computable in
any other programming language

6.0001 LECTURE 1 25

ASPECTS OF LANGUAGES

" Primitive constructs
° English: words

° Programming language: numbers, strings,
simple operators

has buld g4 be aaaaa no why does "J
W'g‘ﬁed“‘"ﬂam =k ?hﬁ an ug
one sald word
Wa im b sl ped
on bhis hemsae Ghab “0"'1' arew. &
Ll call hOb all Is soand

e.

bhem
whlch 9°

were
day small
from ®™ Gheir
T € form,,g

brm gh make
t'|me sound bUb £

Ghought lights

help
boy

i bh 9 Iefti people bhese Dﬂumrubmedb bhlng
o will now could who OUG change
o side BWO sk ;s if

her move

6.0001 LECTURE 1 27

ASPECTS OF LANGUAGES

" Syntax

° English: "cat dog boy" [] not syntactically
valid

"cat hugs boy" [] syntactically valid

° programming language: 4 g [] not syntactically
valid

4*g [] syntactically valid

6.0001 LECTURE 1 28

ASPECTS OF LANGUAGES

" Static semantics: which syntactically valid
strings (sequences of characters) have meaning

° English: "I are hungry" [] syntactically valid

but
static semantic error

° Python: "hi"+5 [] syntactically valid
but static semantic error

6.0001 LECTURE 1

29

ASPECTS OF LANGUAGES

" Semantics: the meaning
associated with a syntactically
correct string of symbols with
no static semantic errors

" English: can have many
meanings "The chicken is
ready to eat."

" Programs have only one

meaning Q
" But the meaning may not &‘

be what programmer

intended f :

6.0001 LECTURE 1 30

WHERE THINGS GO WRONG

" Syntactic errors
° Common and easily caught

" Static semantic errors

° Some languages check for these before
running program

° Can cause unpredictable behavior

" No linguistic errors, but different meaning
than what programmer intended

° Program crashes, stops running
° Program runs forever
° Program gives an answer, but it’s wrong!

6.0001 LECTURE 1

31

PYTHON PROGRAMS

" A program is a sequence of definitions and
commands

o> Definitions evaluated

> Commands executed by Python interpreter in
a shell

* Commands (statements) instruct interpreter to
do something

" Can be typed directly in a shell or stored in a file
thatisread, 2 g~ =" -~~~ mtemts

° Problem 9 = 3.0 hese in
Anacond&ctolerance = 0.0001

while abs(g * g — x) > tolerance:
g=(g+x/4g) /2.0
print (g)

6.0001 LECTURE 1 32

OBJECTS

" Programs manipulate data objects (~pieces of
Information)

°Objects have a type that defines the kinds of
things programs can do to them

°©30 IS @ humber so we can
add/sub/mult/div/exp/etc

°'MIT' Is a string so we can look at substrings of
It, but we can’t divide it by a number

6.0001 LECTURE 1 33

OBJECTS

" Programs manipulate data objects (~pieces of
Information)

°Objects have a type that defines the kinds of
things programs can do to them

°©30 IS @ humber so we can
add/sub/mult/div/exp/etc

°'MIT' Is a string so we can look at substrings of
It, but we can’t divide it by a number

" Objects can be
o Scalar (cannot be subdivided)

> Non-scalar (have internal structure that can be
accessed)

6.0001 LECTURE 1 34

SCALAR OBJECTS

"int - represent integers, ex. 5, -100

" float - represent real numbers, ex. 3.27,
2.0

" bool - represent Boolean values True and
False

" NoneType - special and has one value, None
" can use type() to see the type of an object
>>> type(5)

int

>>> type(3.0)

float

6.0001 LECTURE 1 35

SCALAR OBJECTS

"int - represent integers, ex. 5, -100

" float - represent real numbers, ex. 3.27,
2.0

" bool - represent Boolean values True and
False

" NoneType - special and has one value, None

" car "”;gﬁe/ e of an object
I Use type() tospeh ggfyf J

Z S/ e A, " Tta
>>>type(5) s 2
; e}?eetsb
1in t Q /7(‘6 /e /7/,12(/('701/3
>>> type(3.0) T g

float

6.0001 LECTURE 1

36

TYPE CONVERSIONS (CAST)

" Can convert object of one type to another
> float(3) converts the int 3 to float 3.0

°1nt(3.9) truncates the float 3.9 to int 3

" Some operations perform implicit casts
°round(3.9)returns the int 4

6.0001 LECTURE 1

37

EXPRESSIONS

" Combine objects and operators to form
expressions

" An expression has a value, which has a type

" Syntax for a simple expression
<object> <operator> <object>

6.0001 LECTURE 1

38

OPERATORS ON ints and floats

"1+] []the sum
. s 1t diff \ if both are ints, result is int
1-] | The difference if either or both are floats, result
*i*j []the produc s float
"i/j []division — result is always a float

- What does it do?

i//j [floor divisiof, . i type of output?

"i%j []the remainder when i is divided by j

li**j |:|l

to the power of j

6.0001 LECTURE 1 39

SIMPLE OPERATIONS

" Parentheses used to tell Python to do these
operations first

" Operator precedence without parentheses
o XX

° * [% executed left to right, as appear in
expression

° 4+ and - executed left to right, as appear in
expression

6.0001 LECTURE 1 40

Five Minute Break

= LR

Thr:relf.ixr:di’r-num A

Trying to program using
only the 6 primitives

v
_ &
Finished psO by yourself

41

Challenge: Variables

"CS variables are different from math variables

°Math variables are abstract and can represent
many values

°X so that x*x = y represents all square roots at
once

°CS variables store one single value at a given
time
°g stores 3.0 at the beginning of our program
(but will change as the code executes)

6.0001 LECTURE 1 43

WIIUIIGITYy W MJIJIiyllliiGiic Garivea

binding
"Equal is different in math & CS

°In math, it's declarative, says we want to solve
something

°Can imply very complicated derivations
°Again, does not tell us how to do anything

6.0001 LECTURE 1 44

WIIUIIGITYy W MJIJIiyllliiGiic Garivea

binding
"Equal is different in math & CS

°Iln math, it's declarative, says we want to solve
something

cCan imply very complicated derivations
°Again, does not tell us how to do anything

°In CS, two notions of equal:
°Variable = value means we change the stored value
°Very mechanical, very simple

°cExpression == another_expression tests if the two
sides are the same and return True or False

°Very mechanical, very simple

6.0001 LECTURE 1 45

BINDING VARIABLES AND VALUES

" Equal sign is an assignment of a value to a
variable name

" Equal sign is not “solve for x”

" An assignment binds a value to a name
pi = 355/113

6.0001 LECTURE 1 46

BINDING VARIABLES AND VALUES

" Equal sign is an assignment of a value to a variable
name

" Equal sign is not “solve for x”

" An assignment binds %é/alue to a name

\&

) \VC
3

N

pi|=|355/113

" Compute the value on the right hand side []
VALUE

° value stored in computer memory

" Store it (bind it) to the left hand side [] VARIABLE

° retrieve value associated with name or variable by
iInvoking the name (typing it out)

6.0001 LECTURE 1 47

ABSTRACTING EXPRESSIONS

" Why give names to values of expressions?
° To reuse names instead of values

° Makes code easier to read and modify

. . '\‘\(\62?6

" Choose variable names wisely KON

°Code needs to read «\e&; a“d&o’i’d@\‘«'

er . C
-Today, tomorrow, next year 006\63(606’\)6 QY
o0V U@ \(\’6‘\]
°By author and others et o
: . X0

#Compute approximate value for pi Od@ﬁg

pi = 355/113

radius = 2.2

area =| pi*(radius**2)
c1rcuqu{enq§,= pi*(radius*2)

% 3o 6.0001 LECTURE 1 48

CHANGING BINDINGS

" Can re-bind variable names using new
assighment statements
°(Previous value may still stored in memory but
lost the handle for it. More about this later)

p1 = 3.14

radius = 2.2

area = pi*(radius**2)
radius = radius+1

6.0001 LECTURE 1 50

CHANGING BINDINGS

" Can re-bind variable names using new assignment

statements
°(Previous value may still stored in memory but
lost the handle for it. More about this later)

p1 = 3.14

radius = 2.2

area = pi*(radius**2)
radius = radius+1

" Here, value for area does not change until you
tell the computer to do the calculation again

°Computers only do what you tell them to do, one
step at a time
°Equal only specifies a binding, not a mathematical

equality
6.0001 LECTURE 1 51

BINDING EXAMPLE Y% LIVE EXERCISE

" Swap values of x and

y?

X =1
y = 2
y = X
X =Y

6.0001 LECTURE 1 52

BINDING EXAMPLE Y% LIVE EXERCISE

" Swap values of x and " Swap values of x and
y? y?
x =1 x =1
y =2 y = 2
temp = vy
y =X y = X
X =y X = temp

6.0001 LECTURE 1 53

Recap

"Computers are mindless
°They execute commands step by steps

"CS variables are different from math variable
°Just storage

"CS equal is different from math equal
°Just change stored value.

°Right-hand side should always be a variable
name

6.0001 LECTURE 1 54

STRINGS

" Letters, special characters, spaces, digits

"Think of an str as a sequence of case sensitive
characters

" Enclose in quotation marks or single quotes
hi = "hello there"

" Concatenate strings

name = "6.00 students"
greeting = hi + " " + name

" Do some operations on a string as defined in Python docs
silly = hi + " " + name * 3

"Many other operations on strings
°Hear all about them next time

6.0001 LECTURE 1 55

https://docs.google.com/forms/d/13cMWPj2CjTb_RANFChjVsxKhSIoi3XvBUVVsJ3r7NsE/edit

PRINTING % LIVE EXERCISE

oo
" Used to output stuff to console \6 0“)&?\0‘“6
In [11]: 3+2 JOUC ;-\00 W ac‘\)az\\\\l““e(\
out[11]: 5 R \00\\1 5\’&\593(6“
* Command is print 5“6\\),€‘ 0% or, O
In [12]: print(3+2) w)“o(\xo a\)(\&\\es
5 5\(\0\Ned\’<.\(

O
" Printing many objects in the same command
°Separate objects using commas, output them separated
by spaces

°Concatenate strings together, then print as single object
Xx =1 cec)

X_str I str{X)] []) [) J ?\)‘\“
print(L..., PV, X —"[., X] L]
print (“my—fFav—nmum—is—/—+ X [ﬁ.—rﬂ#]". X =%)

6.0001 LECTURE 1 56

I oa—

https://docs.google.com/forms/d/1ovFcabx9Yj5nMVgtifo6d1ciqDCYdmawPtH17kHEamo/edit

INPUT

X = 1nput(s)

°prints the value of the string s
cuser types in something and hits enter
°that value is assigned to the variable x

" Binds that value to a variable

text

input("Type anything... ")

print(5*text)

" input always returns an str, must cast if working
with numbers

num =

int;hnput("Type a number... "))

print(5*num)

6.0001 LECTURE 1 57

COMPARISON OPERATORS

" iand j are variable names

" Comparisons below evaluate to a Boolean

>]

>=]

<]

<=]

== j [] equality test, True if i is the same as j
1= j [] inequality test, True if 1 not the same as

SR A A O T T Nt

6.0001 LECTURE 1 59

COMPARISON OPERATORS

" iand j are variable names

" Comparisons below evaluate to a Boolean
>]

1 e

. o . qc)\\oc’ase

1 == J 6‘(\(\\00\)‘ \

. . W 2 g @

i< RN

: : L o

i<=j N\?’(e

. . . %O . .
i1 == j[] equality test, True if i is the same as j
1 != j[]inequality test, True if 1 not the same as
J

6.0001 LECTURE 1 60

http://bit.ly/60001-2

LOGICAL OPERATORS ON bools

" a and b are variable names (with Boolean values)

hot a [] True Iifais False
False if ais True

a and b [] True if both are True
aorb [] Trueifeither or both are True

A B ___AandB |AorB _

True True True True
True False False True
False True False True

False False False False

6.0001 LECTURE 1 61

COMPARISON EXAMPLE

pset_time = 15

sleep_time = 8
print(sleep_time > pset_time)
derive = True

drink = False

both = drink and derive
print(both)

6.0001 LECTURE 1

62

WHY bools?

" When we get to flow of control, i.e. branching to
different expressions based on values, we need a
way of knowing if a condition is true

" E.qg., if something is true, do this, otherwise do
that

6.0001 LECTURE 1 63

WHY bools?

" When we get to flow of control, i.e. branching to
different expressions based on values, we need a
way of knowing if a condition is true

"E.qg., ﬁf something i%[true,]do this, o[:herwi}e do
that

boolea some some
N command comman
S ds

6.0001 LECTURE 1 64

M -WHUHVIIE MIl IHIWGE CIRITTYy Mmiyvi ieiiiisg

Involve Branching

It's midnight

Are
you
Psettin

g?

Find a friend Find a party

6.0001 LECTURE 1 65

CONTROL FLOW - BRANCHING

if <condition>: if <condition>:
<statement> <statement>
<statement> <statement>

elif <condition>:

if <condition>: <statement>
<statement> <statement>
<statement> C e
- else:

else: <statement>
<statement> <statement>
<statement>

" <condition> has a value True or False
" evaluate statements in that block if <condition> is True

6.0001 LECTURE 1 66

INDENTATION MATTERS

" Semantic structure matches visual structure

X = int(input("Enter a number for x: "))

y = int(input("Enter a different number for y: "))

if x == y: de‘\‘v
print(x, "and",y) o
print("These are equal!") 'vfkﬁéx

C

X = int(input("Enter a number for x: "))

y = int(input("Enter a different number for y: "))

if x == vy:

print(x, "and",y) eV x bad

print("These are equal!") 60" av°

’(\(\\ (,‘ O(\
((e’ \,’6"\

(\66(\

\

6.0001 LECTURE 1 67

Wednesday

" More strings

" More branching

" Iteration

" Some more useful algorithmic ideas

6.0001 LECTURE 1

68

	Slide 1
	COURSE INFO
	COURSE POLICIES
	Grading, Problem Sets and Finger Exercises
	Grading, Exams and Quizzes
	Fast-paced Subject
	TOPICS
	Slide 8
	Assigned Reading
	TYPES OF KNOWLEDGE
	A NUMERICAL EXAMPLE
	A NUMERICAL EXAMPLE
	A NUMERICAL EXAMPLE
	A NUMERICAL EXAMPLE
	What We Have Here is an Algorithm
	In Python
	In Python
	Computers are Machines that Execute Algorithms
	Computers are Machines that Execute Algorithms
	Slide 20
	Slide 21
	Computers Are Machines that Execute Algorithms
	Computers Are Machines that Execute Algorithms
	Stored Program Computer
	BASIC PRIMITIVES
	ASPECTS OF LANGUAGES
	ASPECTS OF LANGUAGES
	ASPECTS OF LANGUAGES
	ASPECTS OF LANGUAGES
	WHERE THINGS GO WRONG
	PYTHON PROGRAMS
	OBJECTS
	OBJECTS
	SCALAR OBJECTS
	SCALAR OBJECTS
	TYPE CONVERSIONS (CAST)
	EXPRESSIONS
	OPERATORS ON ints and floats
	SIMPLE OPERATIONS
	Five Minute Break
	Challenge: Variables
	Challenge: Assignment aka binding
	Challenge: Assignment aka binding
	BINDING VARIABLES AND VALUES
	BINDING VARIABLES AND VALUES
	ABSTRACTING EXPRESSIONS
	CHANGING BINDINGS
	CHANGING BINDINGS
	BINDING EXAMPLE
	BINDING EXAMPLE
	Recap
	STRINGS
	PRINTING
	INPUT
	COMPARISON OPERATORS
	COMPARISON OPERATORS
	LOGICAL OPERATORS ON bools
	COMPARISON EXAMPLE
	WHY bools?
	WHY bools?
	Because All Interesting Algorithms Involve Branching
	CONTROL FLOW - BRANCHING
	INDENTATION MATTERS
	Wednesday

