

Introduction to Autonomy

Massachusetts
Institute of
Technology

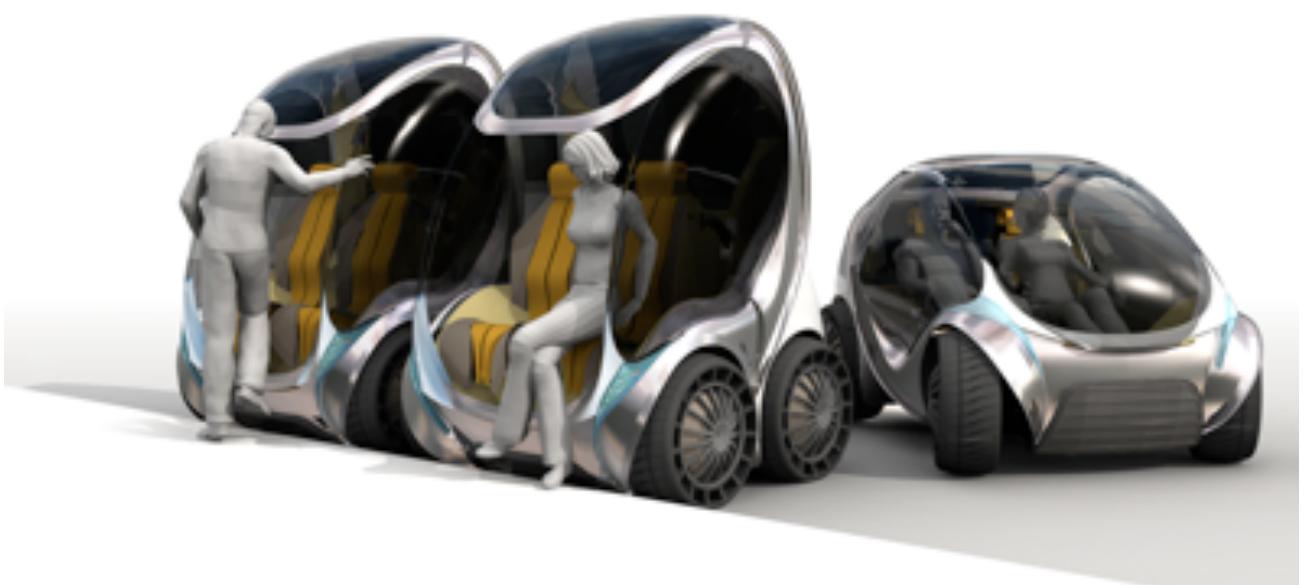
On Robotics: High-level Broad Functional Differentiation

- **Mobile robots**
 - Wheeled/flying/ swimming robots
 - Legged robots

- **Manipulation**
 - Arms and coarse motion
 - Fingers and fine motion

Self-driving cars

- We believe autonomous driving capabilities will play a fundamental role in future urban mobility systems:
- **Safety/comfort:** provide mobility to people who cannot, should not, or prefer not to drive
- **Efficiency/throughput:** autonomous vehicles can coordinate among themselves and with traffic control infrastructure to minimize the effects of congestion
- **Environment:** Autonomous driving can reduce emissions as much as 20-50%, and efficiently interface with smart power grids and hybrid engines



Towards full autonomy

- Several projects on highway driving: Eureka project (Europe, '87-'95), USDOT (US '91-'97).
- US Congress mandate ('01) “one third of ground combat vehicles unmanned by 2015”
- First DARPA Grand Challenge '04
- Second DARPA Grand Challenge '05
- DARPA Urban Challenge '07

DARPA Grand Challenge (March 2004)

- **Mission:**
 - Drive 142 miles in less than 10 hours
 - Largely open desert and dirt roads
- **Incentives:**
 - \$1M prize for the winner
- **Interest:**
 - 106 teams joined the competition.
- **Results:**
 - Within a few hours after the start, all vehicles had critical failures.
 - No vehicle went further than 7 miles.

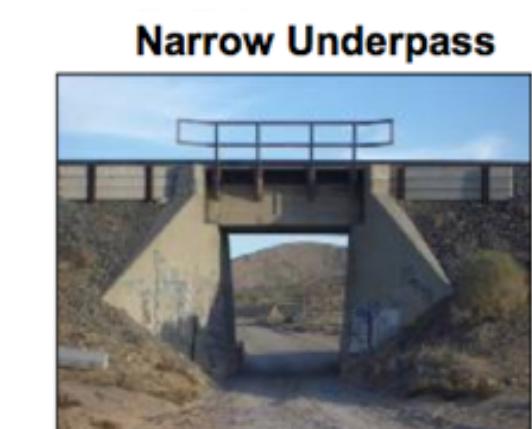
DARPA Grand Challenge, Take 2 (October 2005)

- **Mission:** Drive 132 miles in less than 10 hours
- 195 teams participated, 5 vehicles finished, Stanford won the prize.

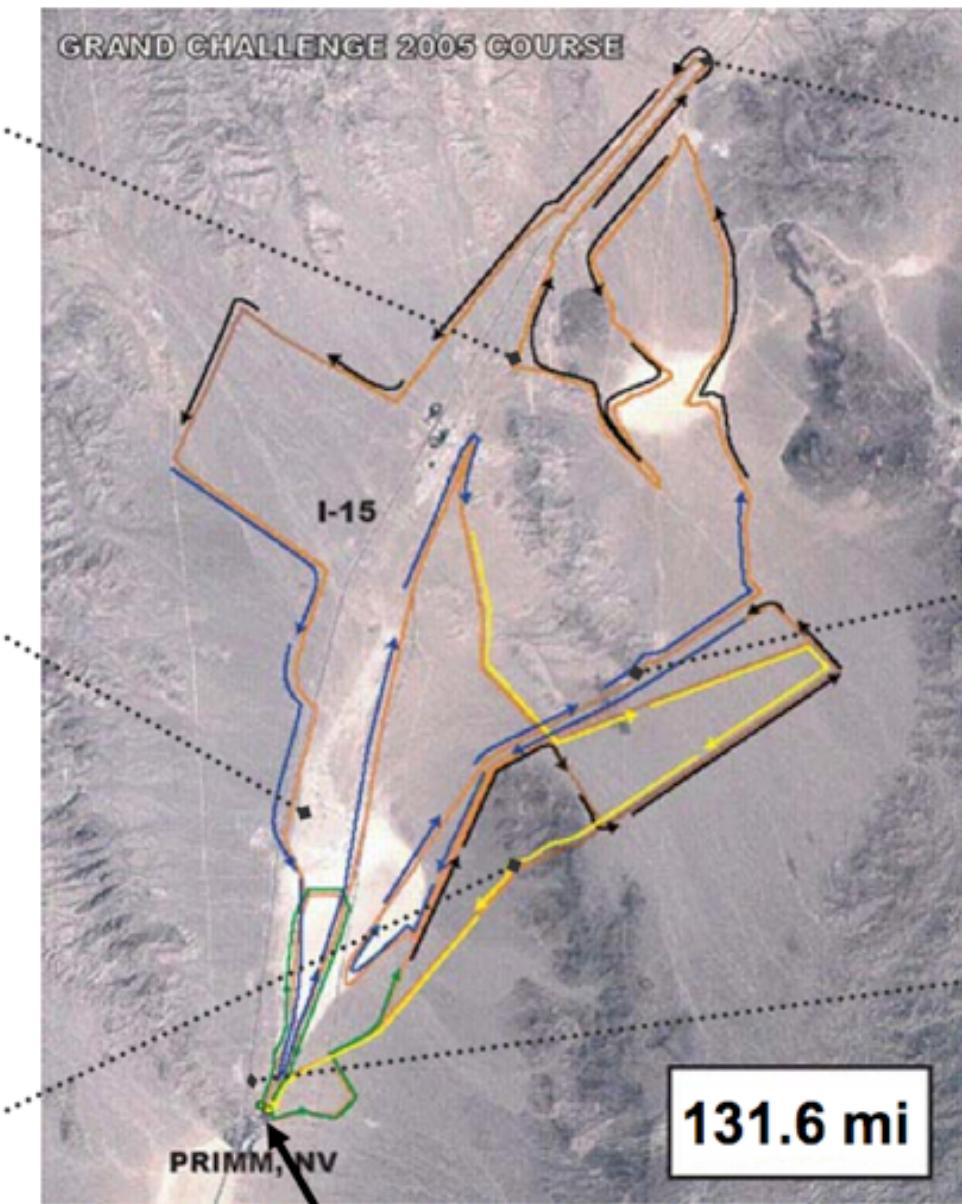
2005 Grand Challenge Results

STATUS BOARD		
Final Results as of 10/9/2005		
ID	TEAM	TIME
3	Stanford Racing Team	6h 53m
19	Red Team	7h 4m
25	Red Team Too	7h 14m
30	Gray Team	7h 30m
21	Team TerraMax	12h 51m
28	Team ENSCO	DNF
23	Axion Racing	DNF
38	Virginia Tech Grand Challenge	43.50
9	Virginia Tech Team Rocky	39.40
10	Desert Buckeyes	29.00
4	Team DAD (Digital Auto Drive	26.20
14	Insight Racing	25.60
1	Mojavaton	23.00
18	The Golem Group / UCLA	22.40
24	Team CajunBot	17.20
20	SciAutonics/Auburn Engineer	15.90
15	Intelligent Vehicle Safety Tec	14.00
8	CIMAR	13.60
41	Princeton University	9.50
26	Team Cornell	8.90
2	Team Caltech	8.00
16	MonsterMoto	7.20
37	The MITRE Meteorites	0.73

2004 Distance



Narrow Underpass

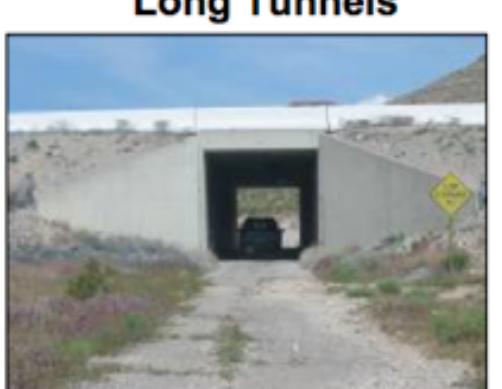


131.6 mi

Lake Beds

Rough Roads

Start/Finish



Long Tunnels

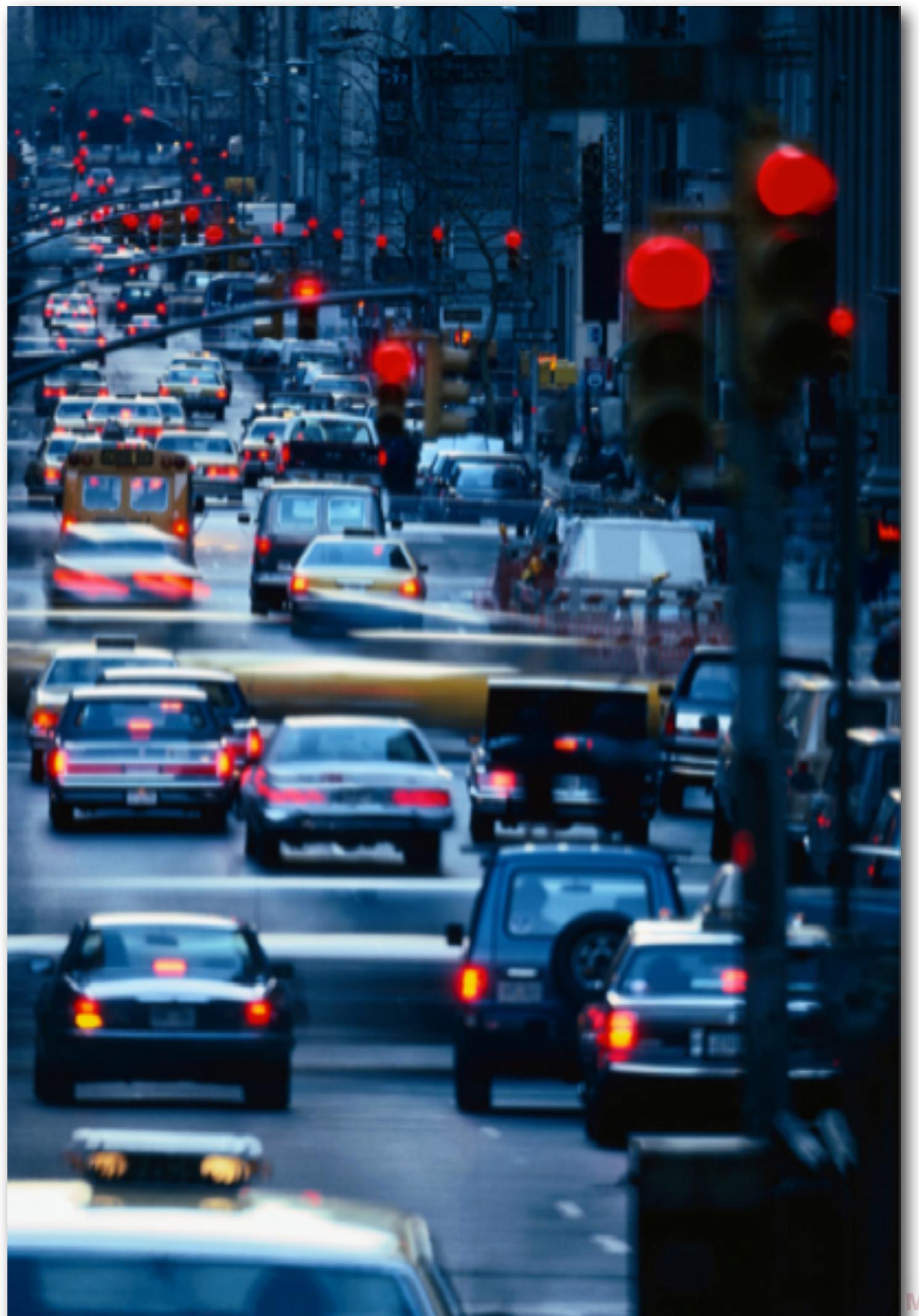
Narrow Gates

Close Obstacles

Massachusetts
Institute of
Technology

The DARPA Urban Challenge (November 2007)

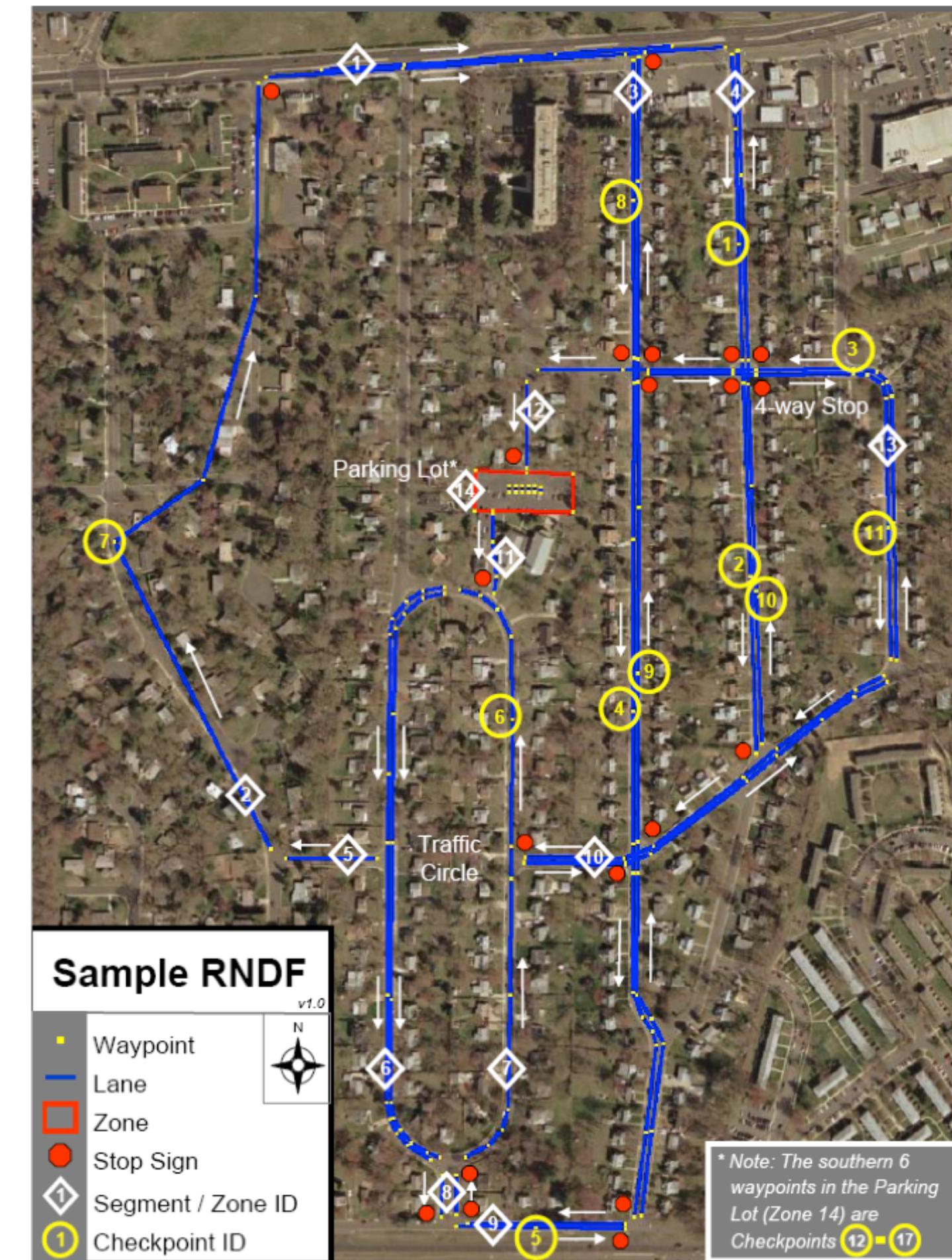
- **Urban challenge designed to be much harder than DGC I and II**
 - Urban course, with traffic (~70 vehicles)
 - 60 miles in 6 hours
 - Rules of the road (intersections, lanes, passing, merging into traffic)
 - Uncertain due to human and robotic vehicle traffic
 - Various maneuvers (parking, U-turns)
 - \$2M for the winner
- 89 teams entered the race
- MIT's first serious entry



The Rules

- Route Network Definition File (RNDF)
 - What the road network looks like
 - Accurate, but incomplete
 - Given 24 hours before the race
- Mission Definition File (MDF)
 - Ordered waypoints to hit
 - Given 5 minutes before the race

RNDF



MDF

MIT's Team

- **MIT Faculty, postdocs, students**

- Operating software, sensor/computer selection, configuration
- 8 full time graduate students

- **Draper Labs**

- System engineering, vehicle integration, test/ logistics support

- **Olin College of Engineering**

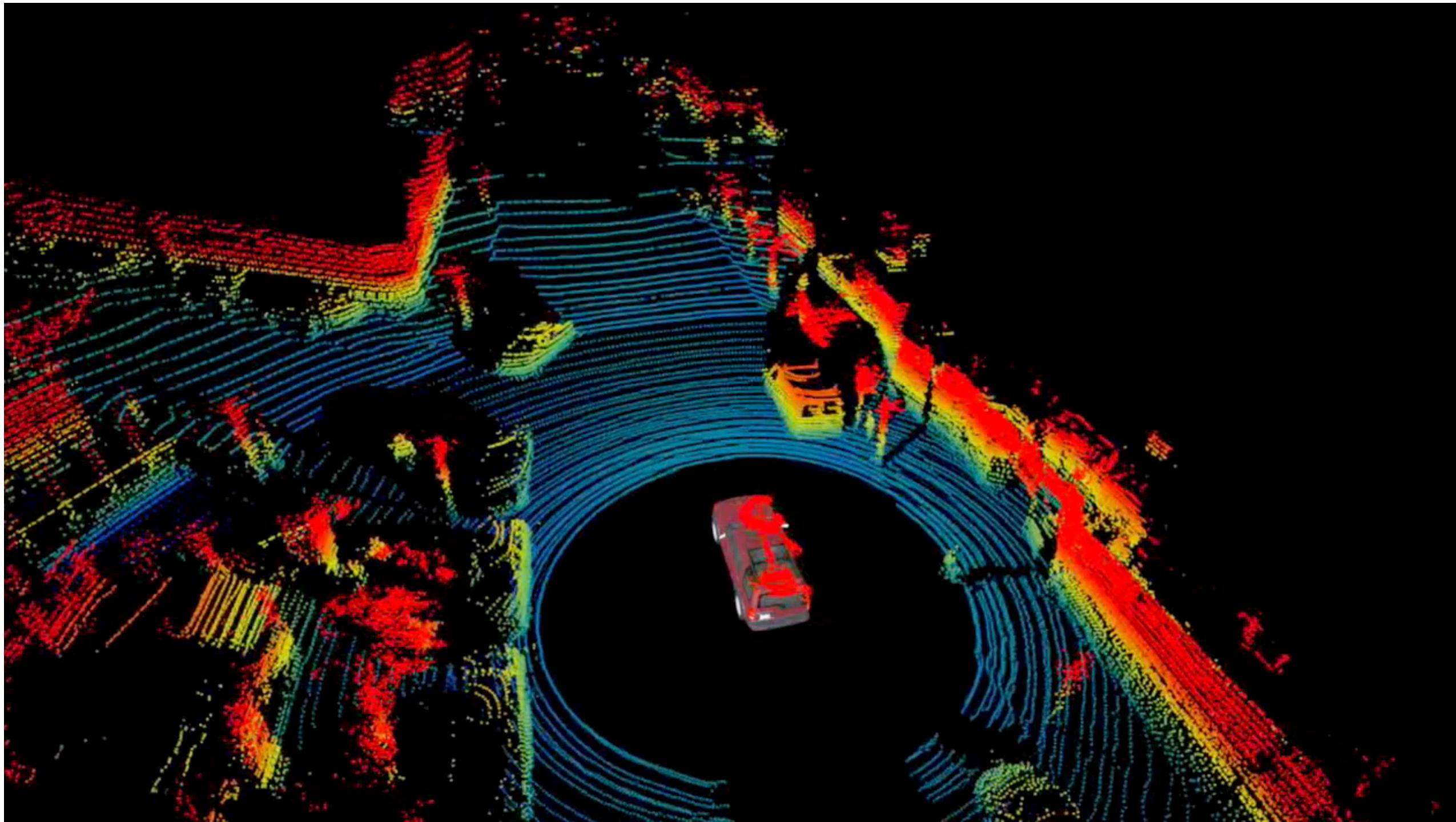
- Vehicle engineering

MIT's Vehicle

- Land Rover LR3
- EMC drive by wire
- Sensors:
 - 5 cameras
 - 16 radars
 - 12 planar laser scanners
 - 3D laser scanner
 - GPS/IMU
- Computational power:
 - 40 CPU cores
 - 40 GB RAM
- 6KW internally-mounted generator
- 2KW auxiliary air conditioner

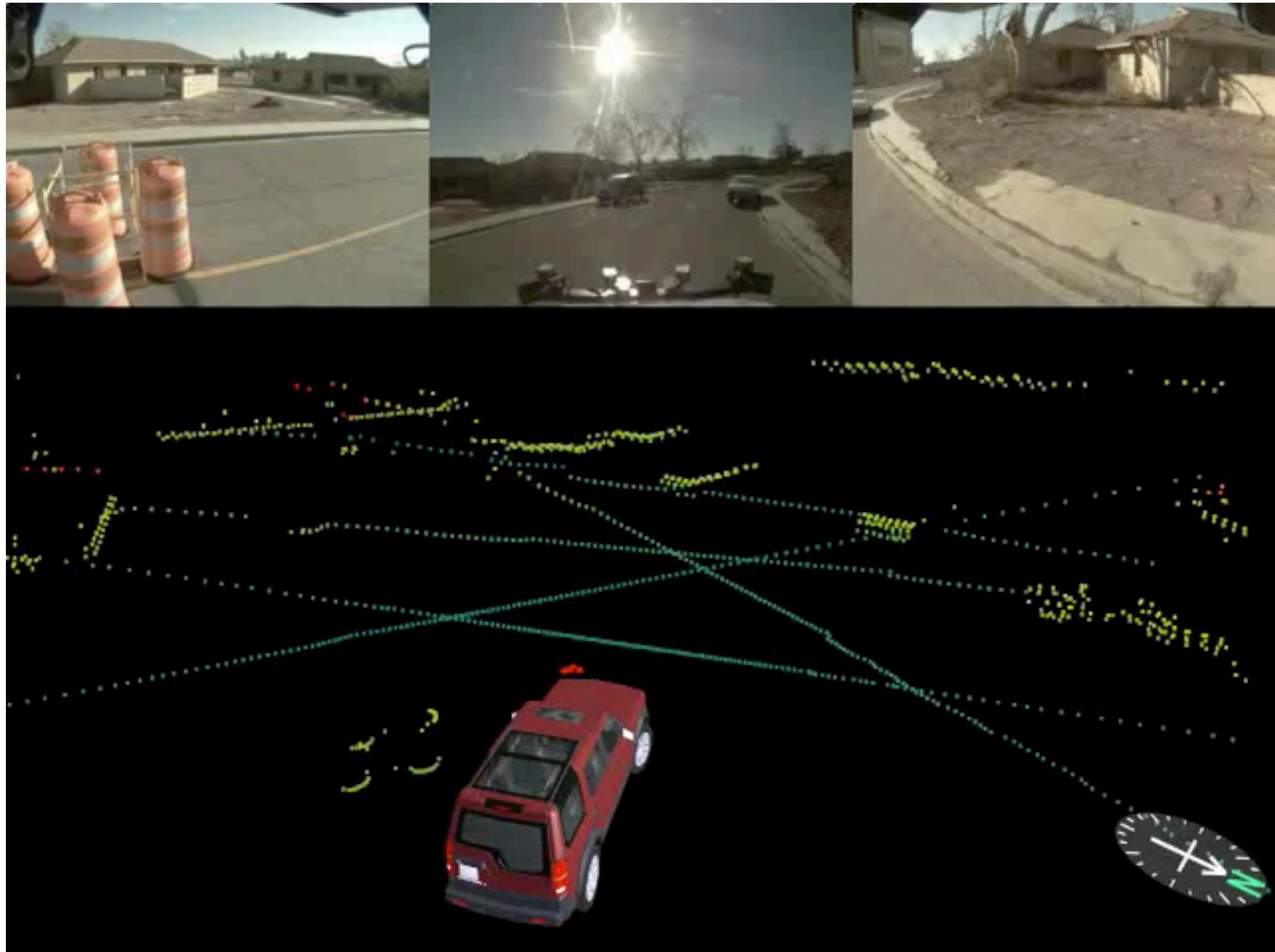
Velodyne

- 64 laser scanners on a vertical plane; rotates 15Hz to provide a 3D view.
- Main sensory equipment for all finishers.
- Used by the Google car as the primary sensor



Planar Laser Scanners

- Planar laser scan, ~50m range
- 7 on skirts (obstacles), 5 on pushbrooms (ground)

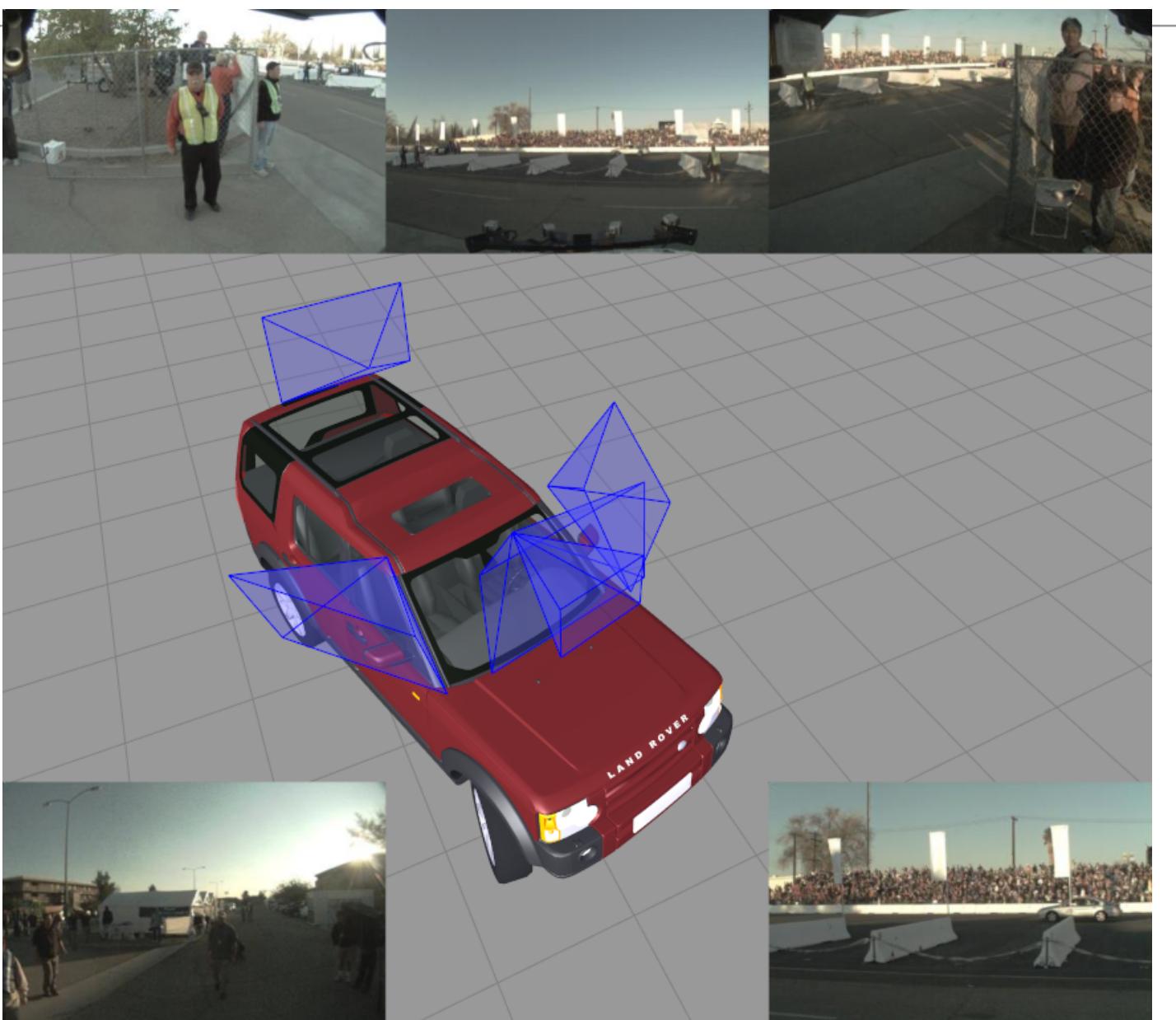


Radars

- Range, bearing, closing rate
- Narrow field of view (16 to cover 288 degrees)
- Very long range (~150m)

Cameras

- 720x480 @ 22.8 fps
- 5 cameras for lane detection



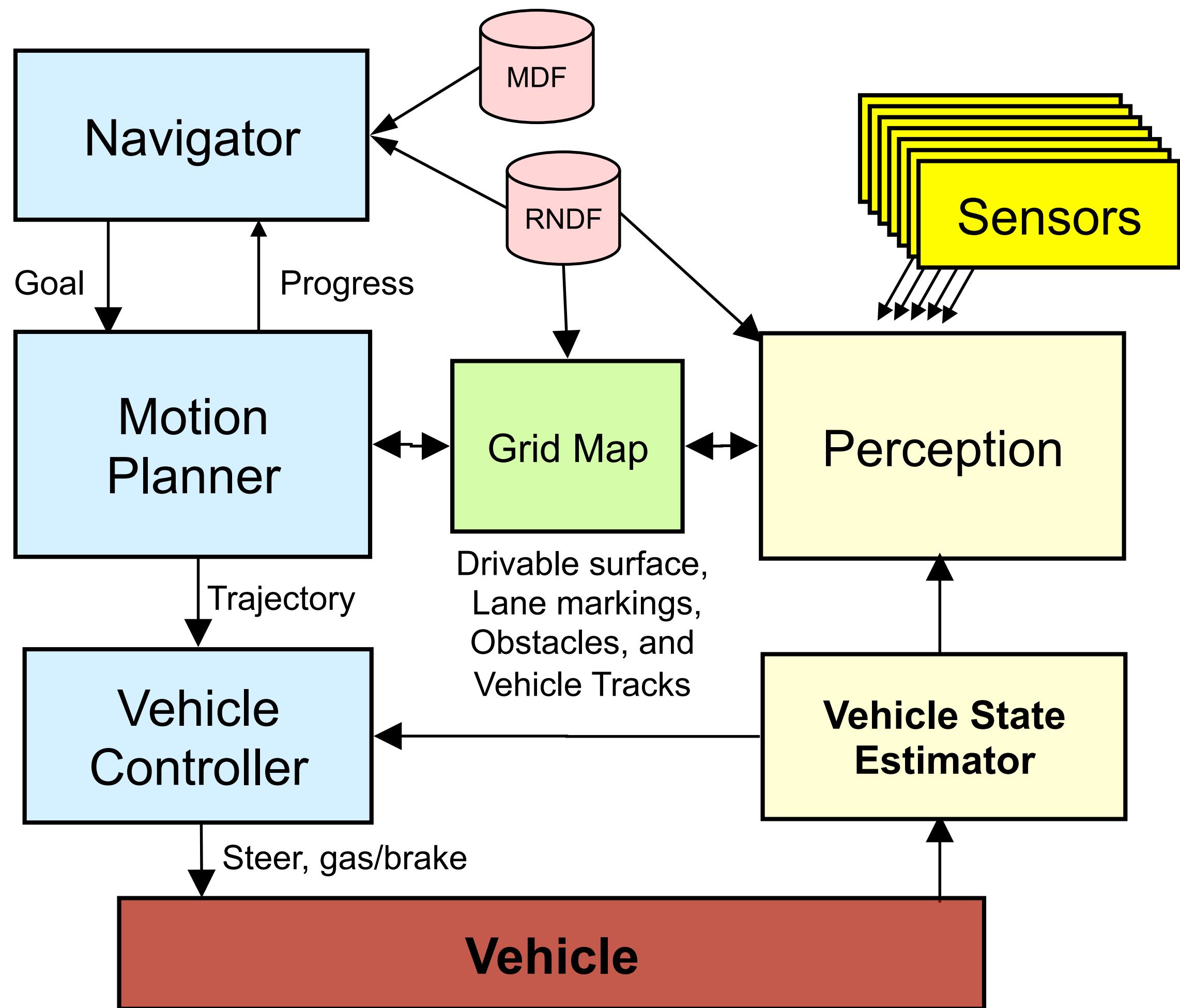
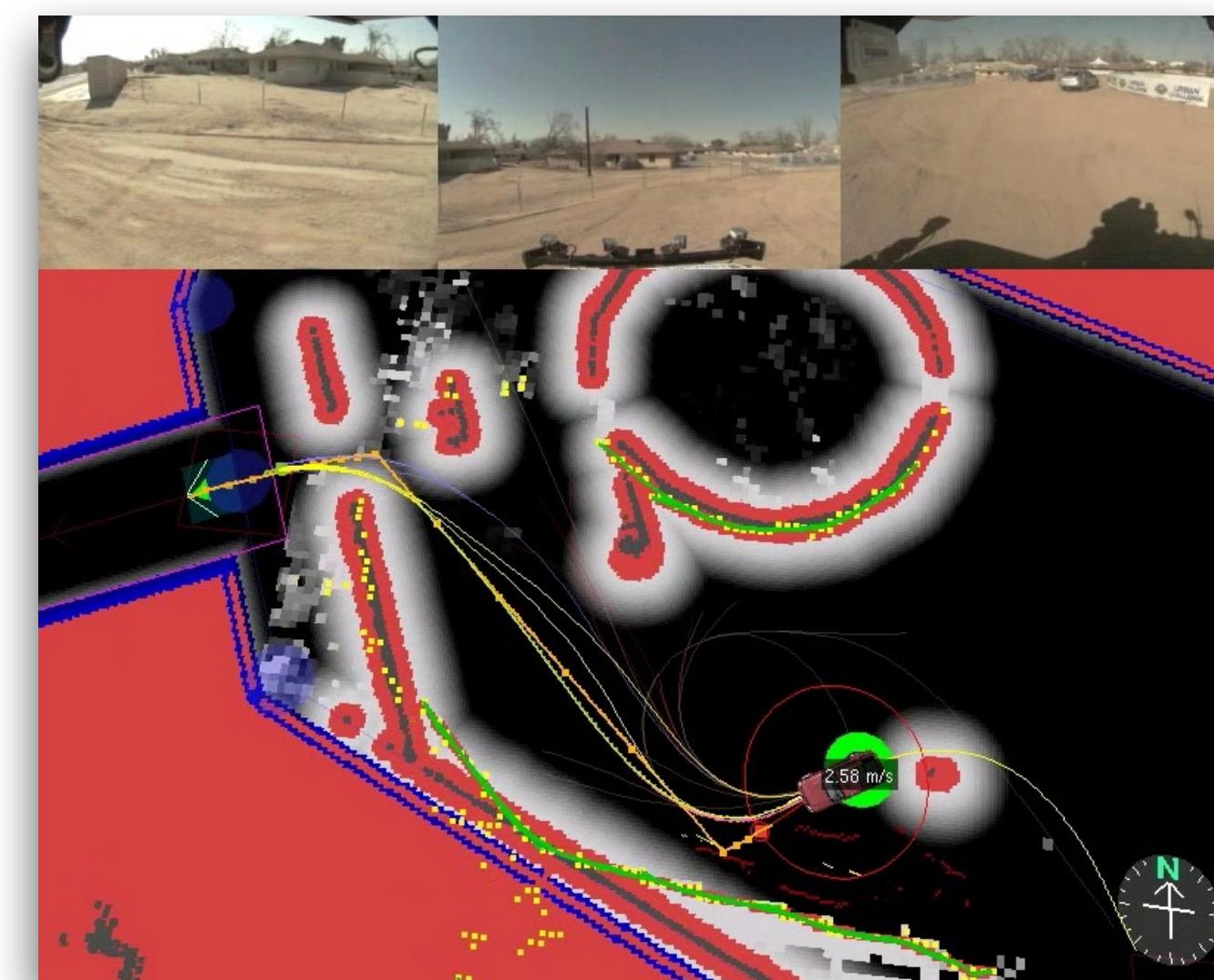
GPS / IMU / Wheel Odometry

GPS

Odometry

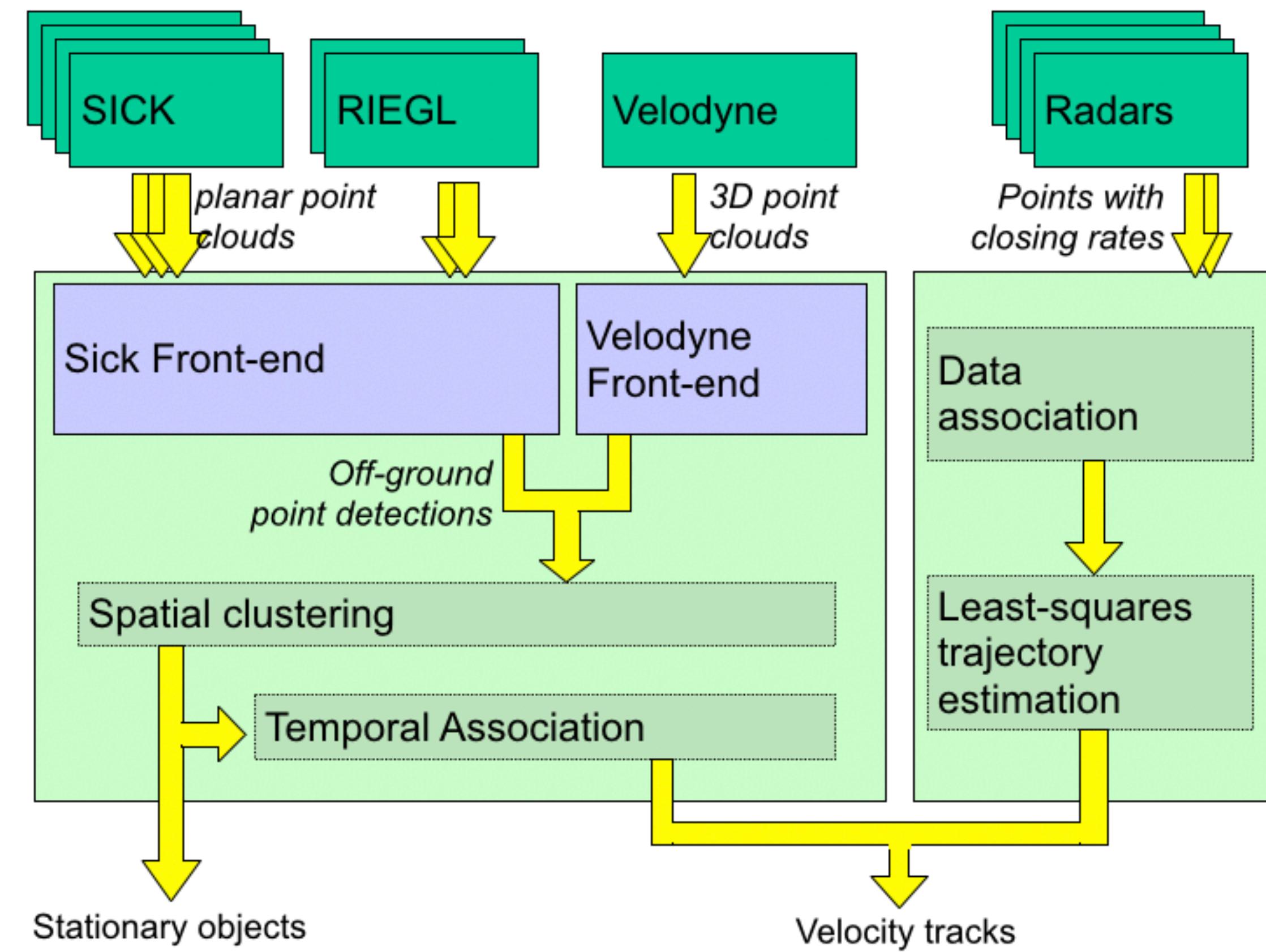
IMU

Software architecture

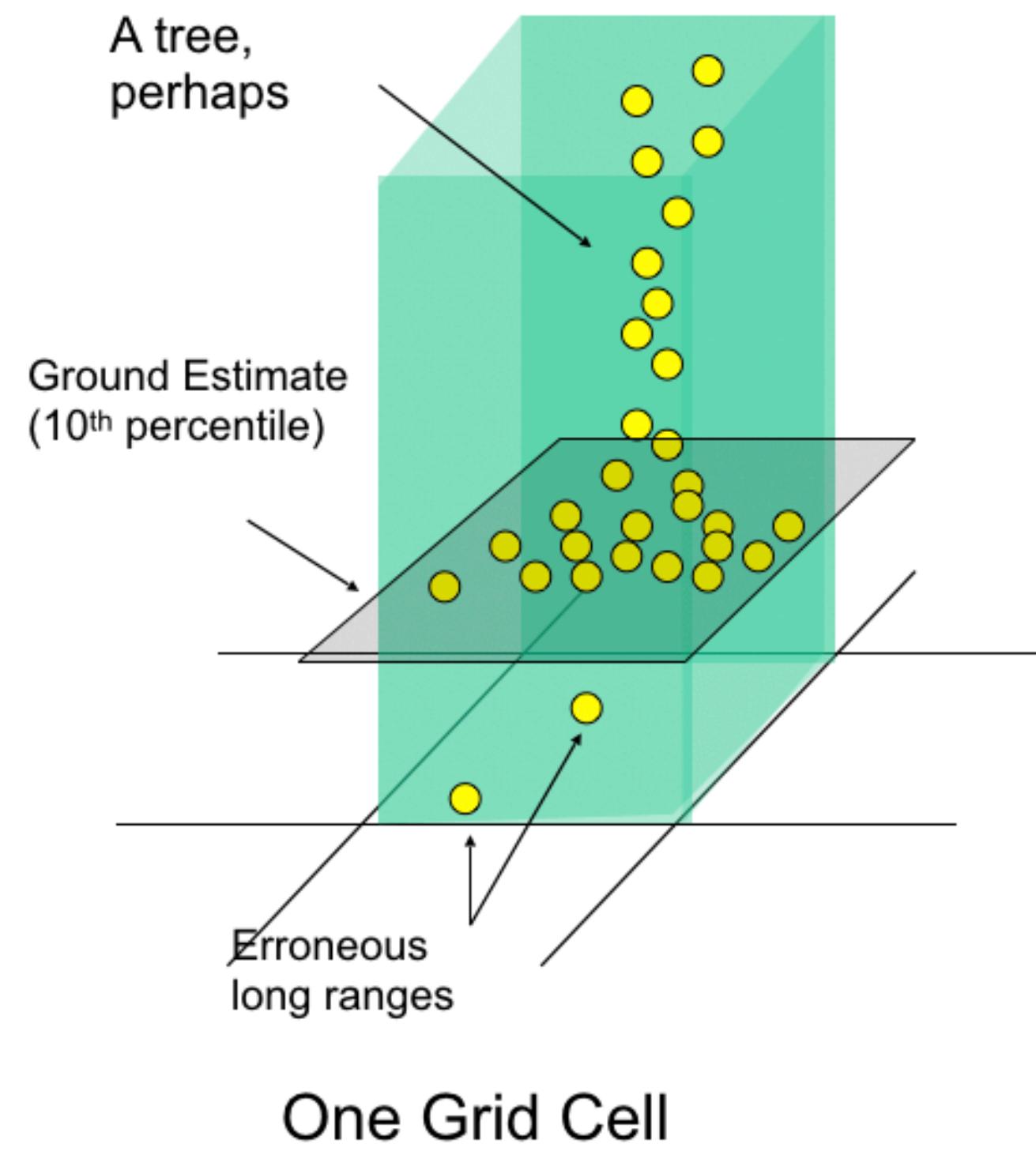
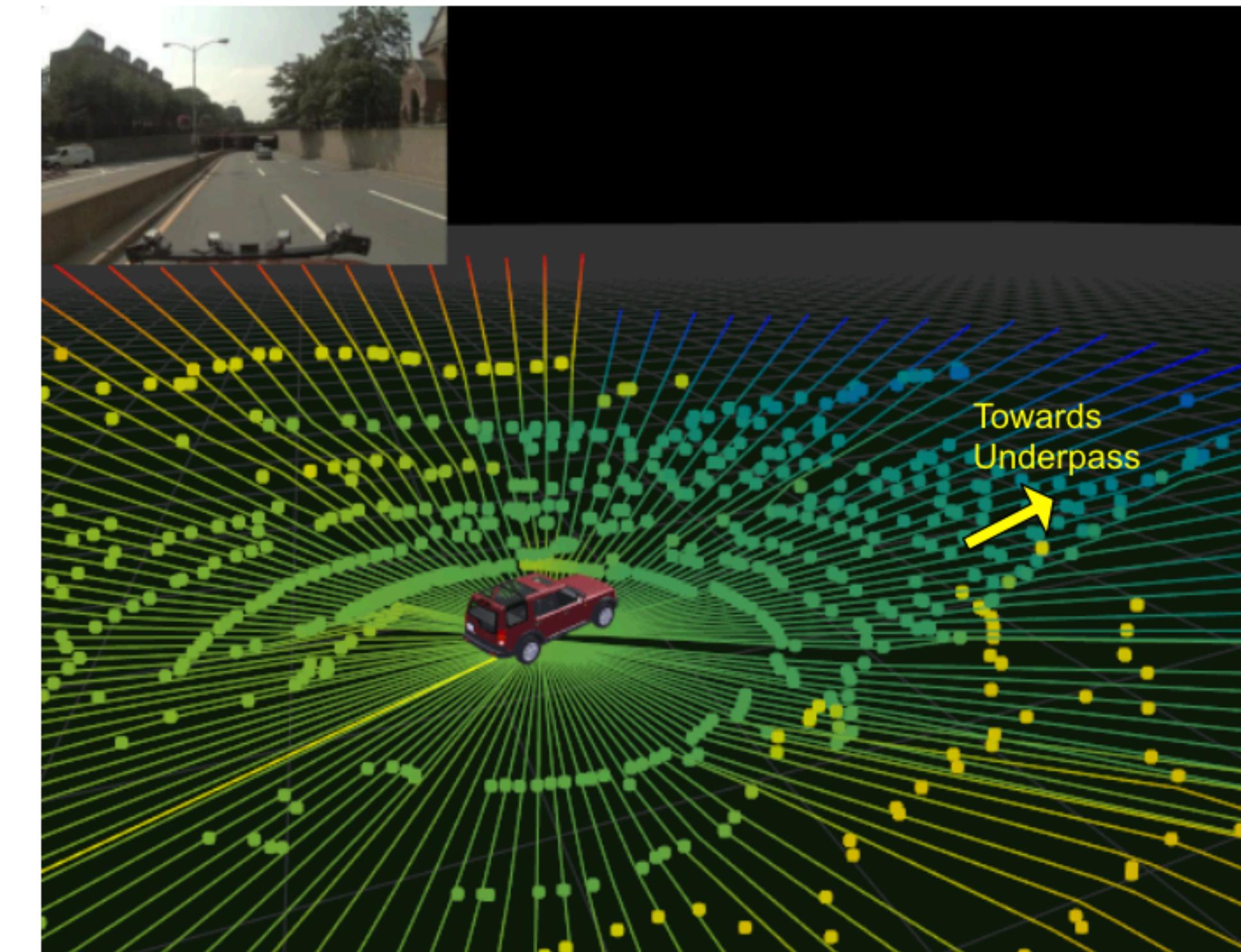


Perception systems

- **Obstacle Detection/Tracking**
 - Laser-based
 - Radar-based
- **Hazards and Road-Edge Detection**
 - Hazards = bad but traversable
 - Tend to appear at road-edges
- **Lane Estimation**
 - Road paint detection
 - Curve fitting
 - Lane estimation



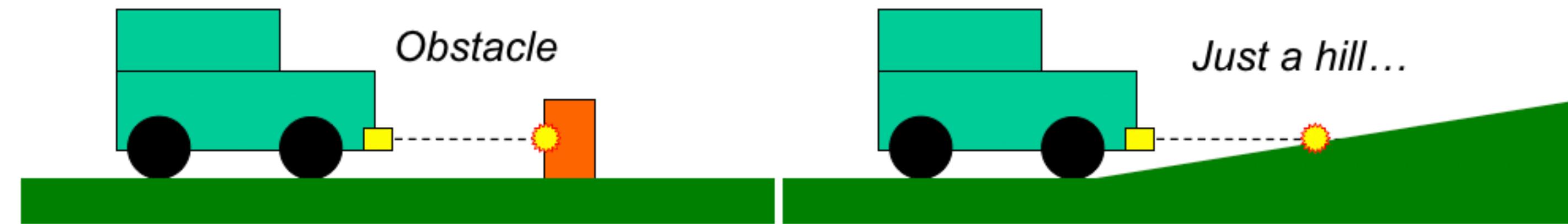
Velodyne frontend



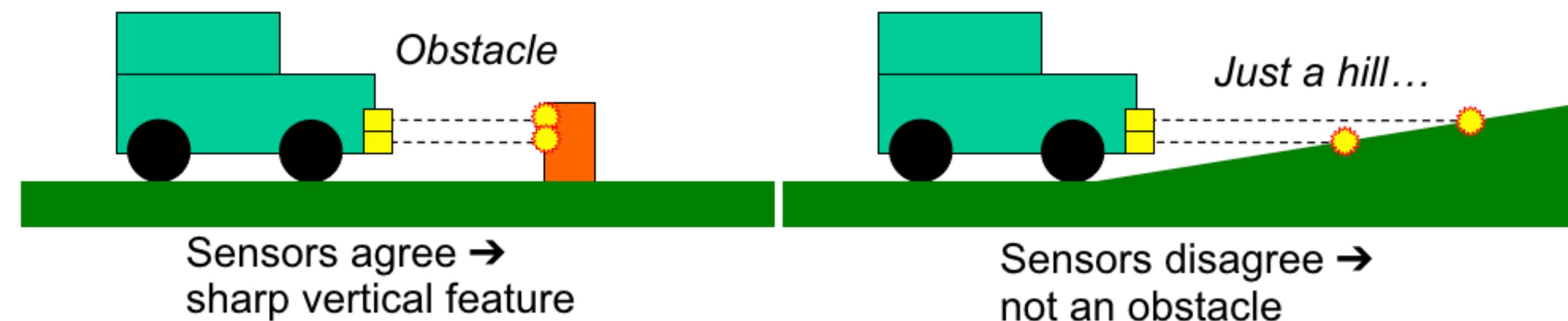
Interpolated ground detections, colored by height

Planar LiDAR front end

- *Given planar scans, extract those that are not the ground.*
- Problem: Obstacles and hills look the same

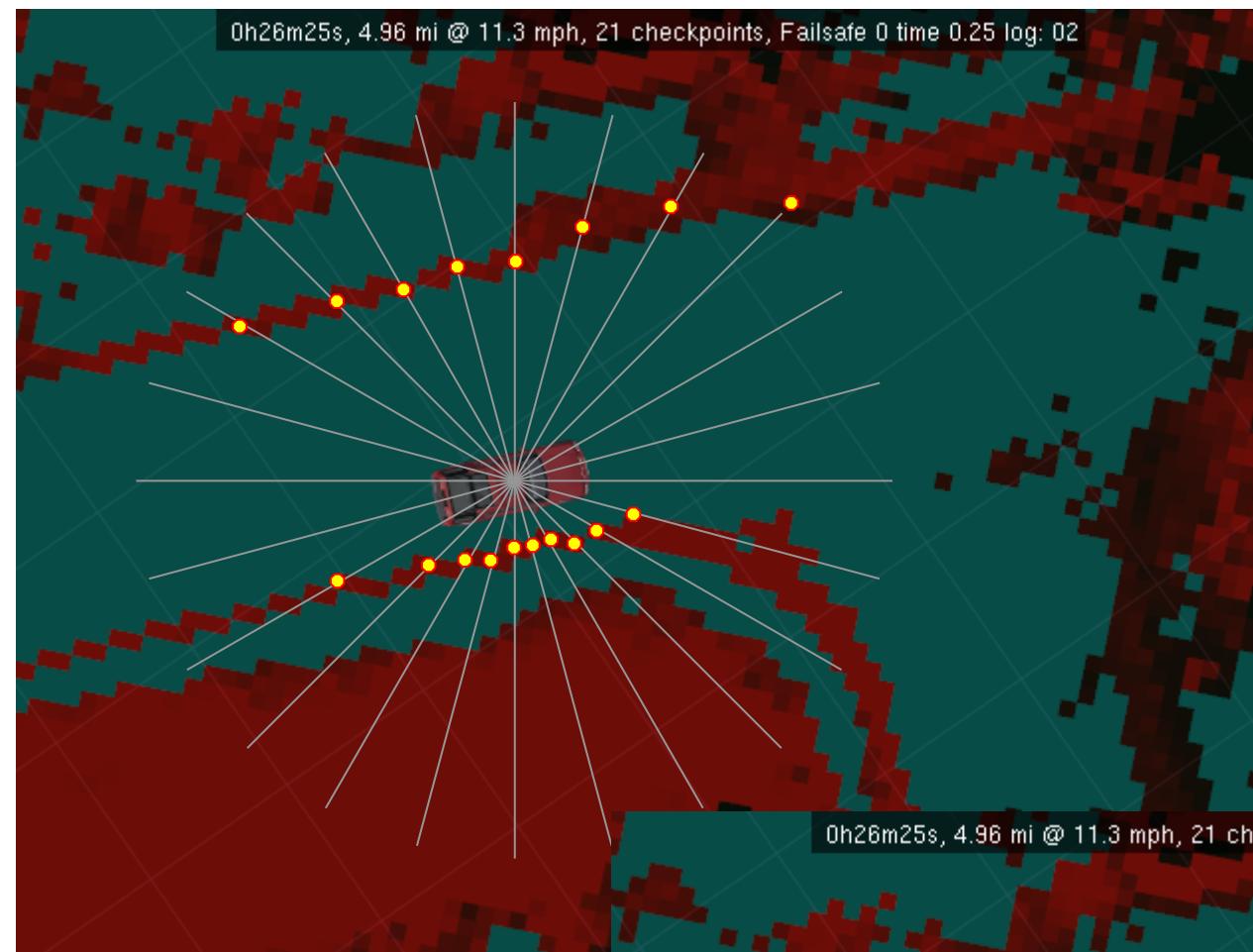
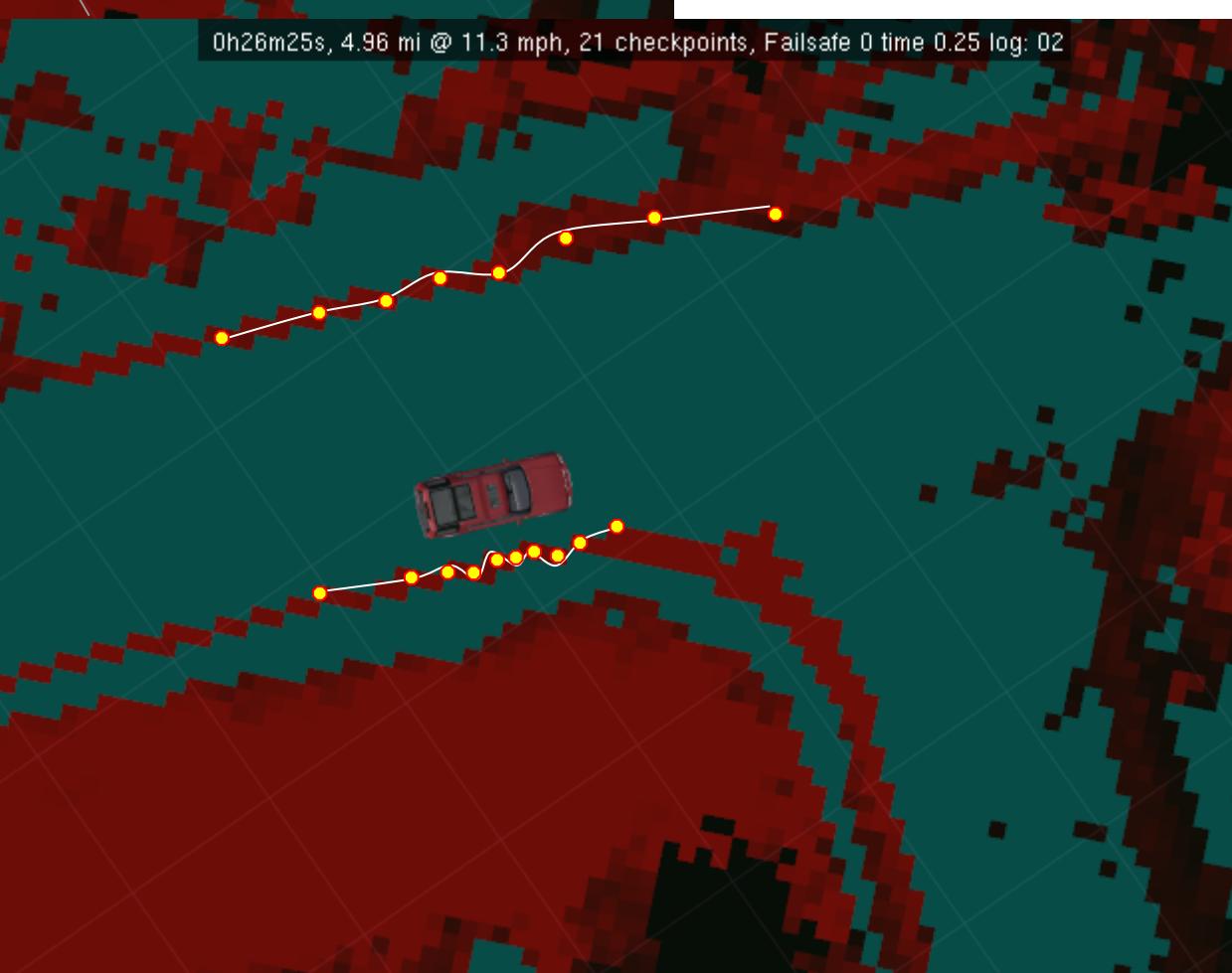
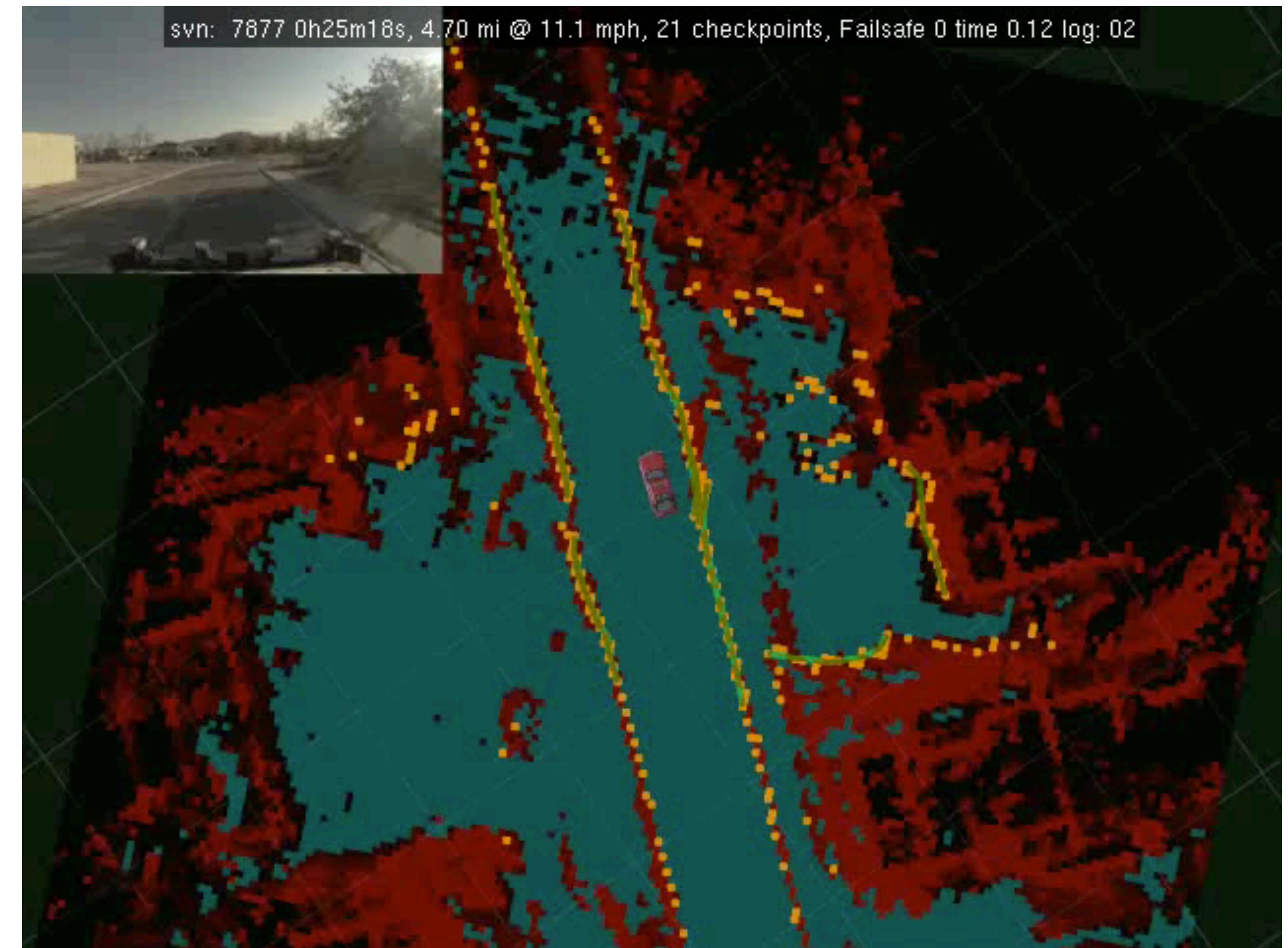


- Solution: Use multiple scanners at different heights
 - Implemented using occupancy grid with sensor ids



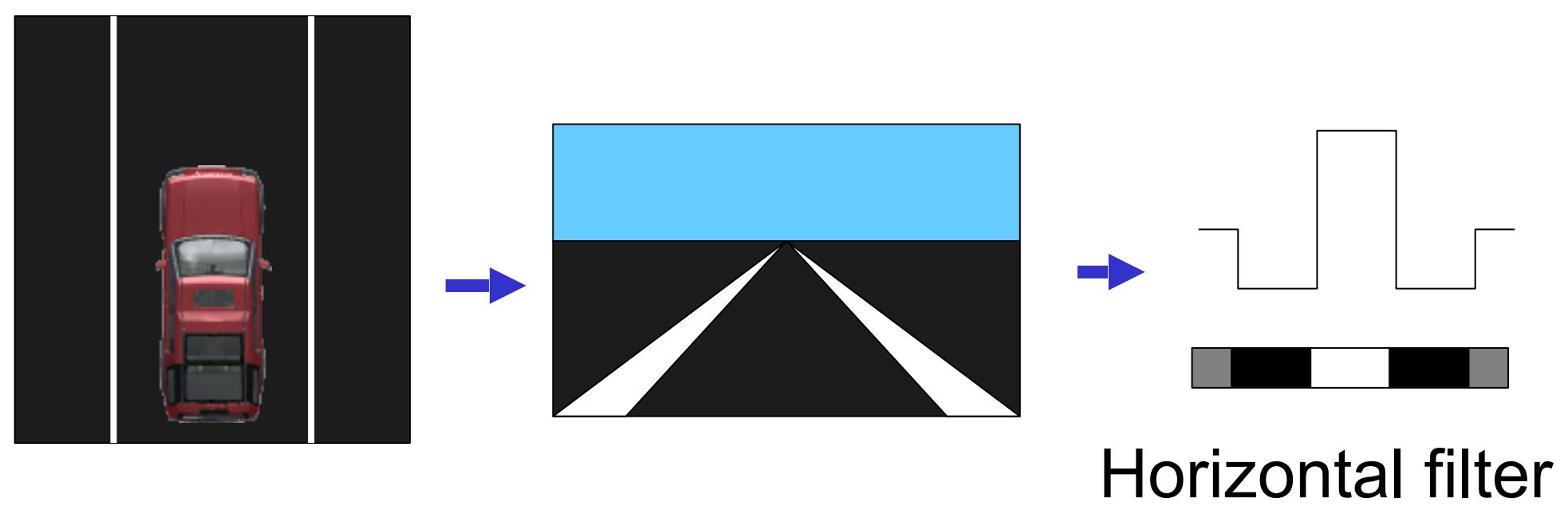
Finding road edges

- Opted for simple algorithms:

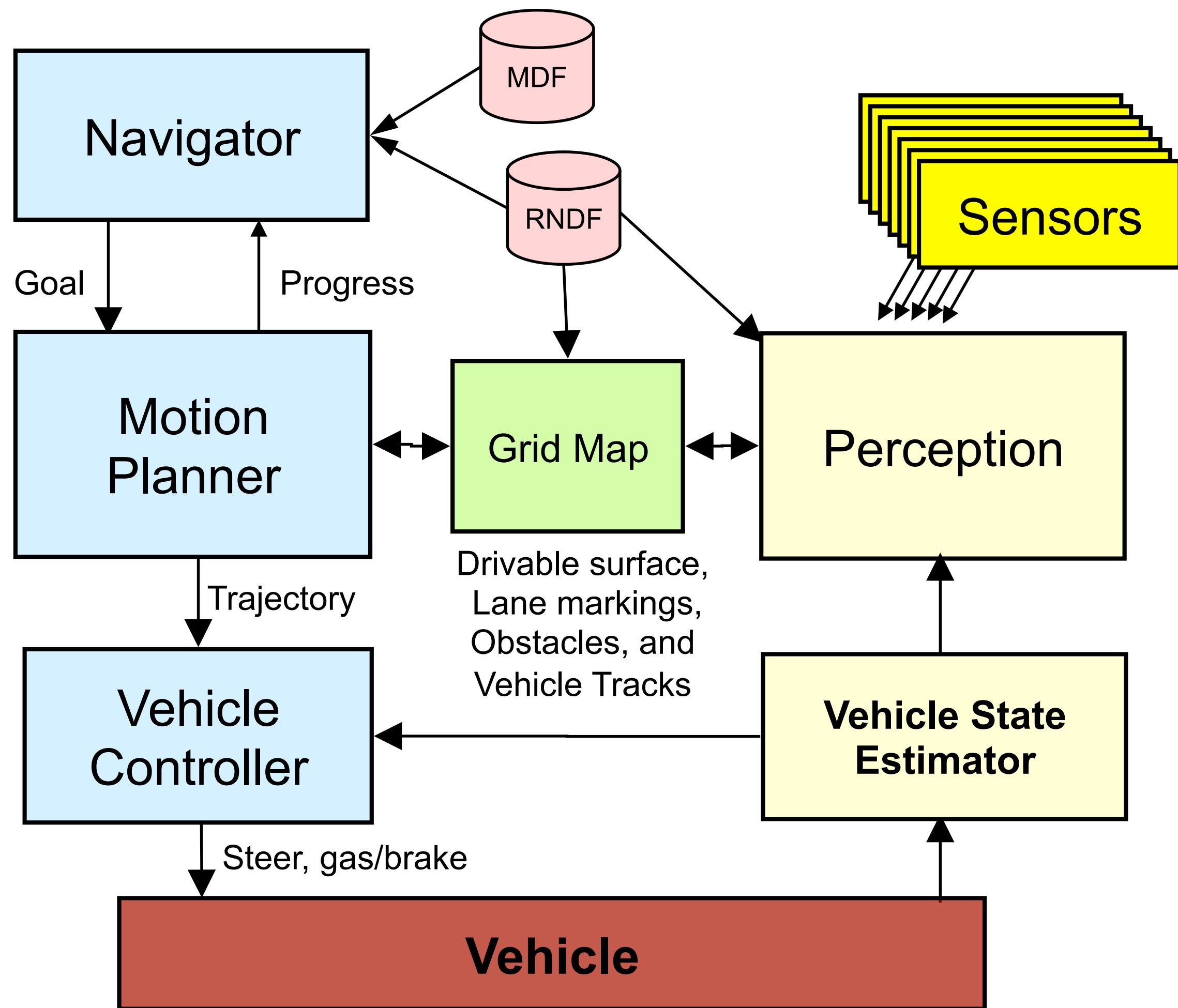
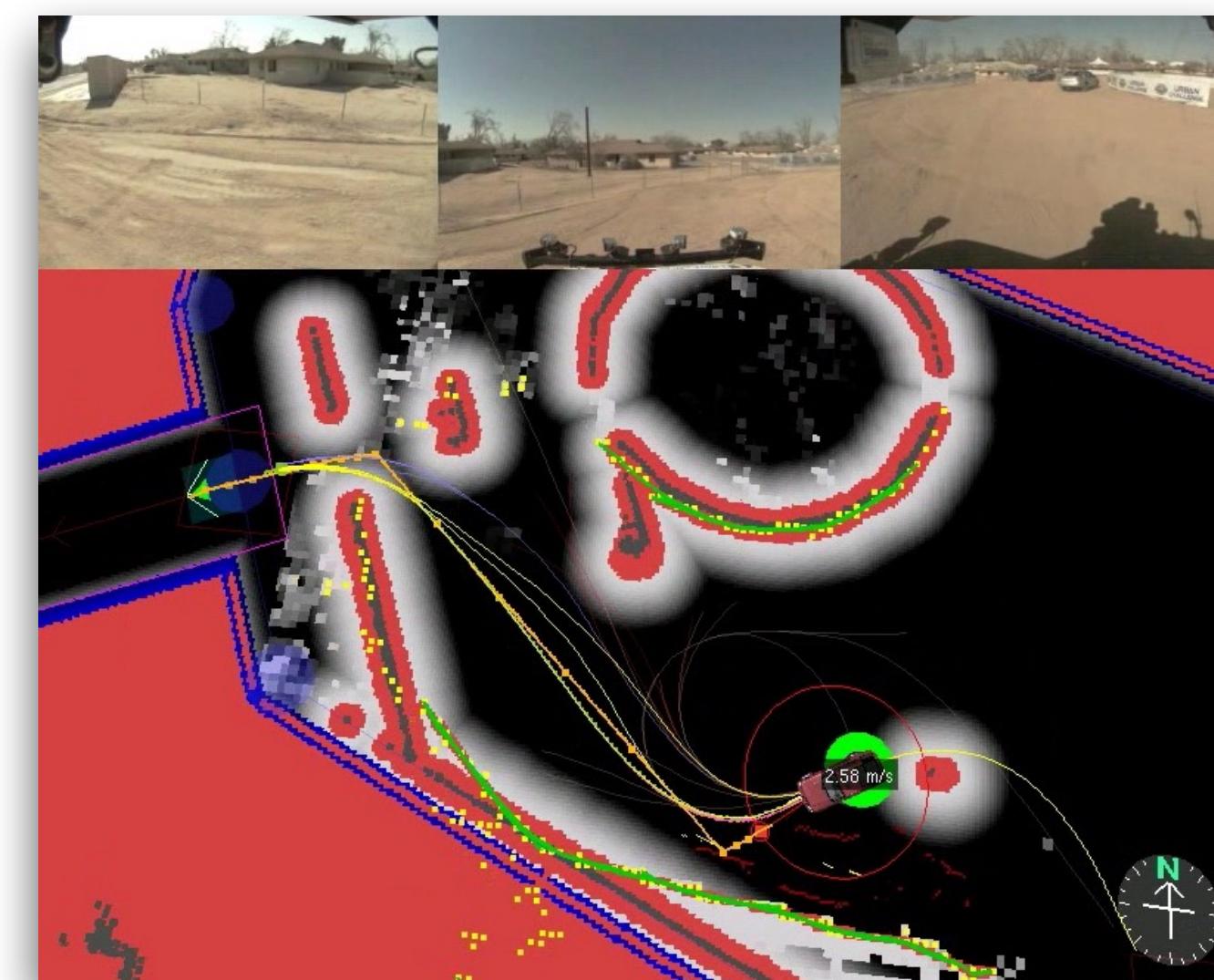


Finding the lanes

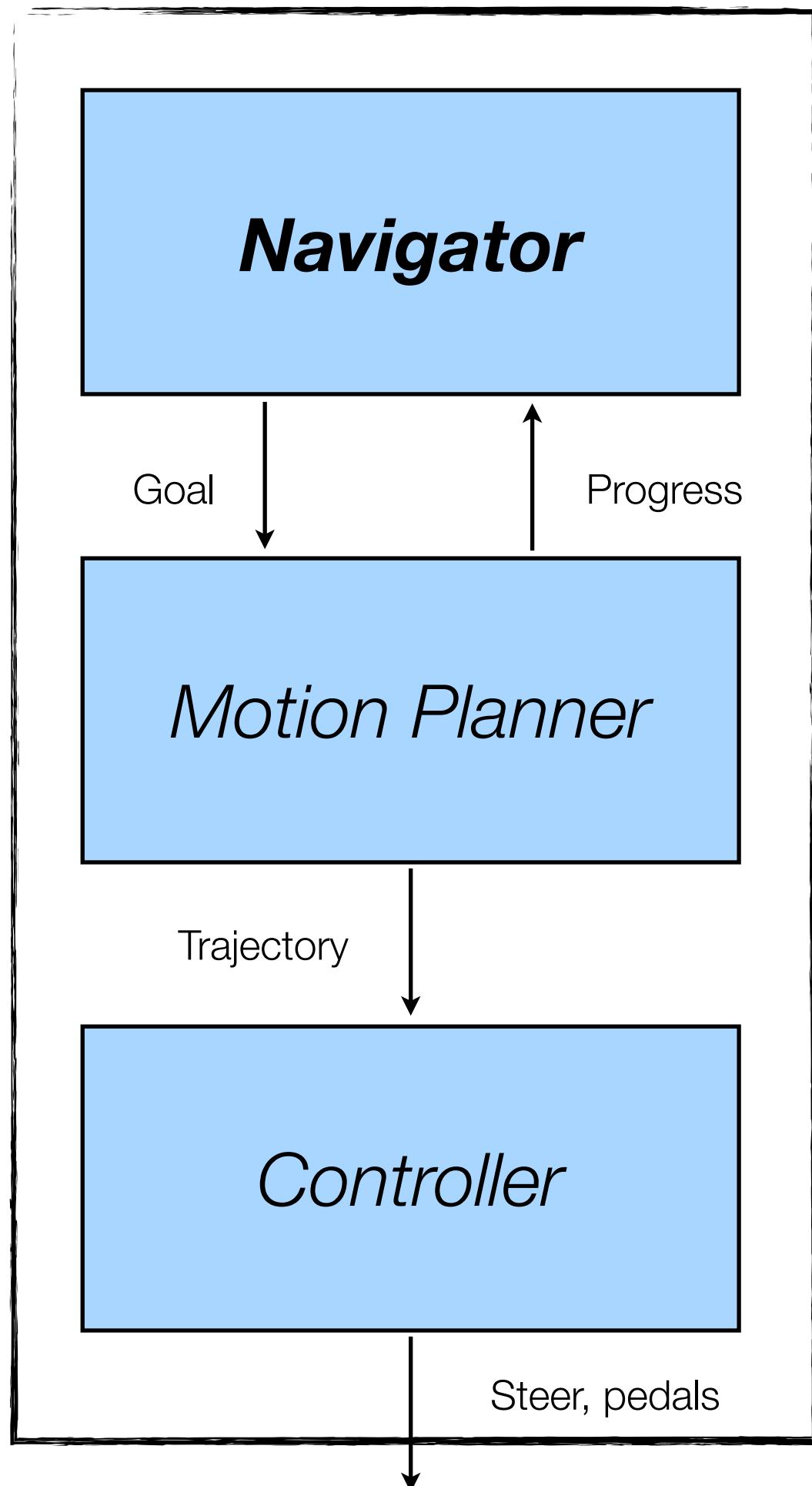
- Used computer vision



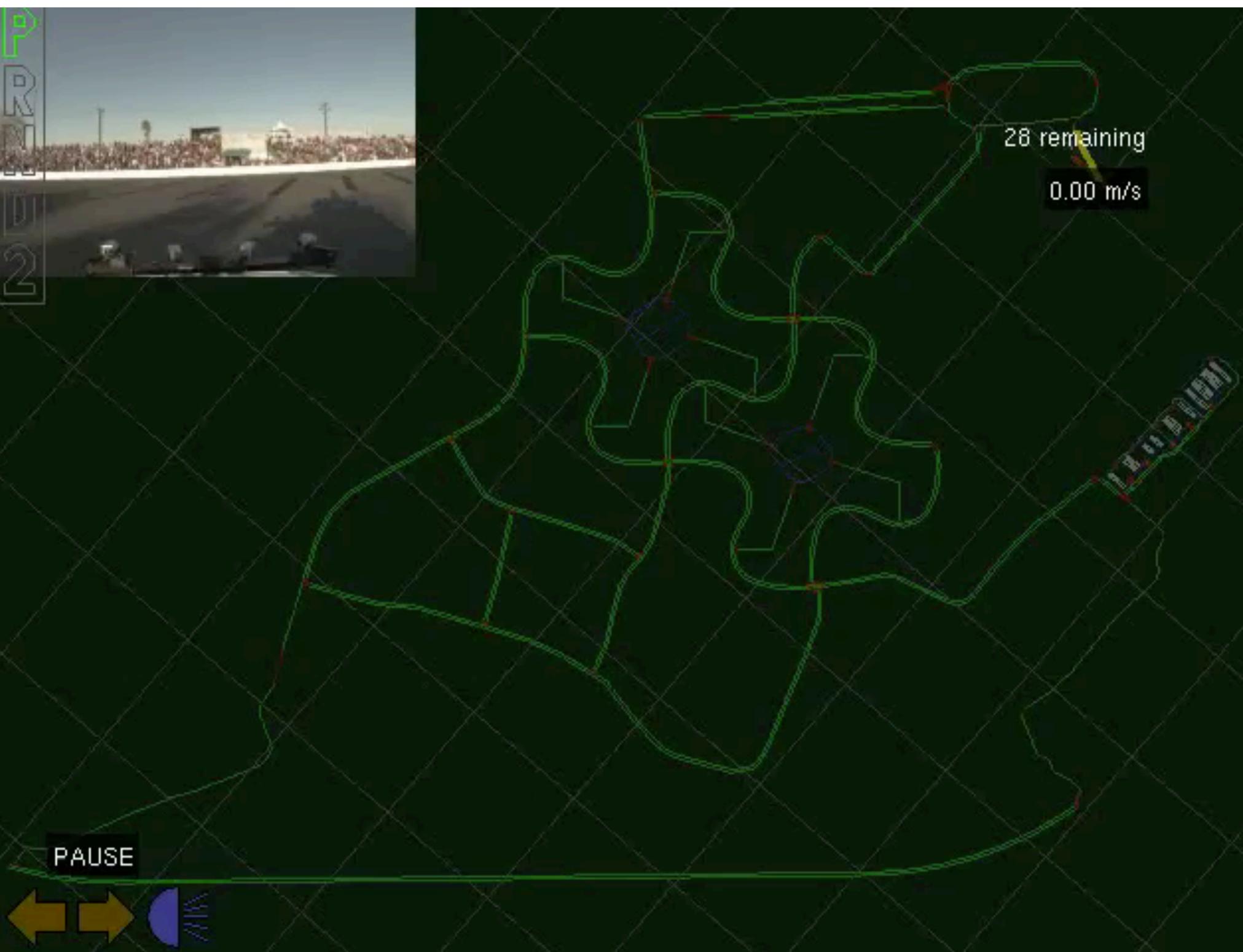
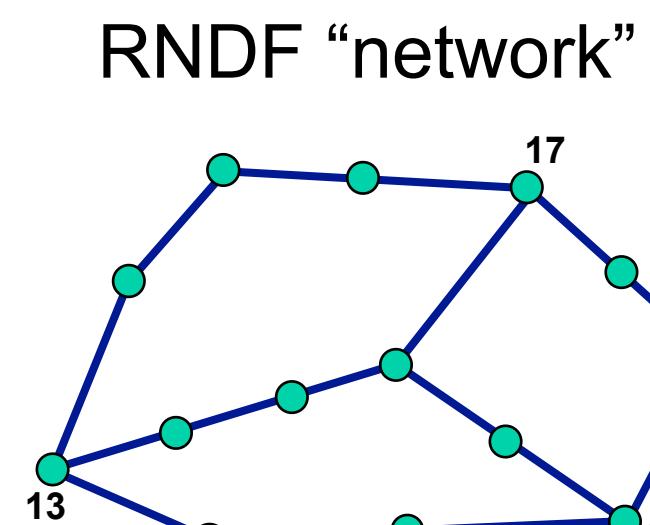
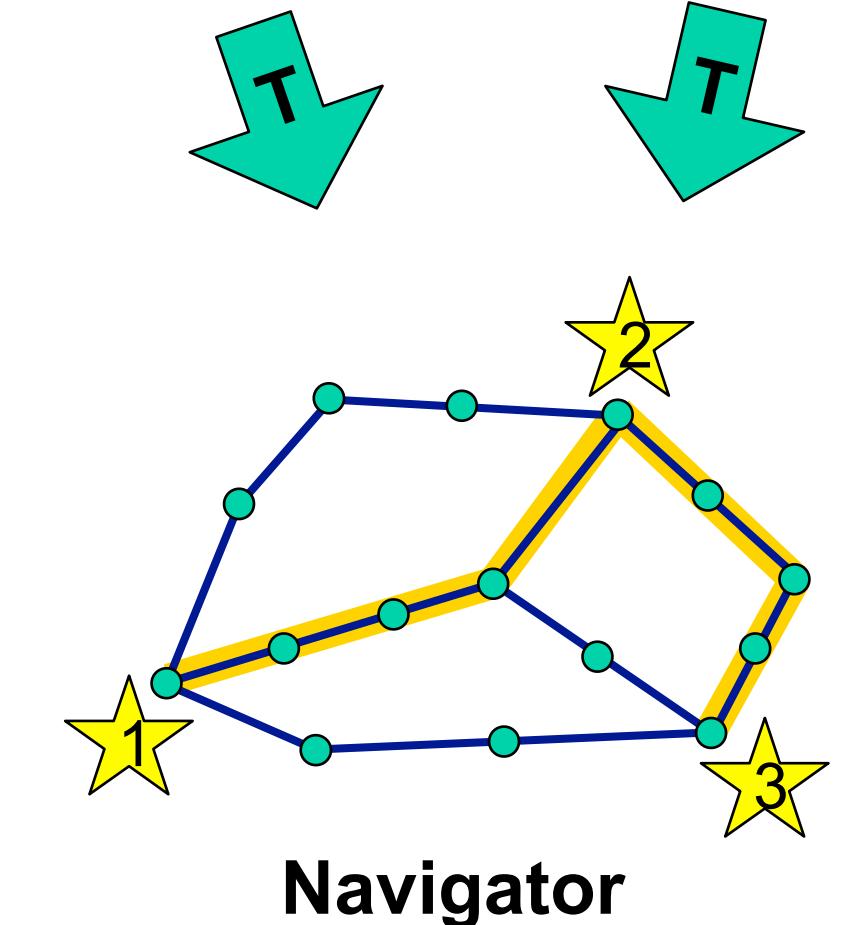
Software architecture



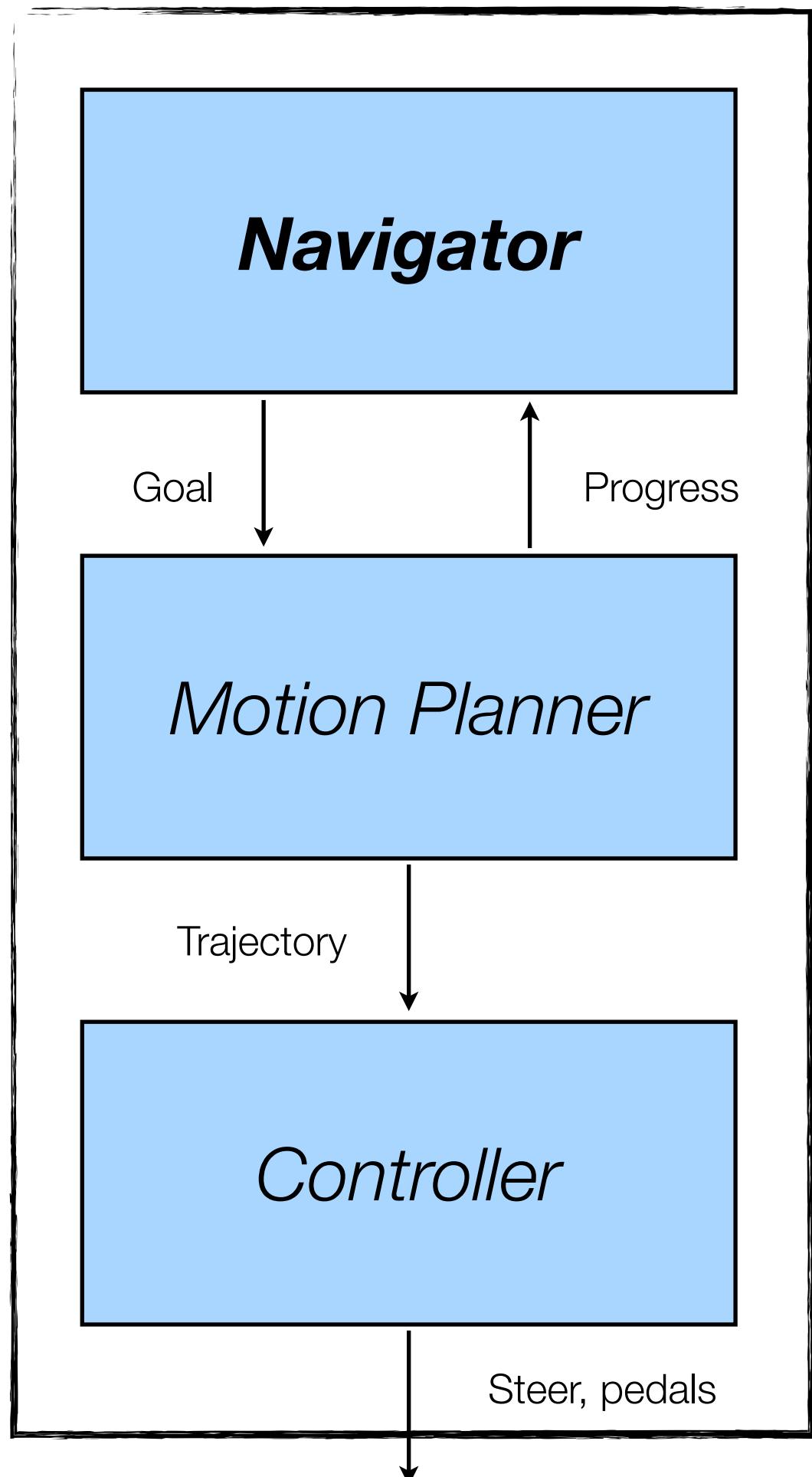
Navigator



A Algorithm for Navigating through the Road Network*

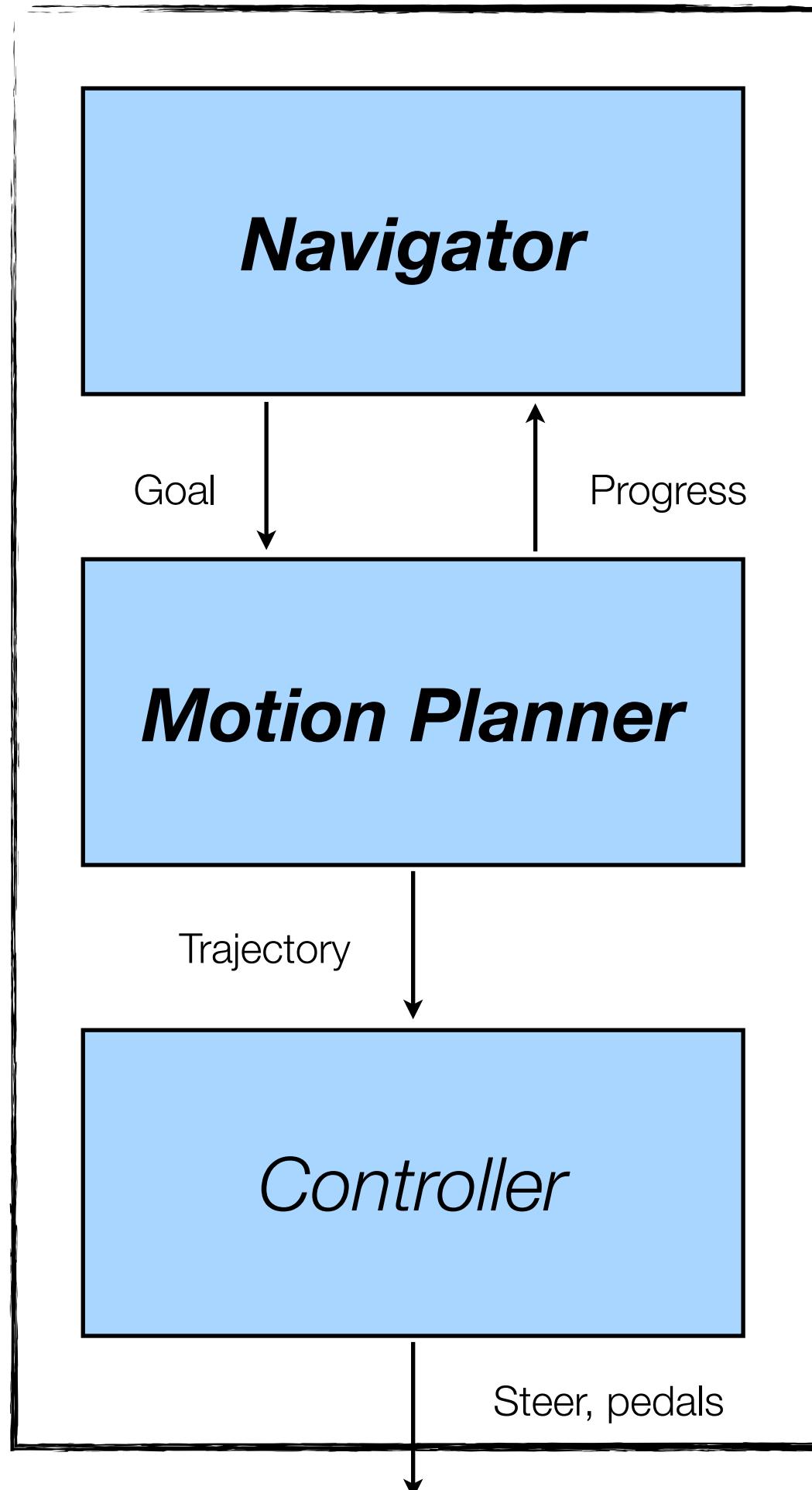


Navigator

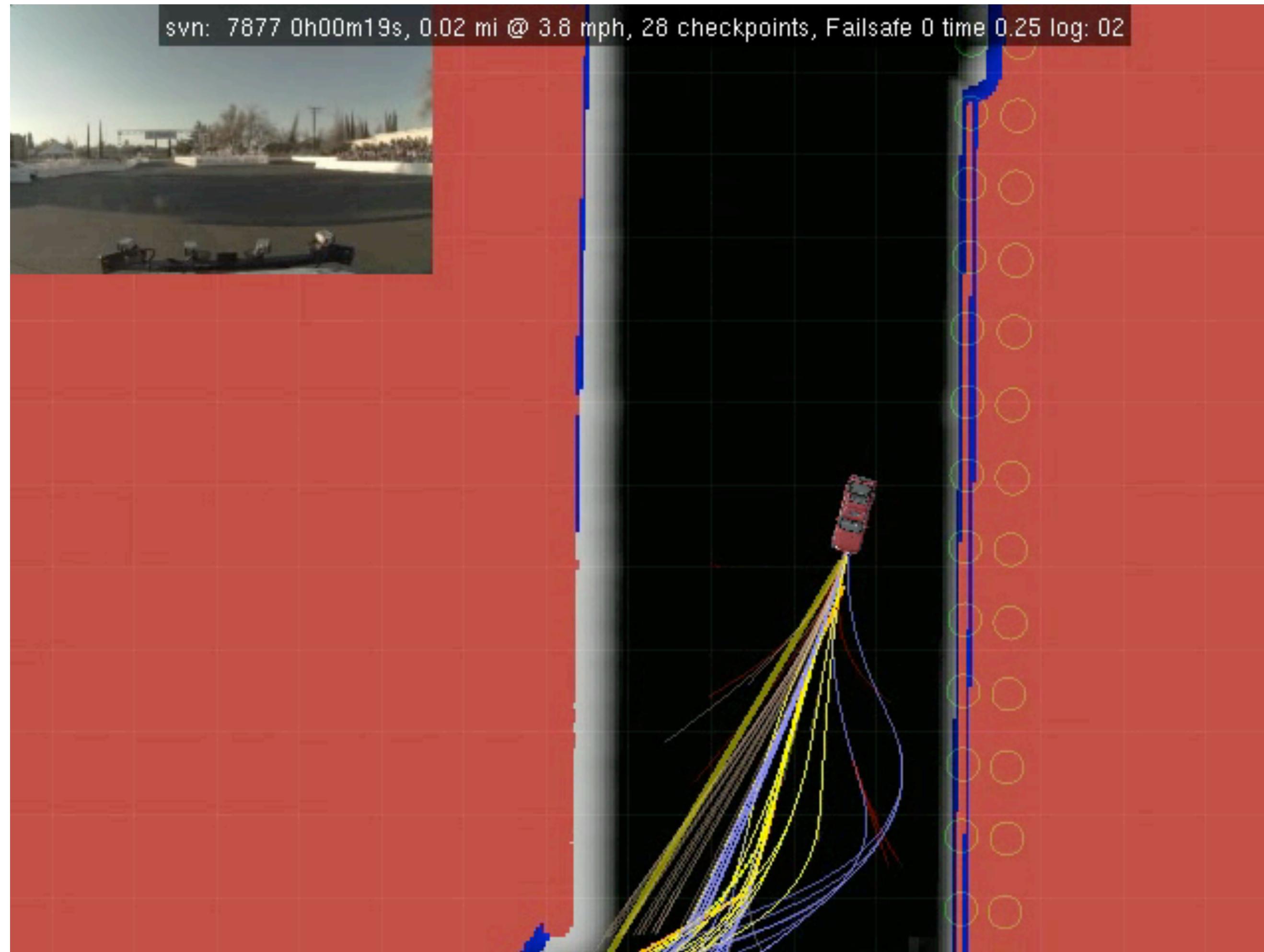


How can we program the navigator?

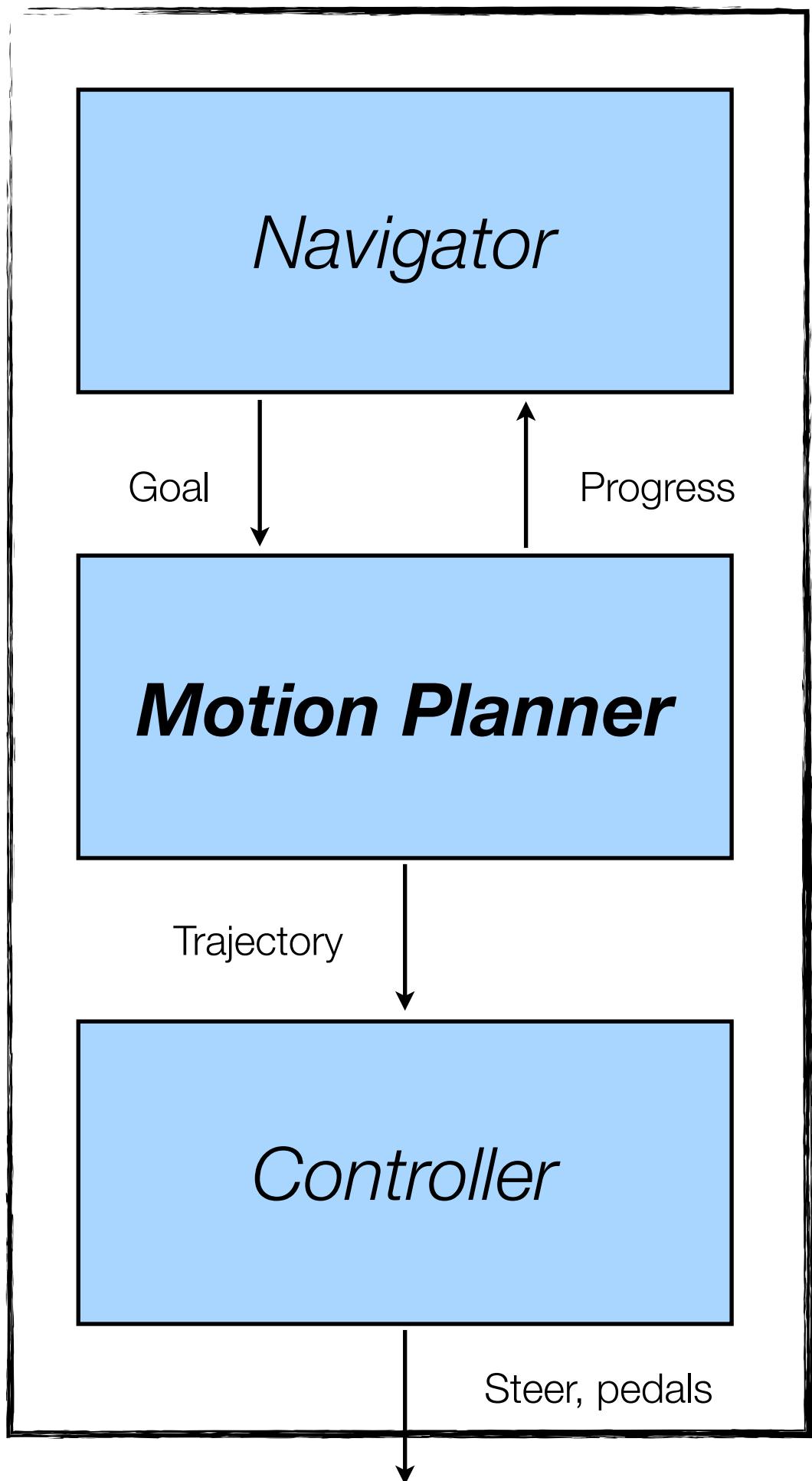
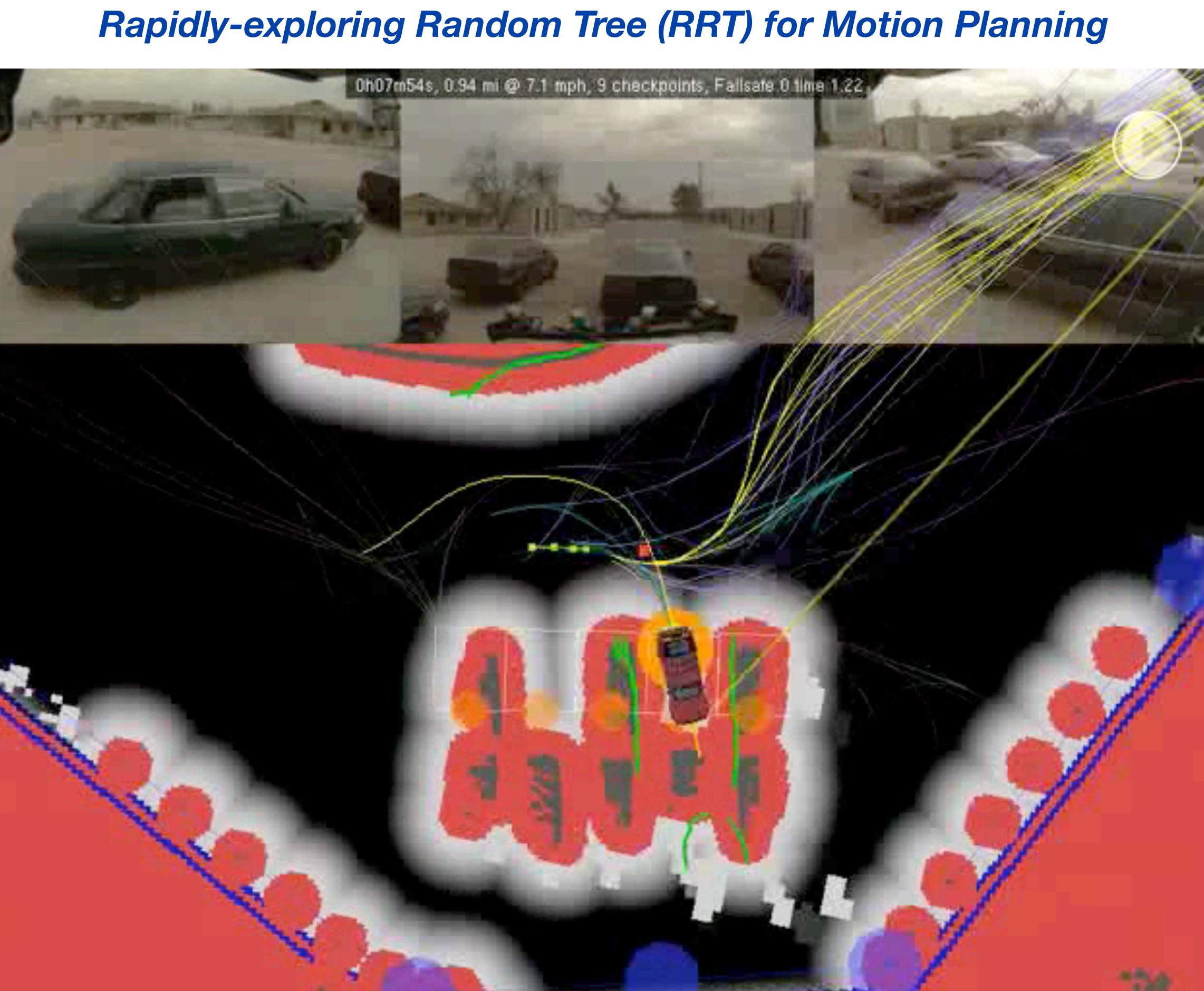
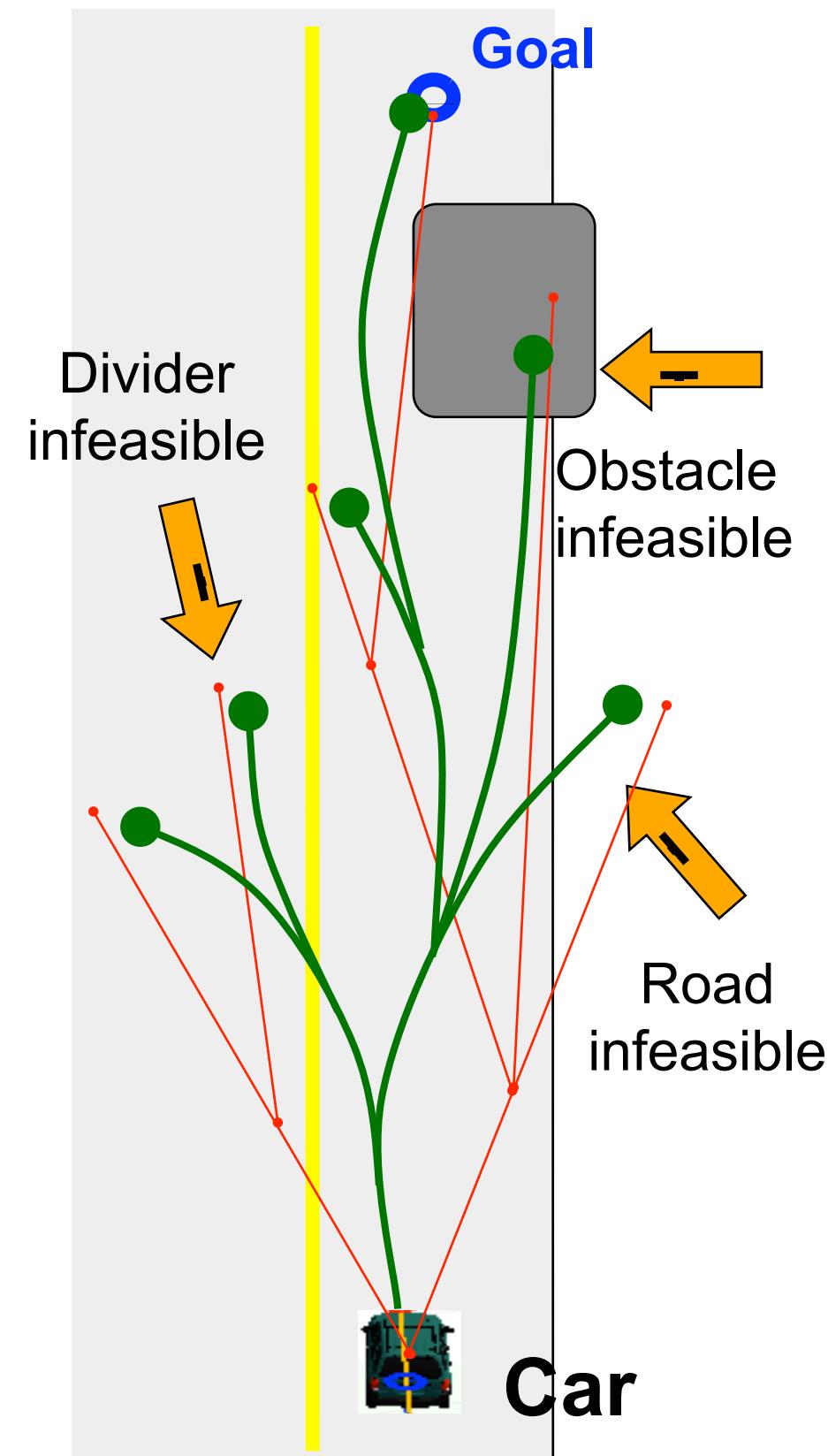
Navigator



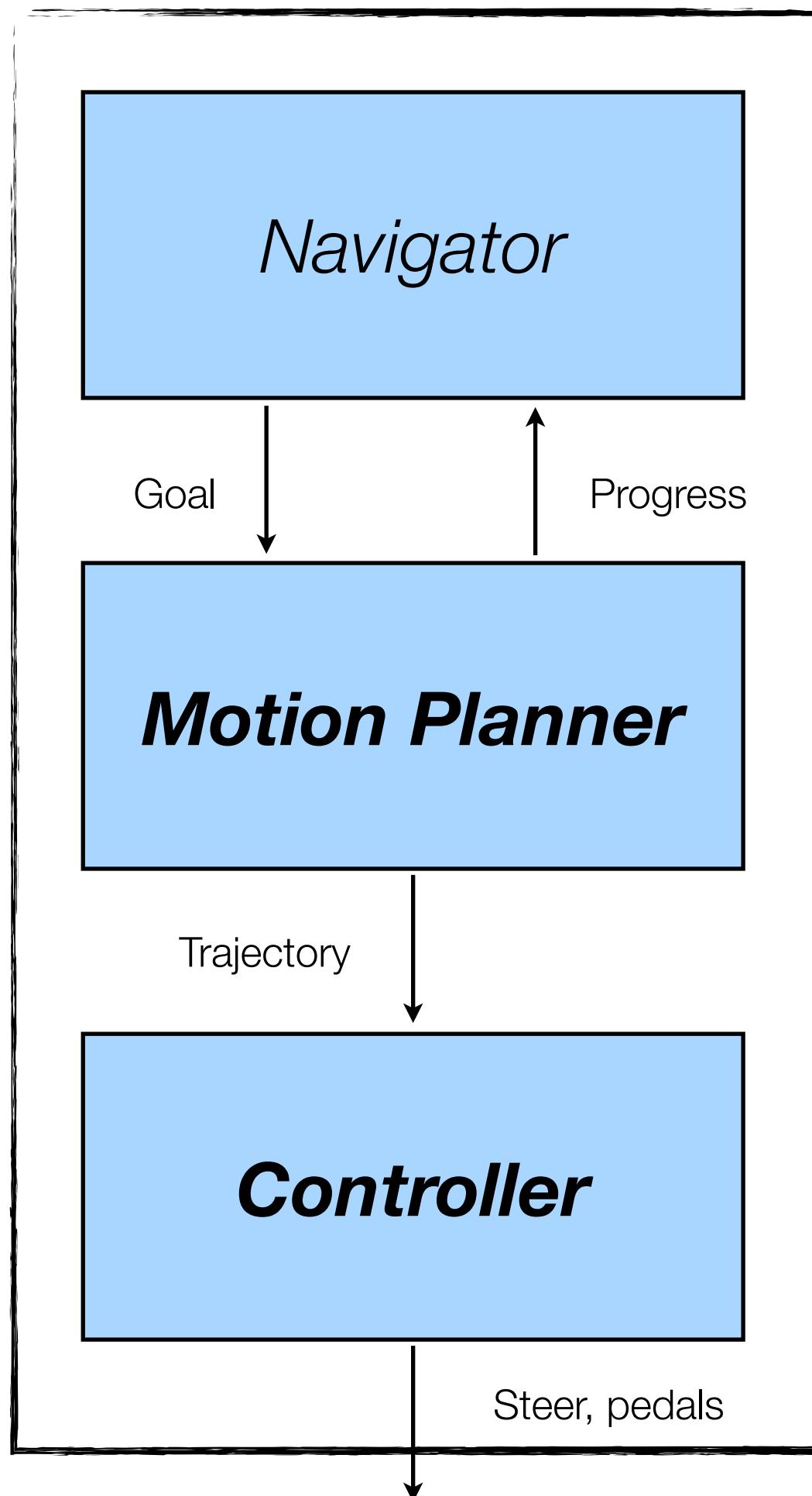
Task and Motion Planning Interaction



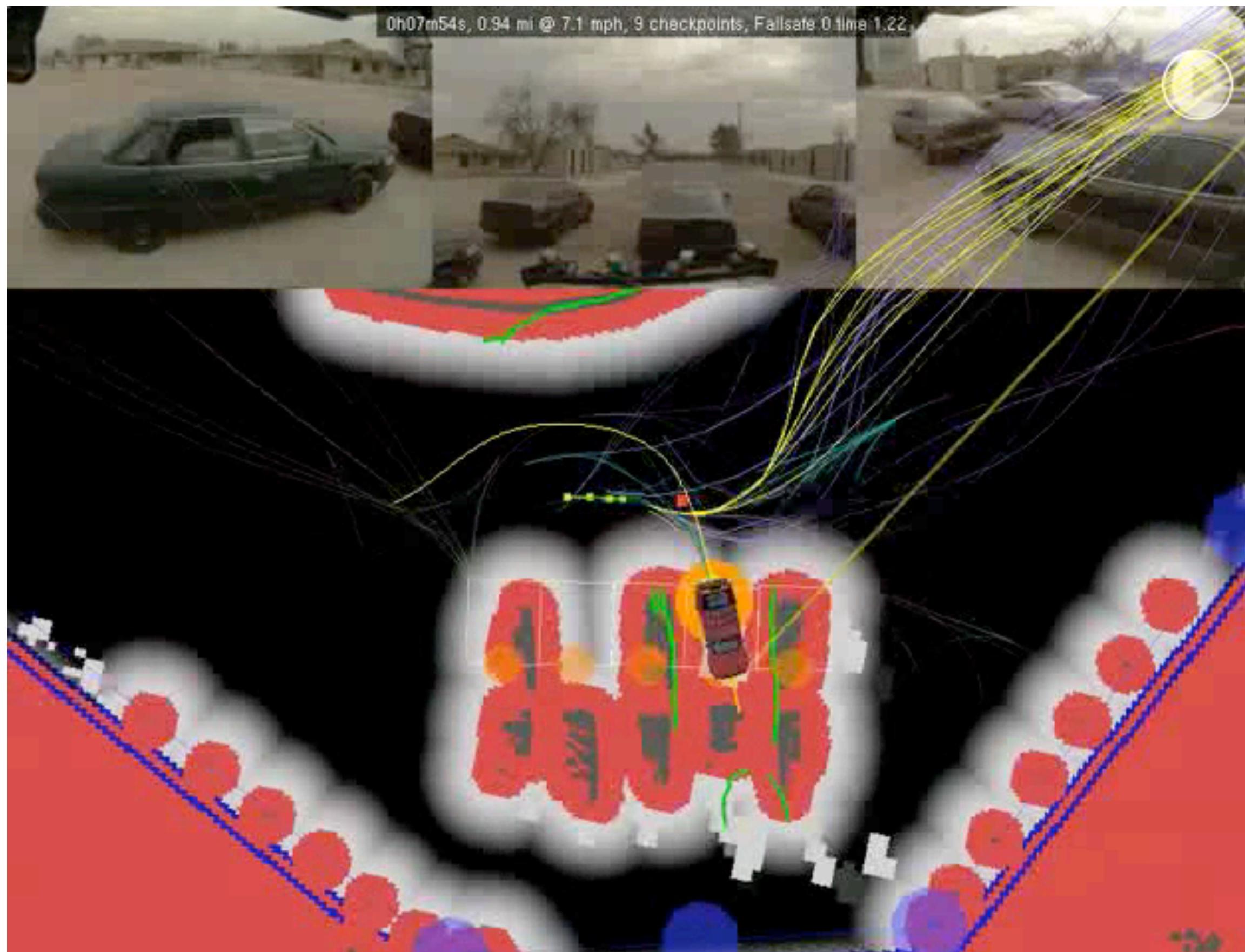
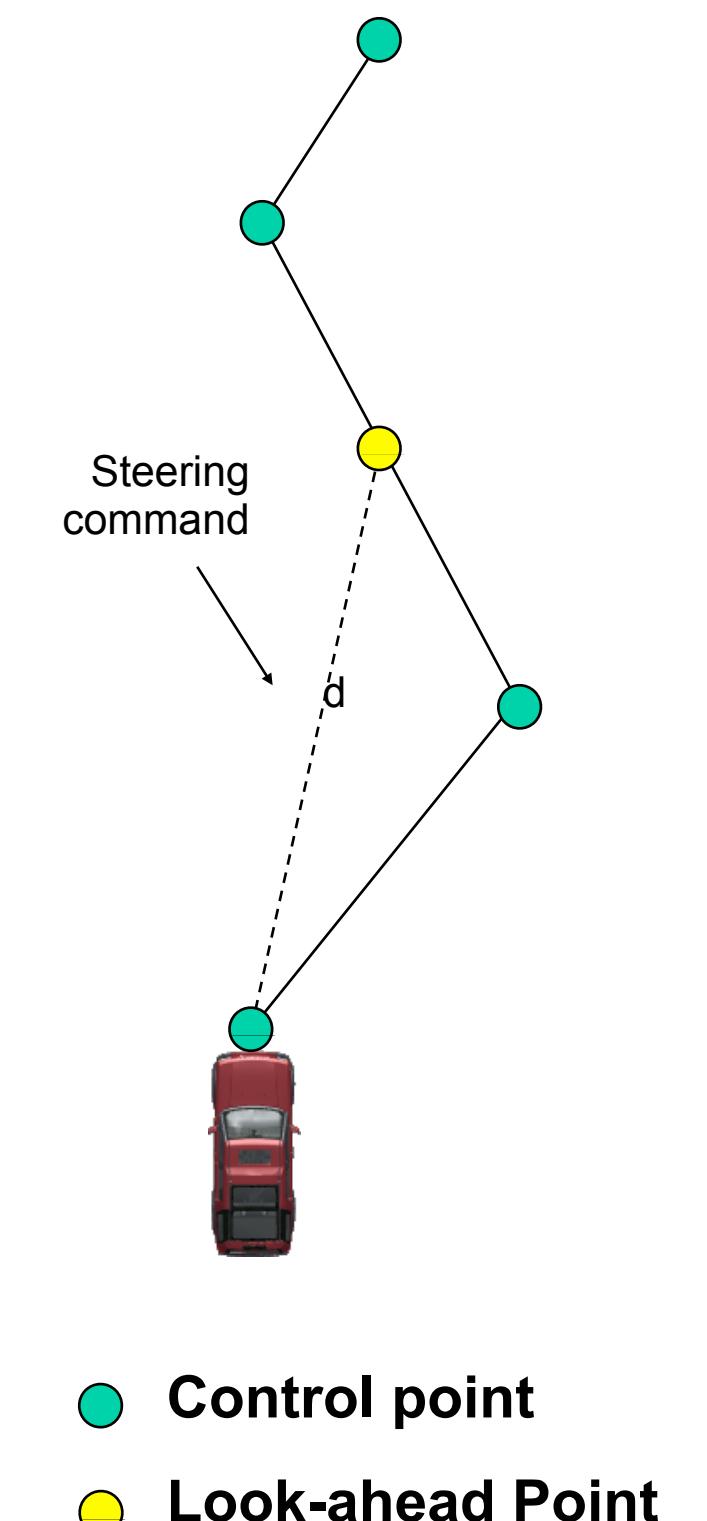
Navigator



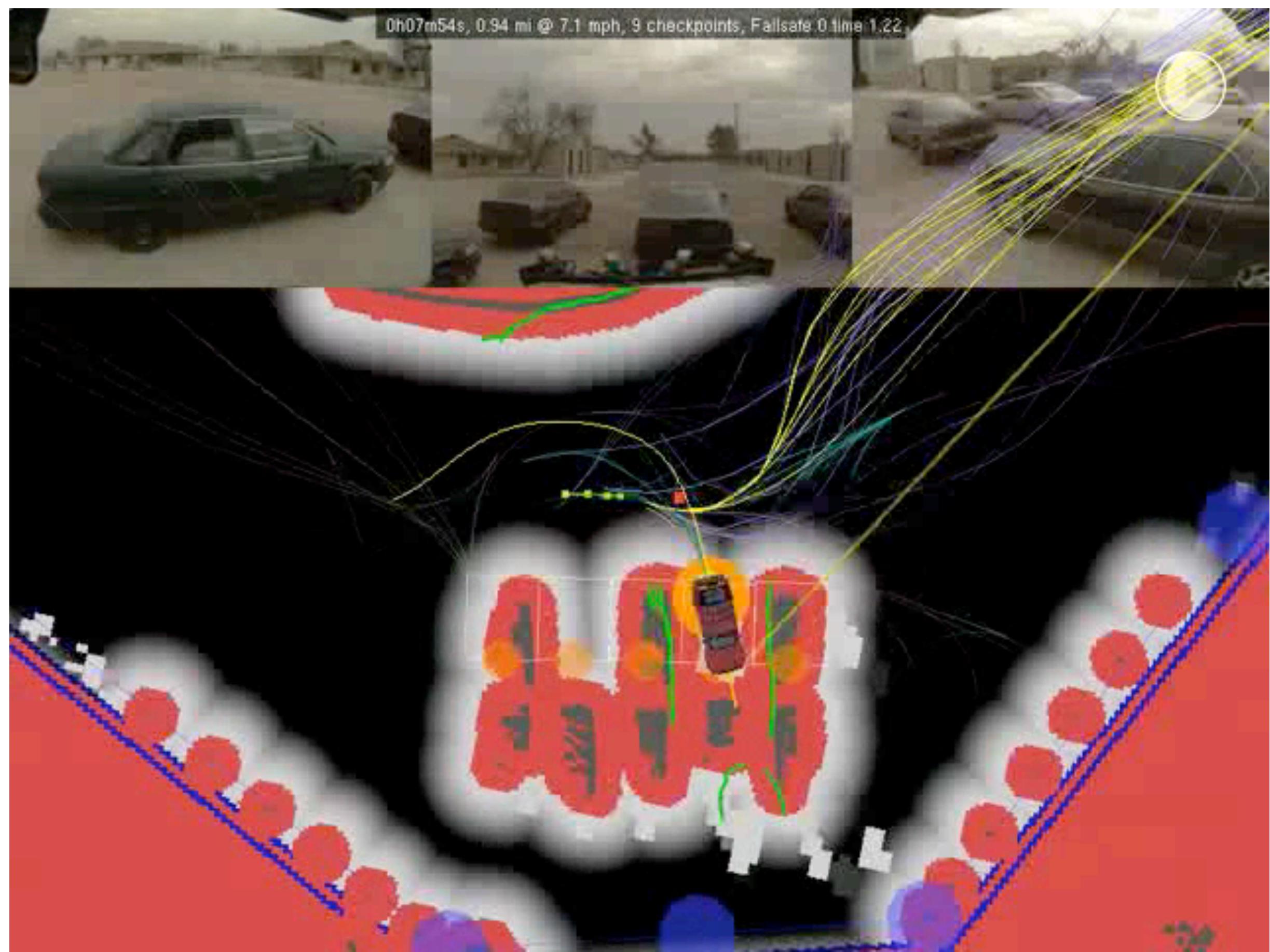
Navigator



Rapidly-exploring Random Tree (RRT) for Motion Planning

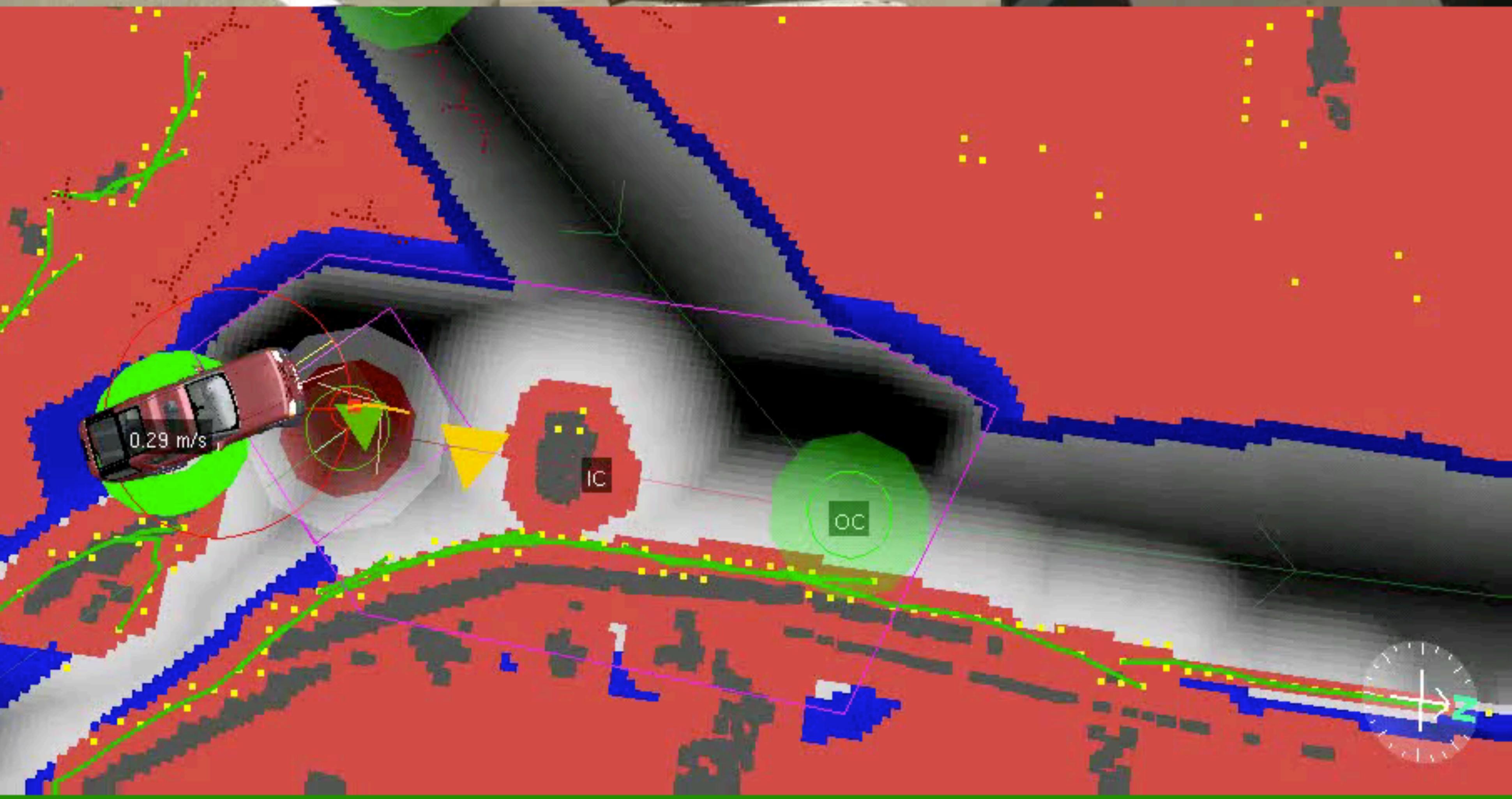


Results

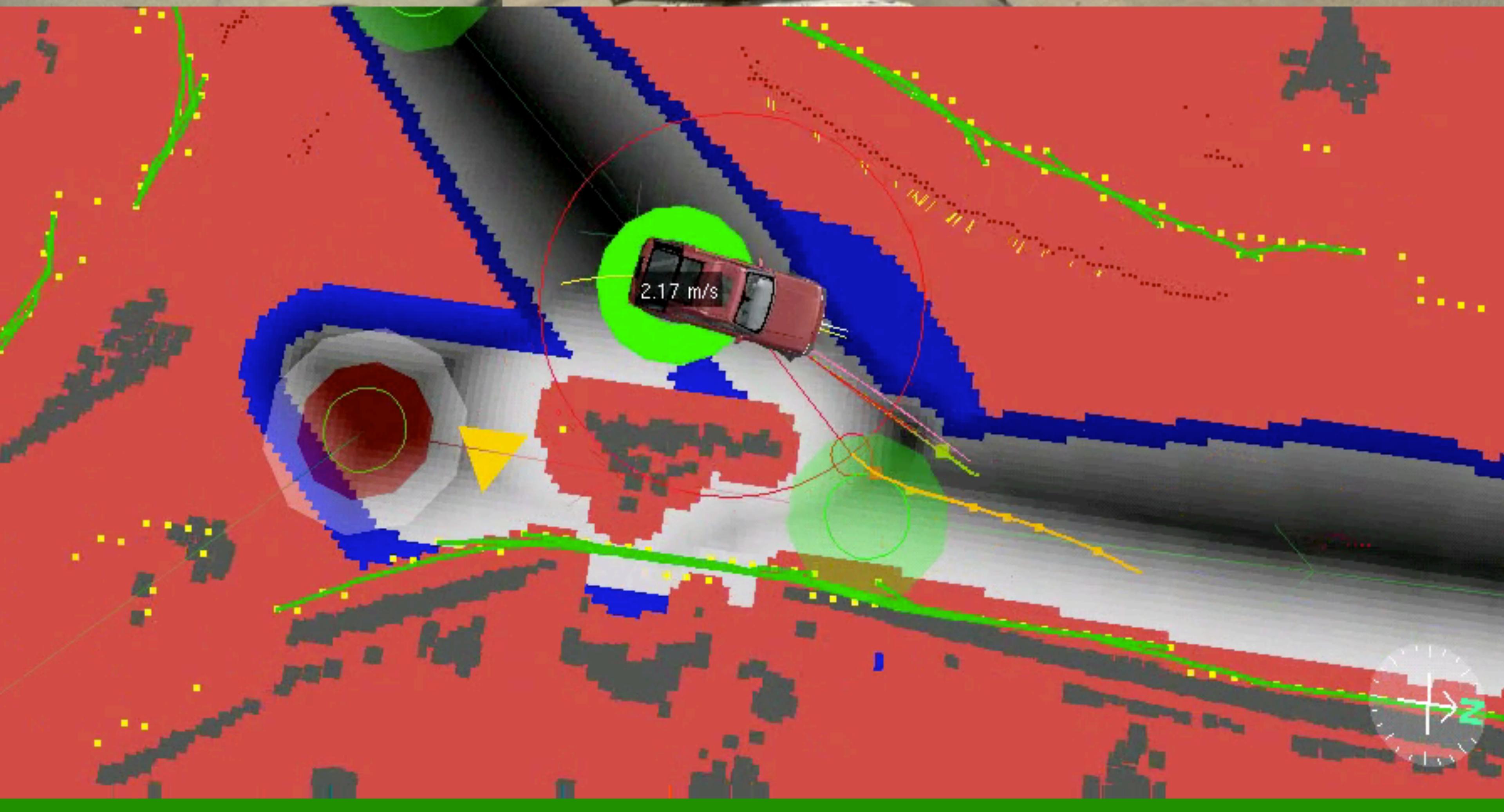


svn: 7877 1h12m26s, 13.27 mi @ 11.0 mph, 1 checkpoint, Failsafe 0 time 2.38 log: 03

**DARPA Challenge
(2007)**

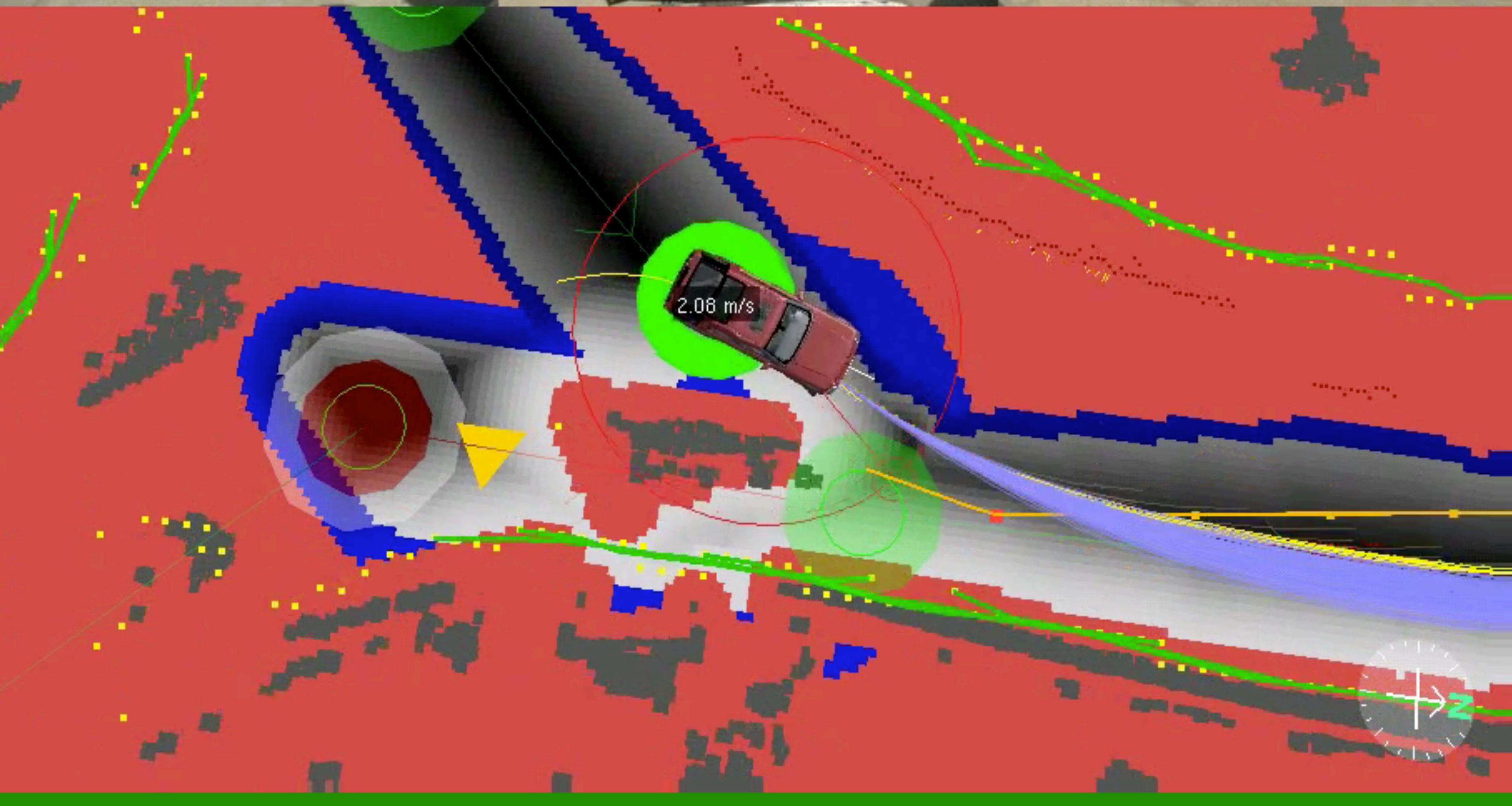


svn: 7877 1h12m35s, 13.28 mi @ 11.0 mph, 1 checkpoint, Failsafe 0 time 1.06



*DARPA Challenge
(2007)*

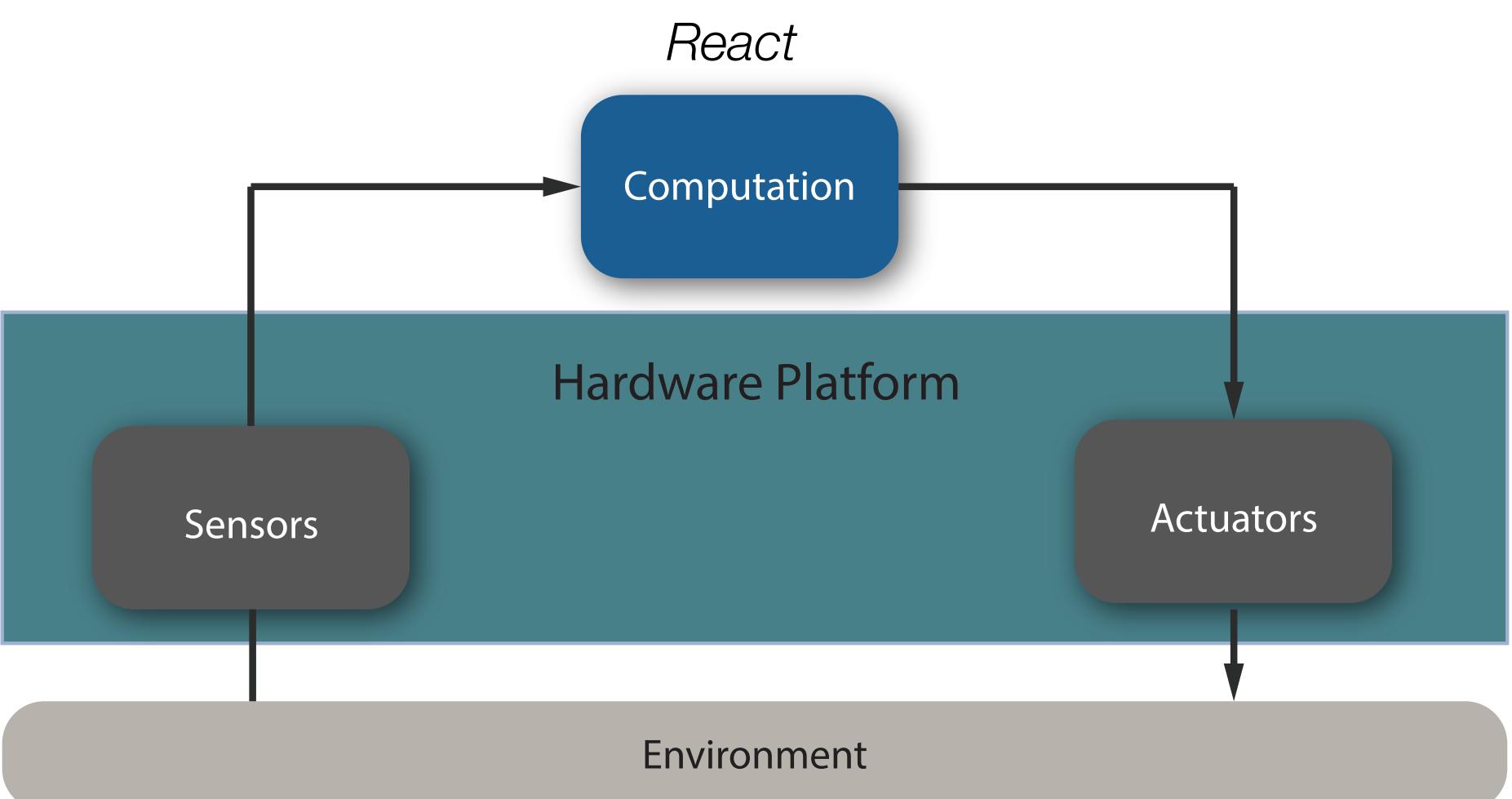
*DARPA Challenge
(2007)*



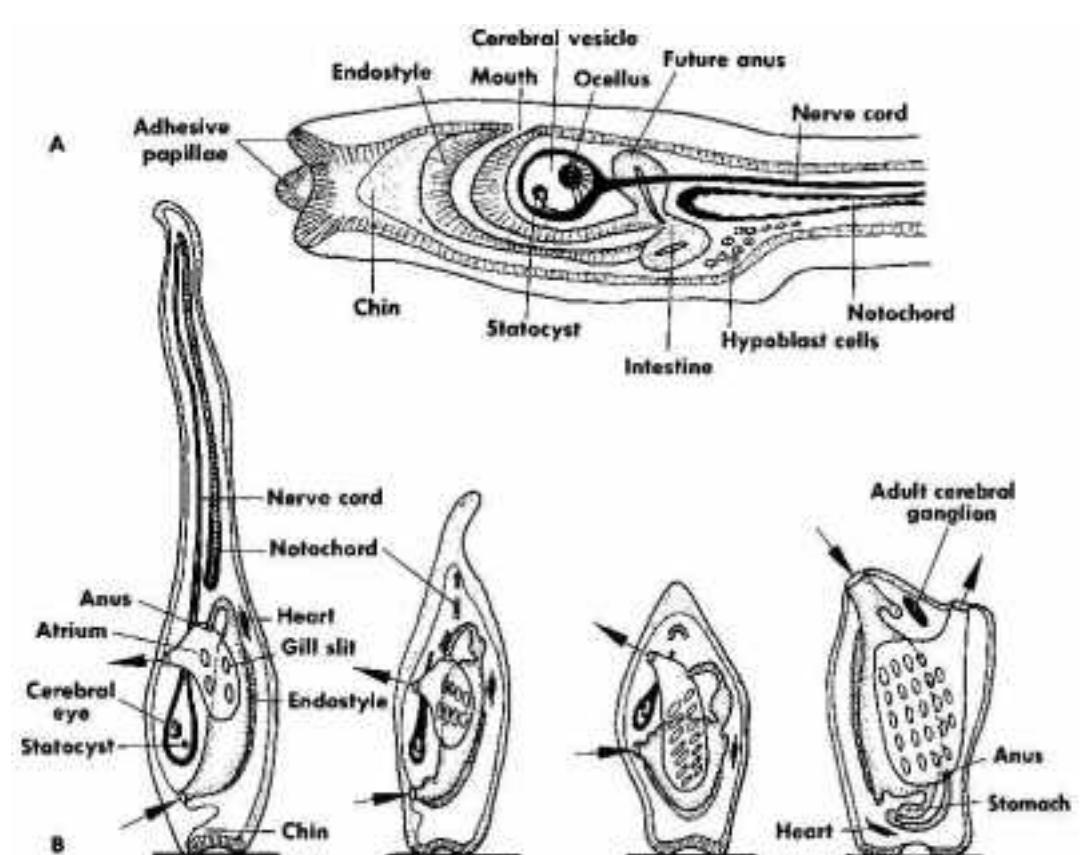
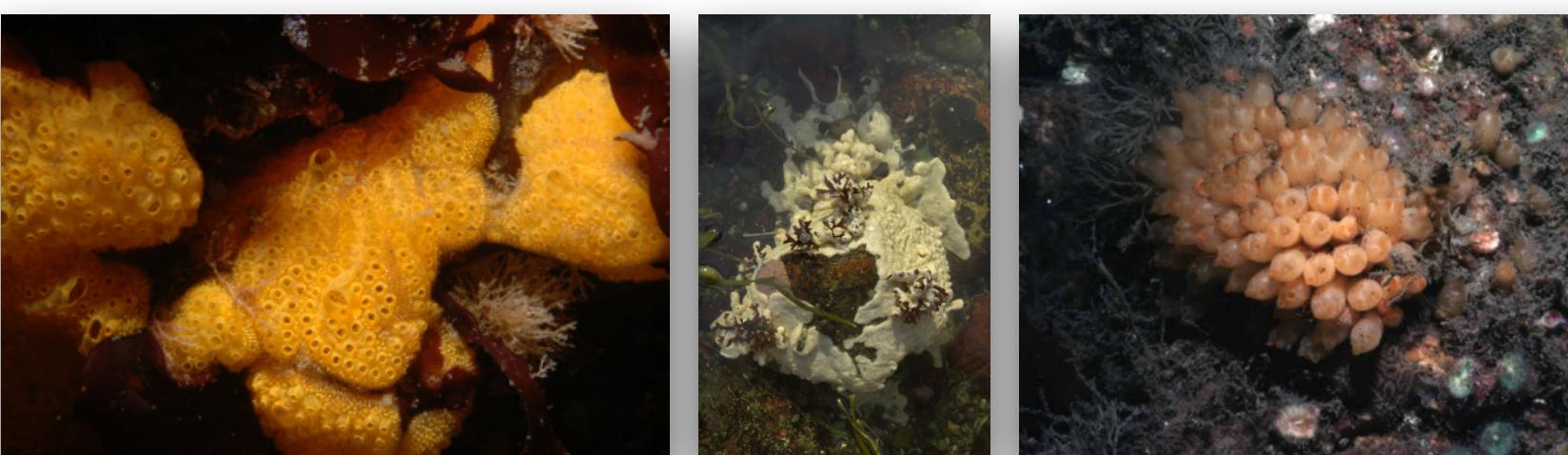
What do robots do exactly?

- Robots can be “defined” by the sensing-computation-actuation pipeline.
- **Simple computation: Reflexive control**
 - Most often a direct mapping from sensor data into actuation.

Jelly fish nerve net



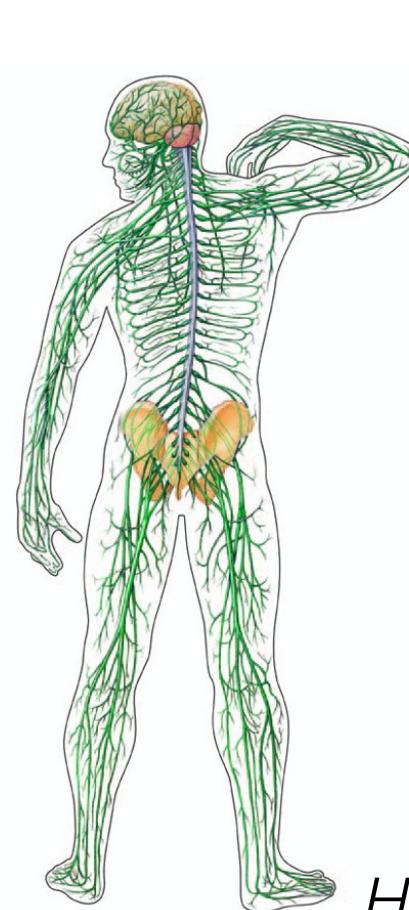
- **The tunicate (sea squirt) has an extreme life cycle:**
 - Starts out mobile, with a primitive eye and a nervous cord
 - Then, settles to a good spot, and *digests its own brain* once stationary.
- *Many scientists believe nervous systems evolved to satisfied the need to be mobile.*



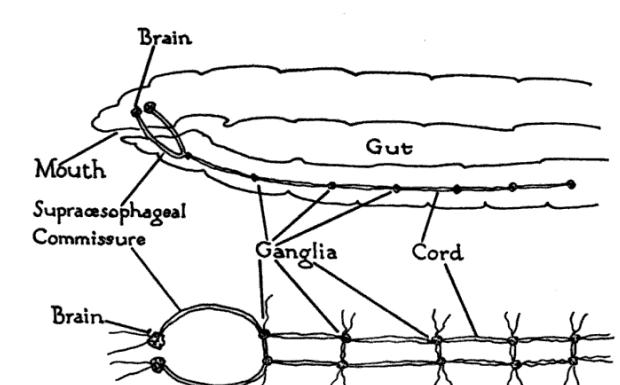
What do robots do exactly?

- **Horizontal breakdown of computation:**

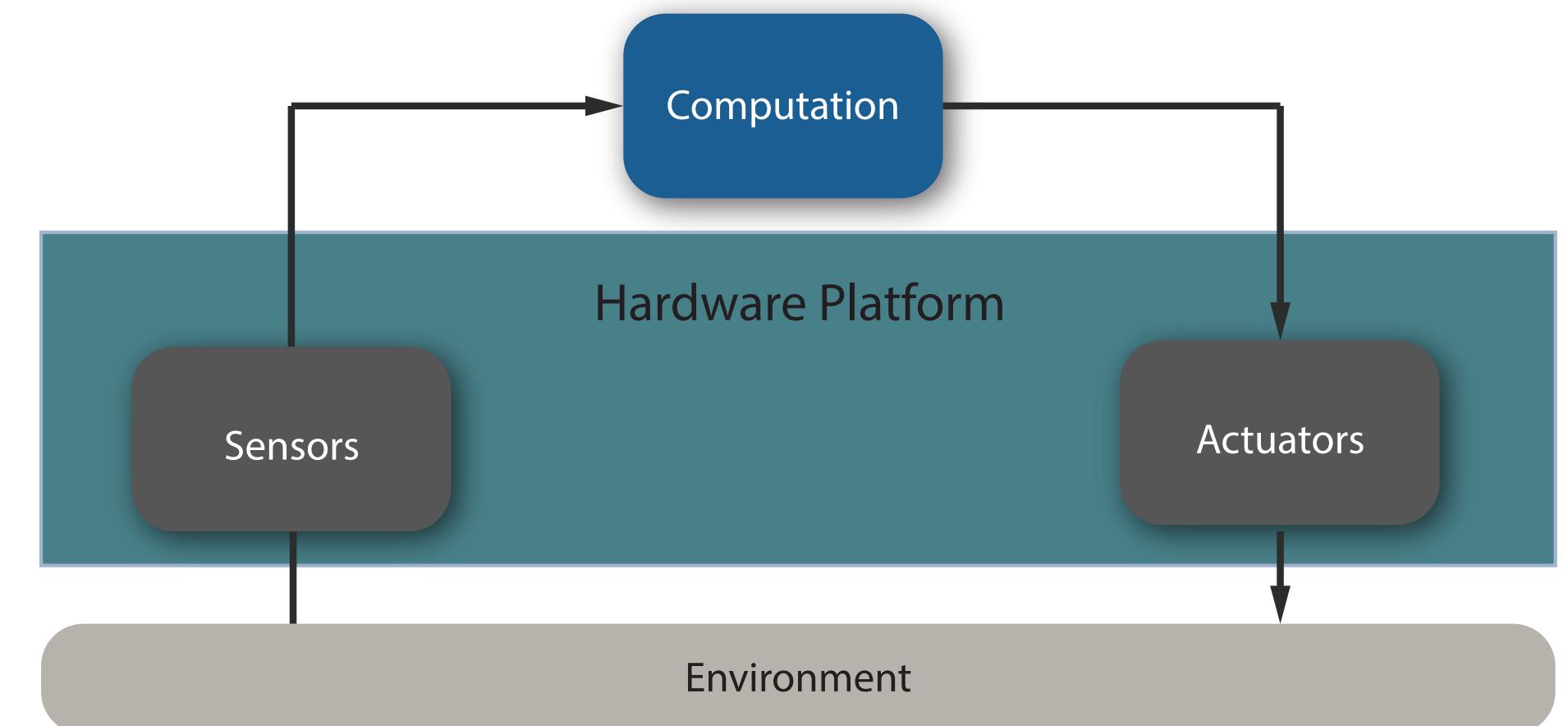
- *Perception and State Estimation:* Process the data to understand the environment and the state of the robot
- *Planning and Control:* Given an understanding of the robot and its surroundings, make decisions to move the robot to accomplish the task



Human nervous system



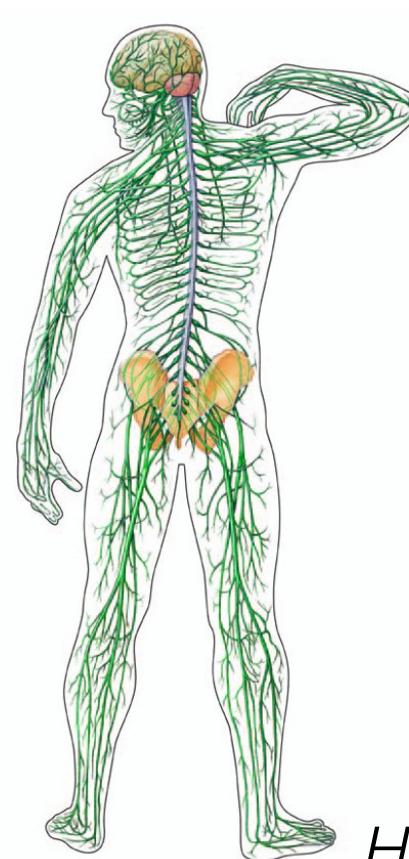
Earthworm nervous system



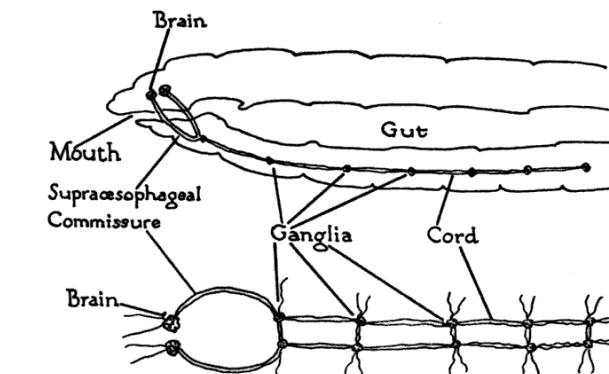
What do robots do exactly?

- **The vertical breakdown for computation:**

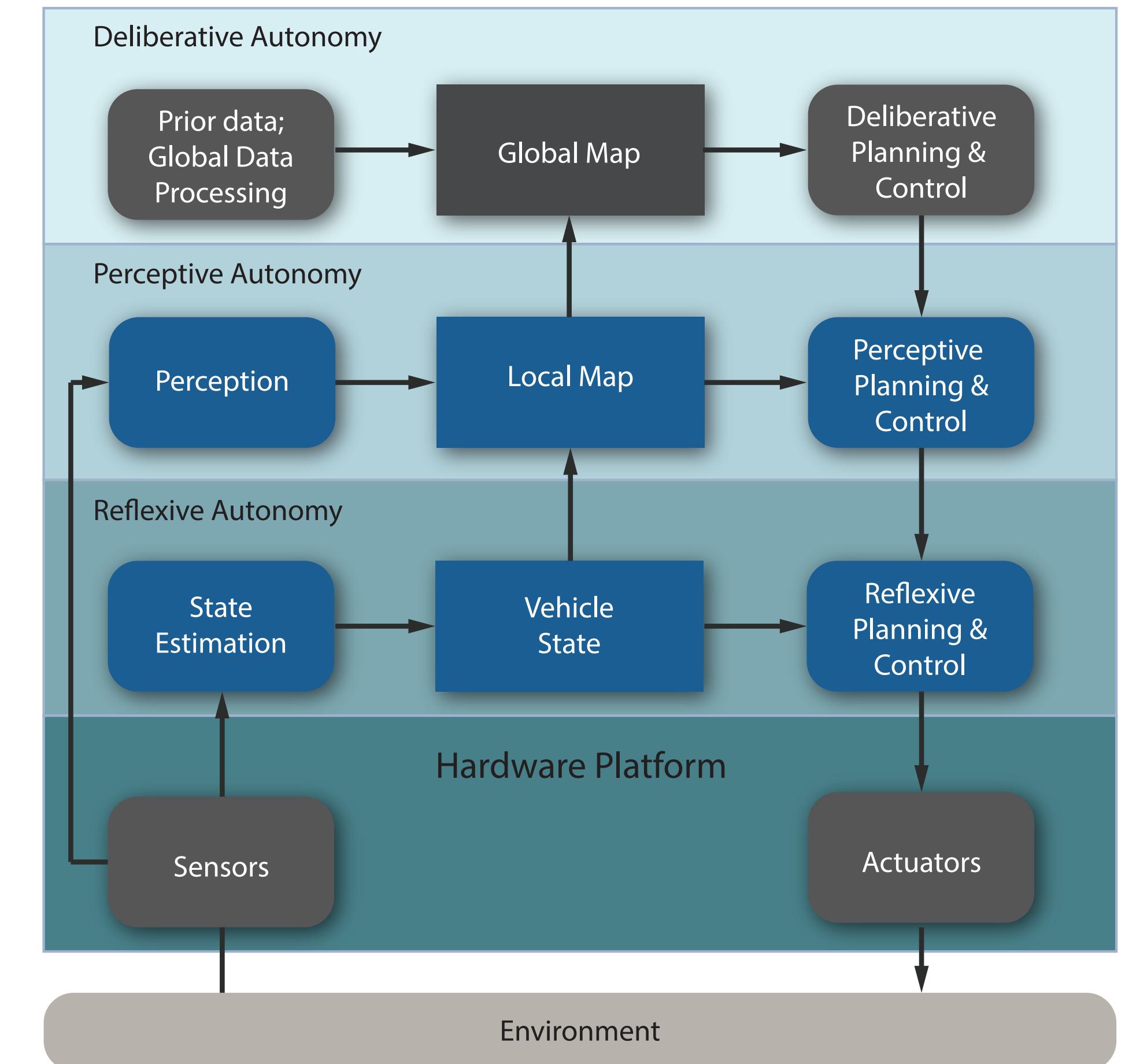
- Most robotic systems rely on a three-layer software architecture.
- The three layers can roughly be divided according to spatial- and temporal-scales.
- The scales depend on the size/weight/task of the robot.



Human nervous system

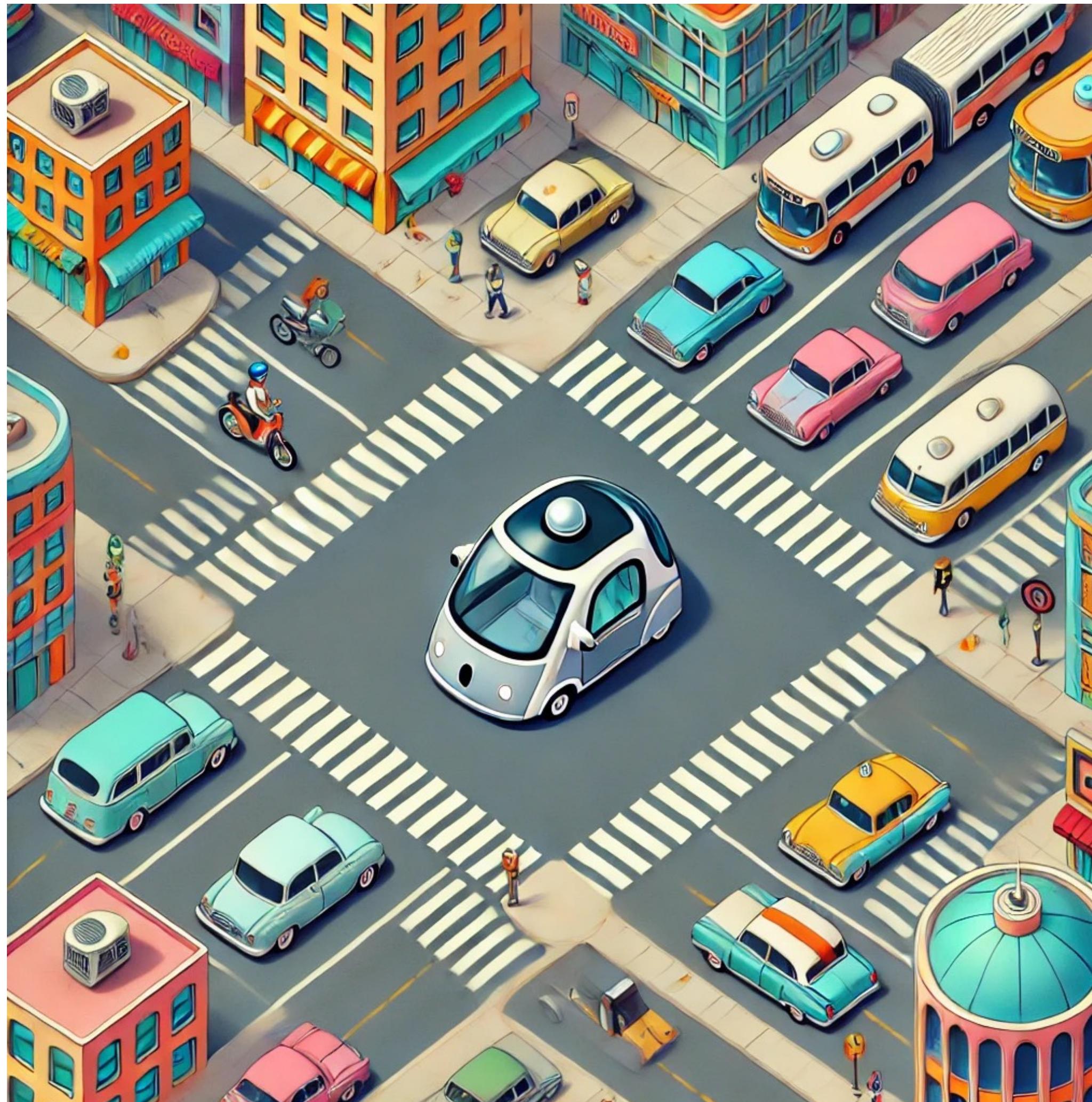


Earthworm nervous system



Planning and Reasoning

Self-driving Cars



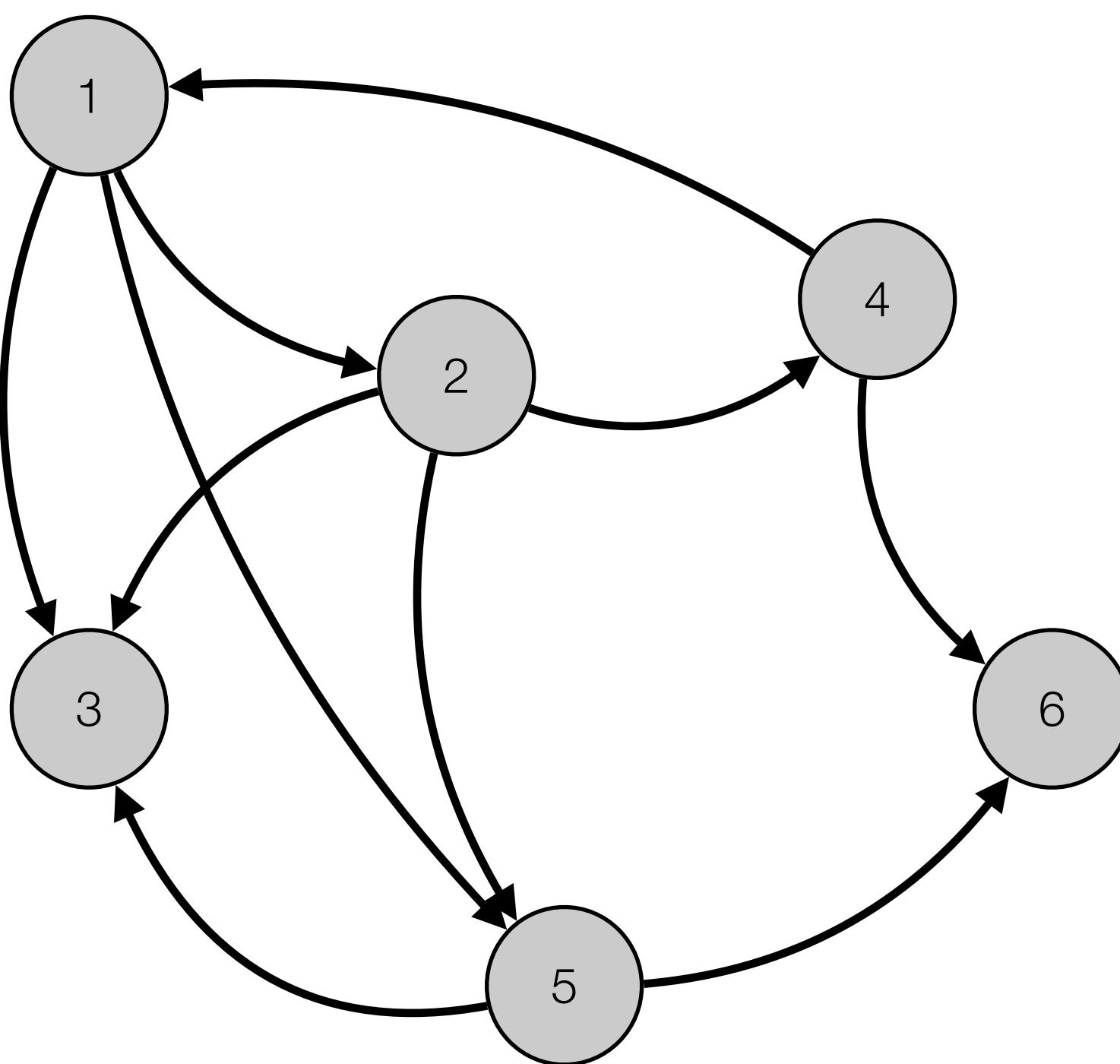
- Can you write down a simple state representation for the self-driving car?
- What are key considerations?
- What makes this state representative?
- What are your underlying assumptions?
- How would these change for other similar examples:
 - Planetary rover
 - Delivery drones

Warehouse order packing

- Can you write down a simple state representation for the warehouse packing?
- What are key considerations?
- What makes this state representative?
- What are your underlying assumptions?
- How would these change for other similar examples:
 - Planetary rover
 - Delivery drones

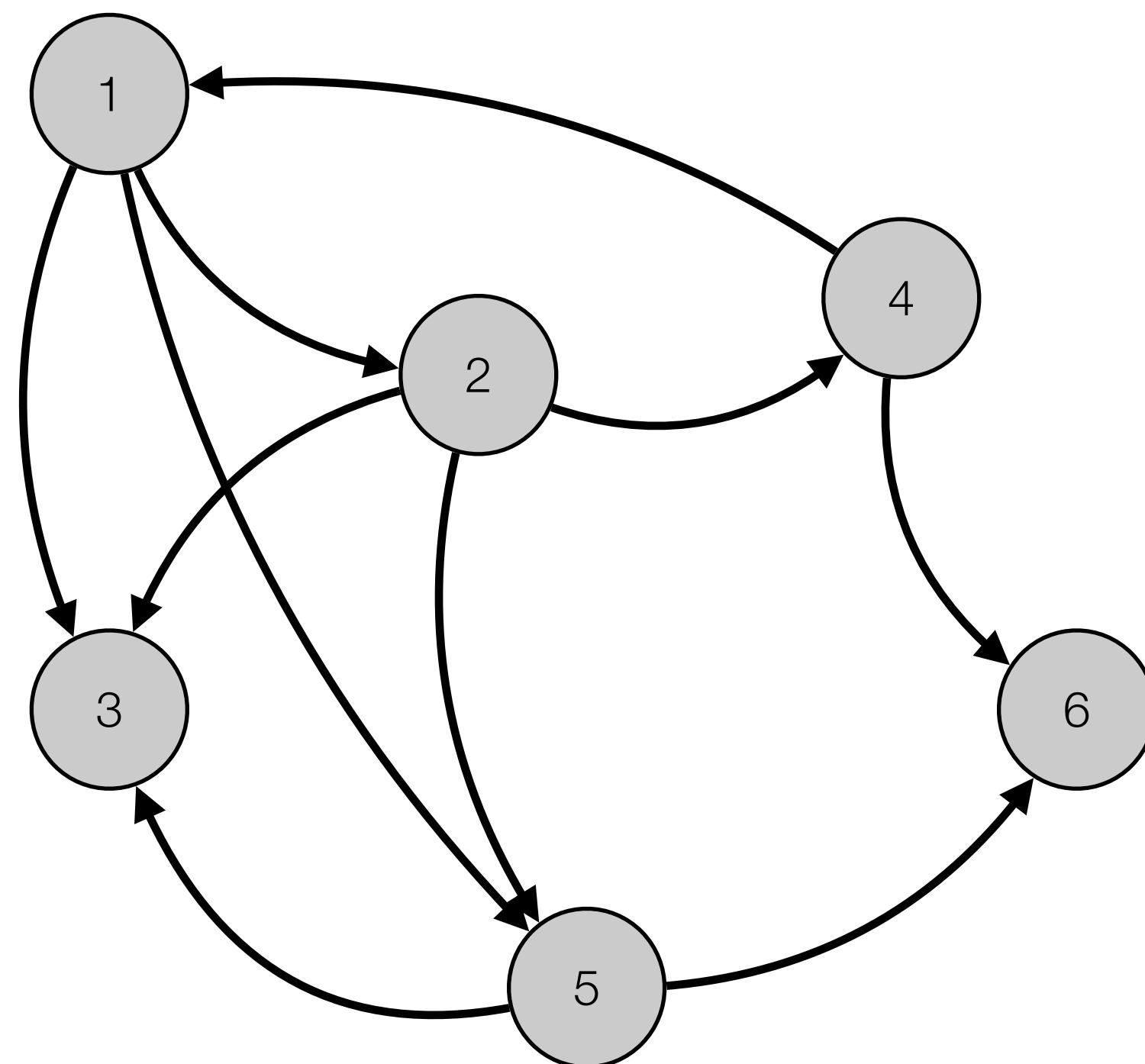
On State Space Modeling

- **State-state models** involve:
 - States
 - Actions
 - Transition function
- **Planning problems** involve:
 - State-space model
 - Start state
 - Goal state
 - (Optional) cost/reward function



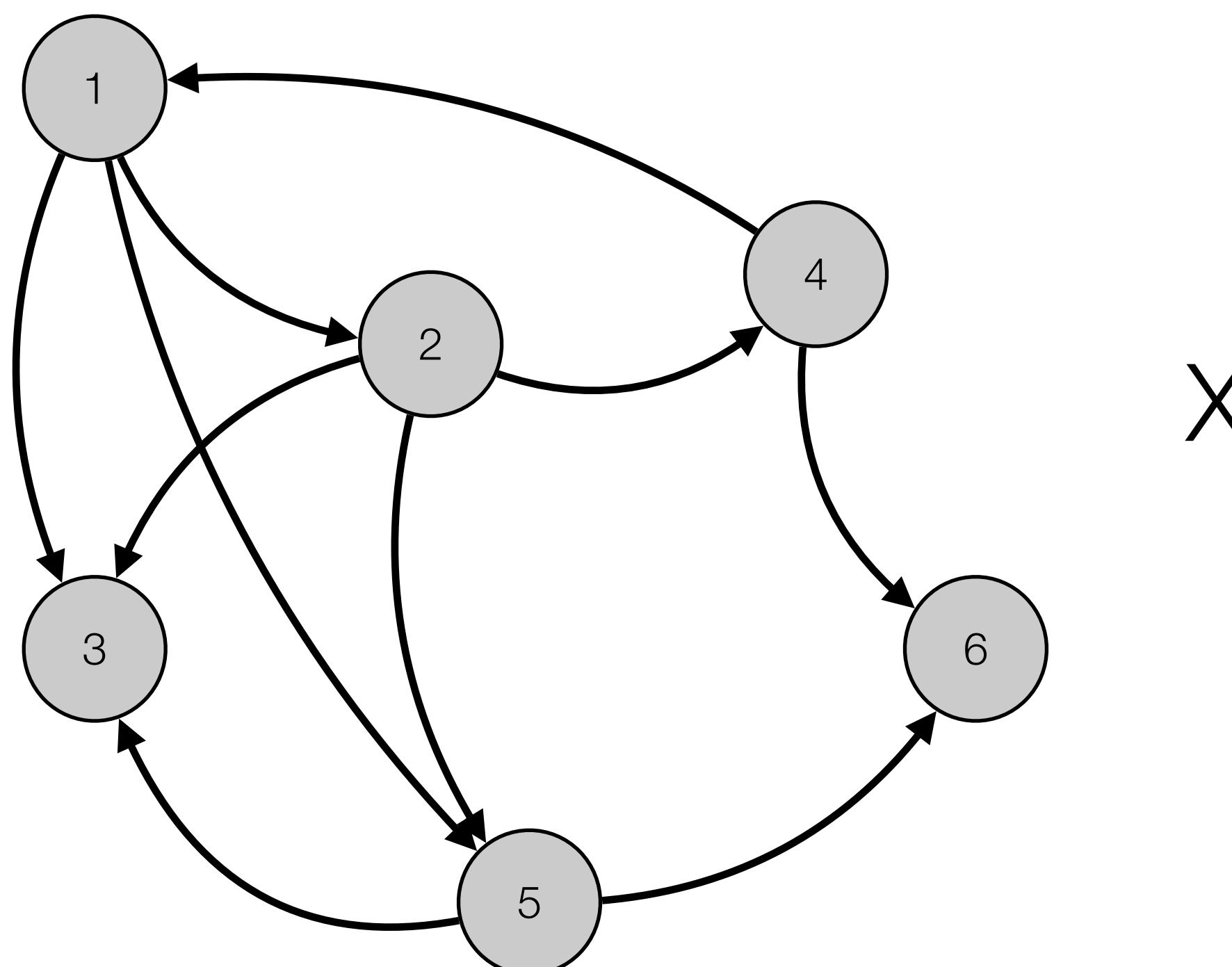
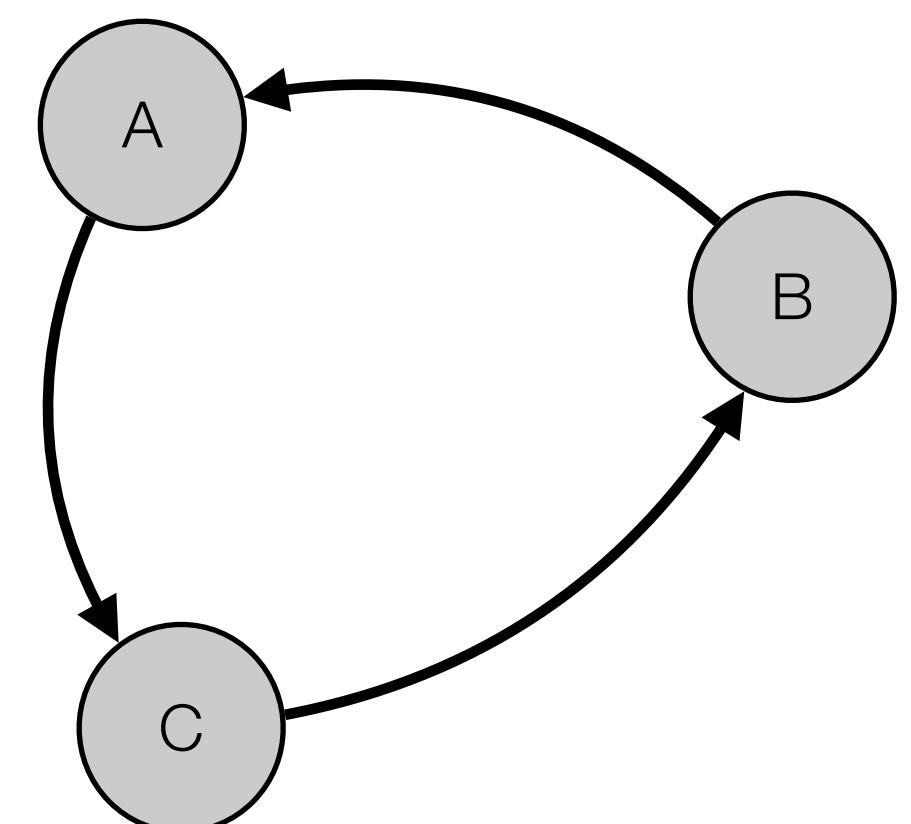
On The Representational Power of State-space Models

- **State-state models** can represent numerous elements of a problem by encoding it into the state, action and transition function:
 - Obstacles
 - Deadlines
 - Coordination
 - ...



On Composing State-space Models

- **State-state models** for multiple entities can be composed to induce multi-system behavior:
 - States of composed model: Tuples of states
 - Actions of composed model: Tuples of actions
 - Transition function of composed model: Combines both entities taking actions at the same time



Representing State Space Models in Code

- Use lists or dictionaries to represent states

```
states = [1, 2, 3, 4, 5, 6, 7, 8, 9]
```

- Use functions to represent transition functions

```
actions = ["left", "right", "up", "down"]
```

```
def transition(state, action):
```

Representing State Space Models in Code

- Use lists or dictionaries to represent states
- Use functions to represent transition functions

```
def transition(state, action):
```

Try all combinations?

Representing State Space Models in Code

```
def transition(state, action):
    # Define grid dimensions
    grid = [
        [1, 2, 3],
        [4, 5, 6],
        [7, 8, 9]
    ]

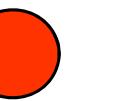
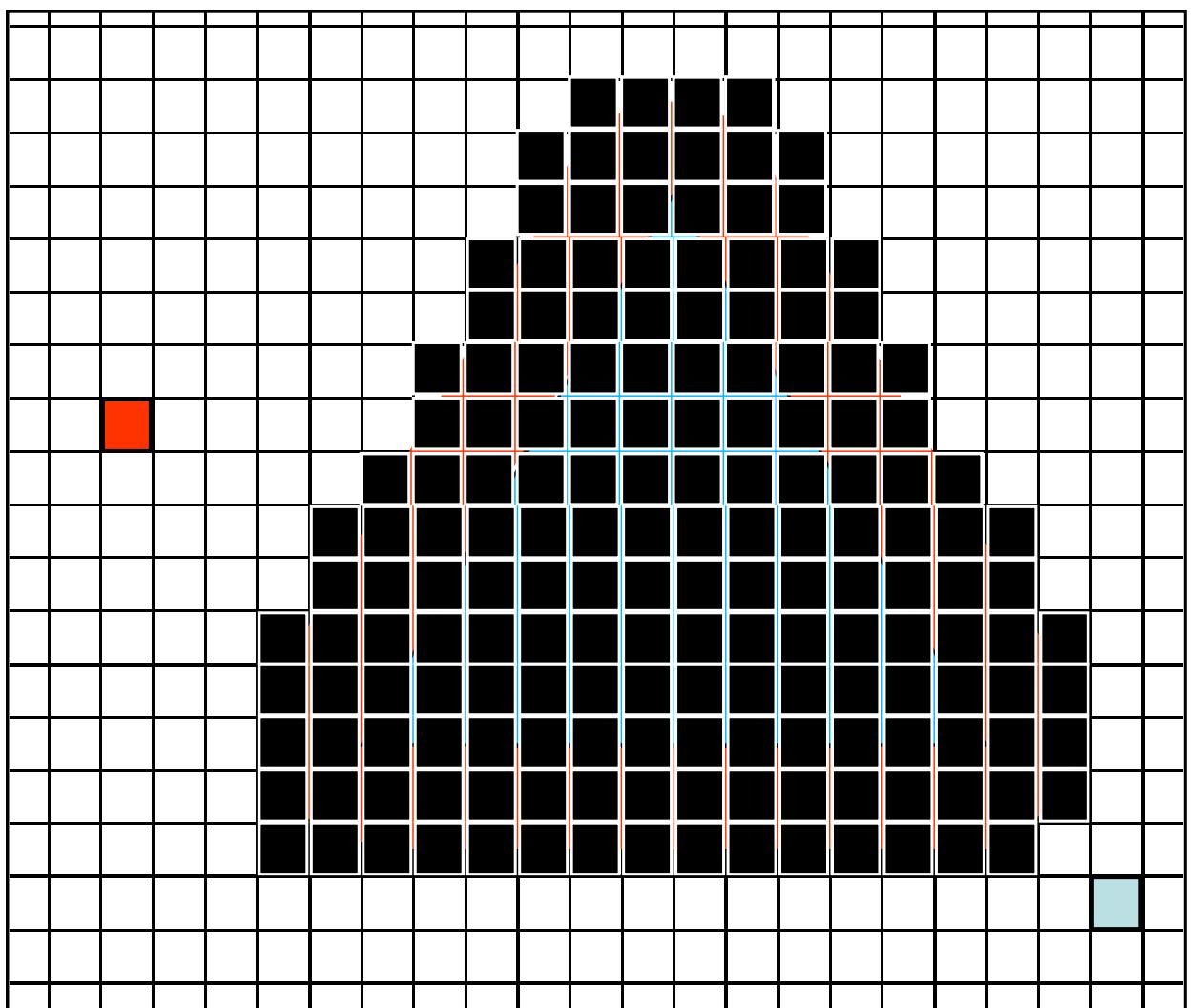
    # Map state to (row, col)
    for row in range(3):
        for col in range(3):
            if grid[row][col] == state:
                r, c = row, col
                break
        else:
            continue
        break
    else:
        return None # state not found

    # Compute new position based on action
    if action == "up":
        r -= 1
    elif action == "down":
        r += 1
    elif action == "left":
        c -= 1
    elif action == "right":
        c += 1
    else:
        return None # Invalid action

    # Check bounds
    if 0 <= r < 3 and 0 <= c < 3:
        return grid[r][c]
    else:
        return None # Action not valid from this state
```

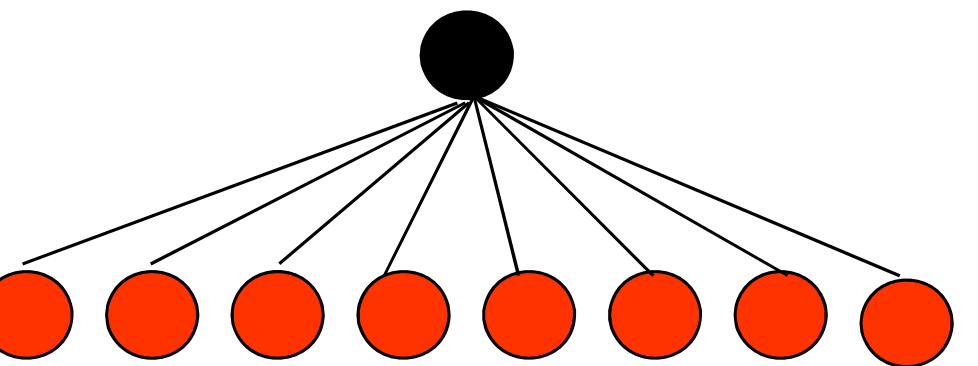
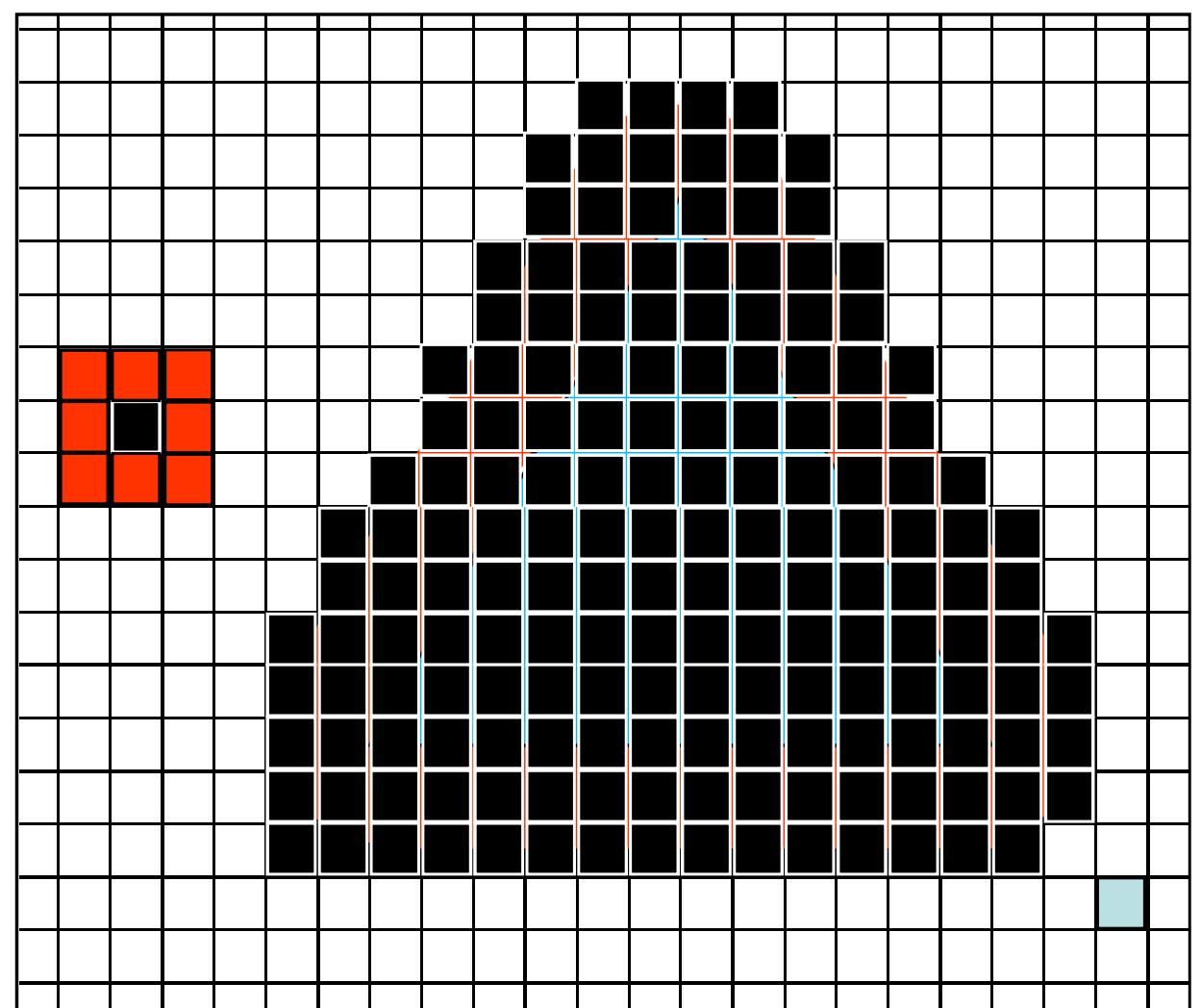
State-space Search Methods

- State-space search amounts to finding a “Path” from the start state to the goal state.
- Optionally this can involve an “objective” function as well: minimize cost or maximize reward



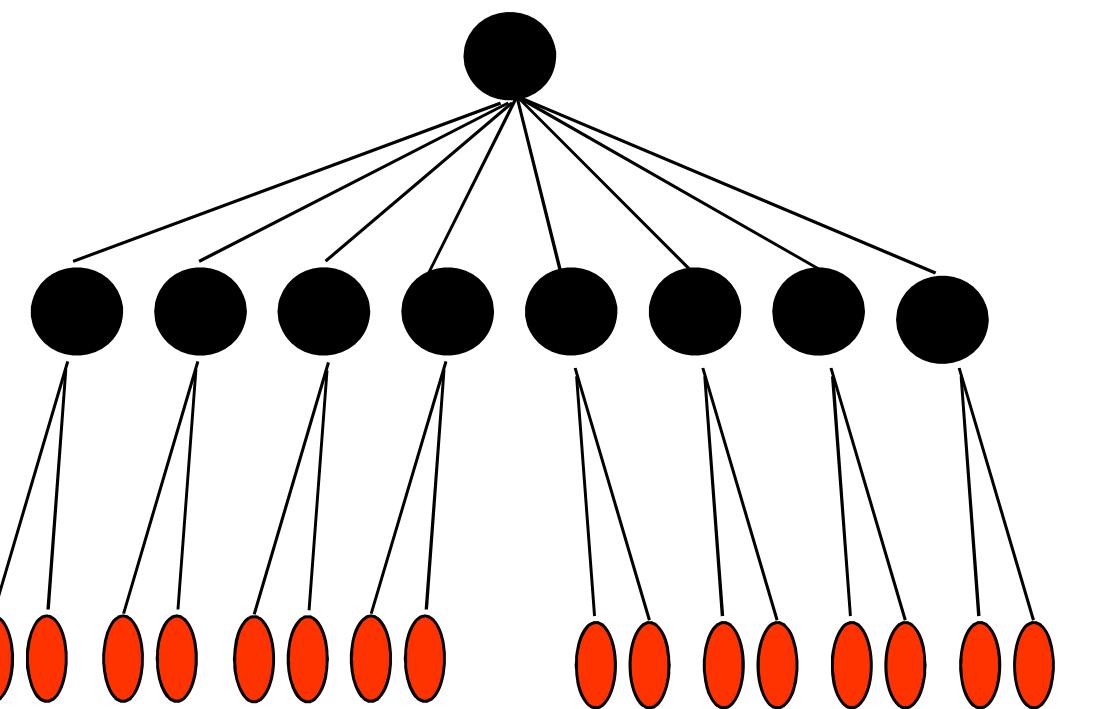
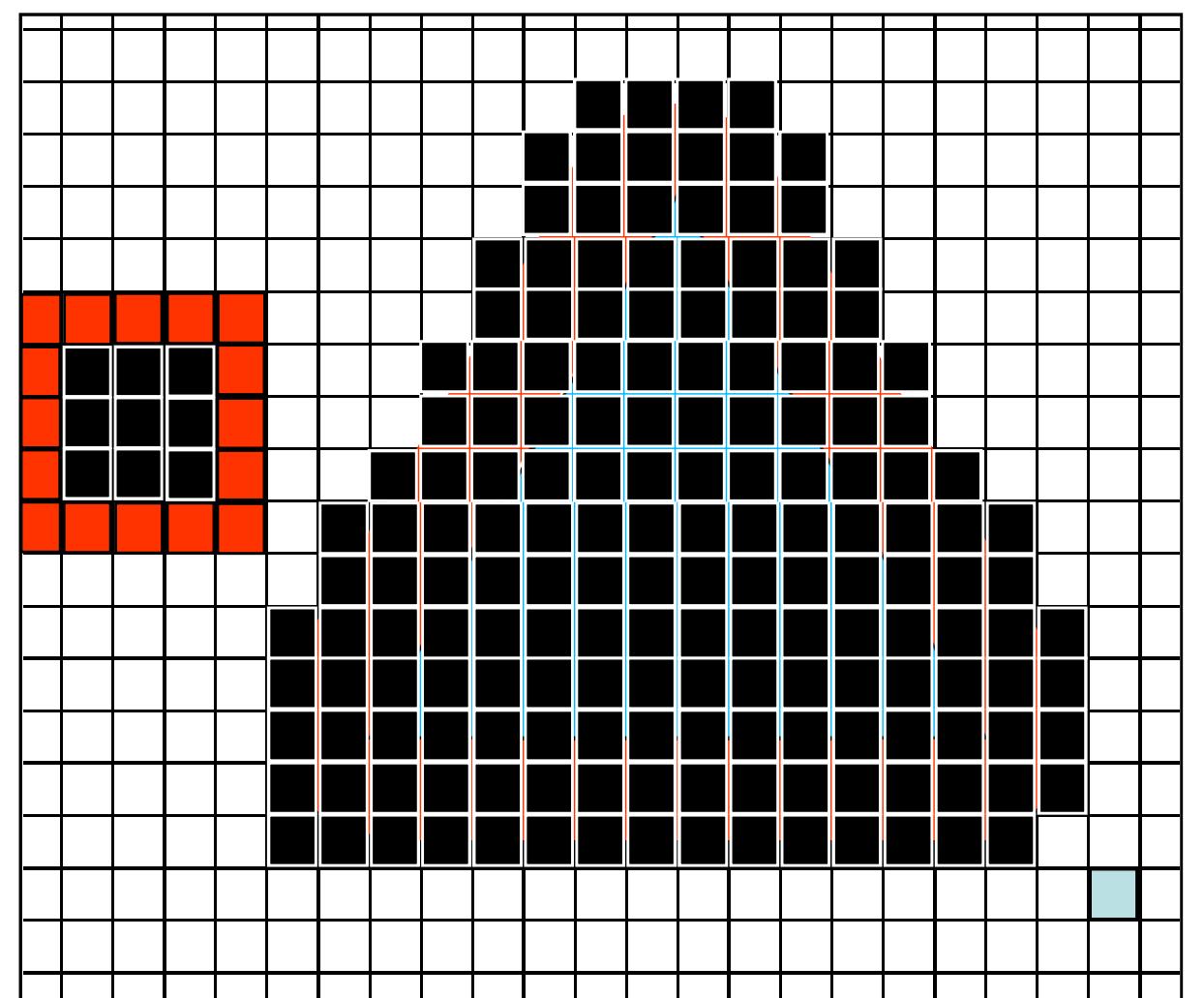
State-space Search Methods

- State-space search amounts to finding a “Path” from the start state to the goal state.
- Optionally this can involve an “objective” function as well: minimize cost or maximize reward



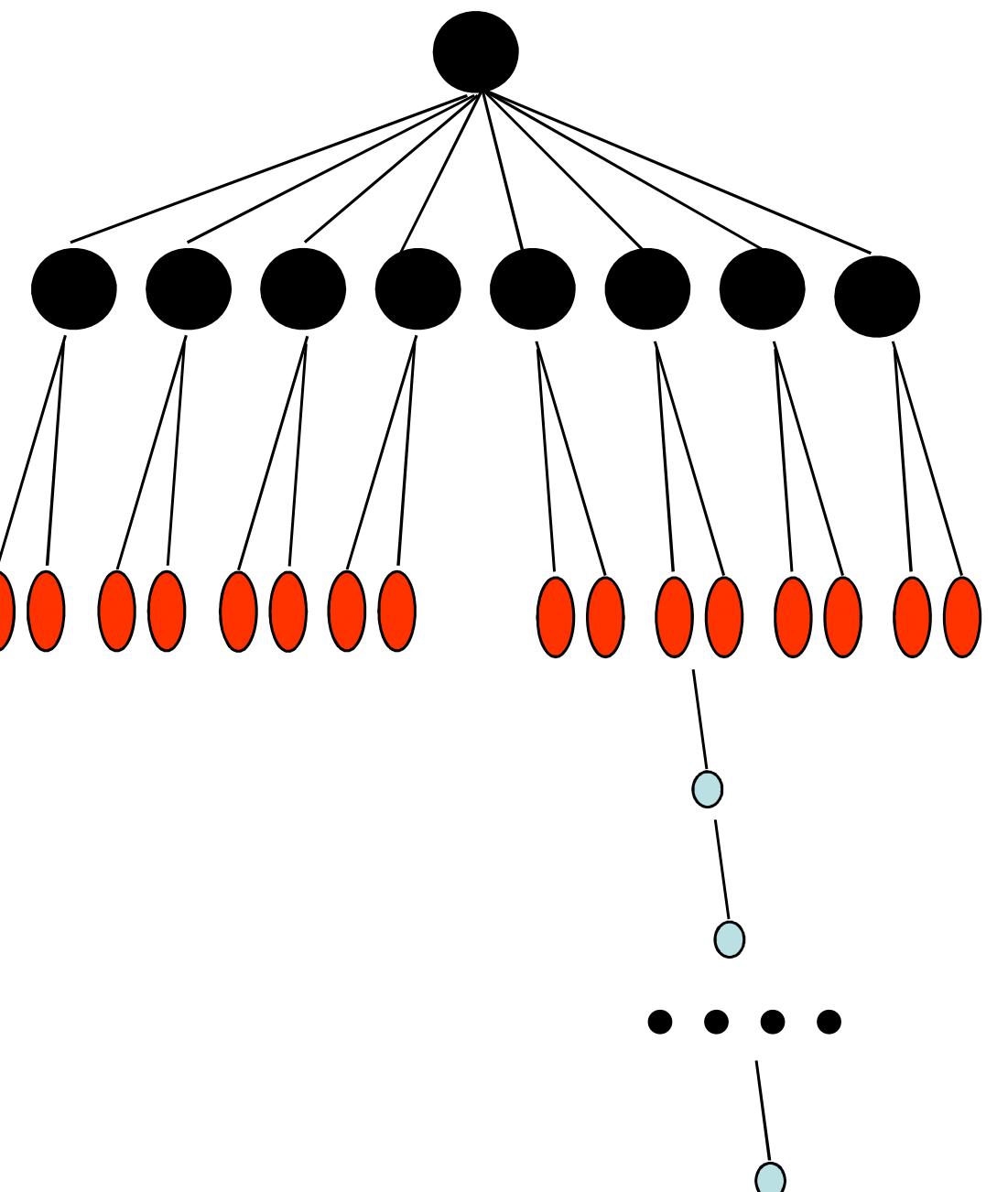
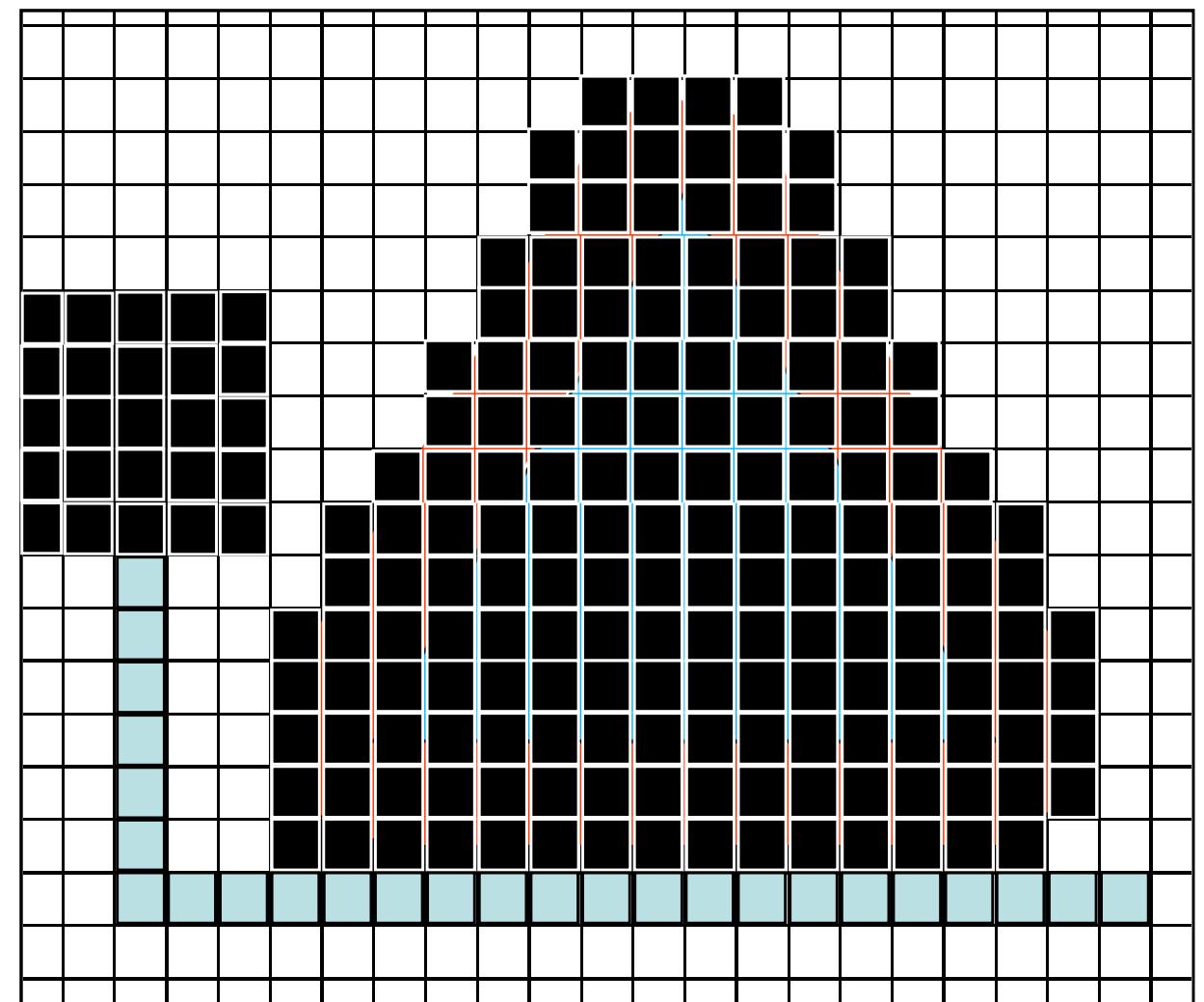
State-space Search Methods

- State-space search amounts to finding a “Path” from the start state to the goal state.
- Optionally this can involve an “objective” function as well: minimize cost or maximize reward



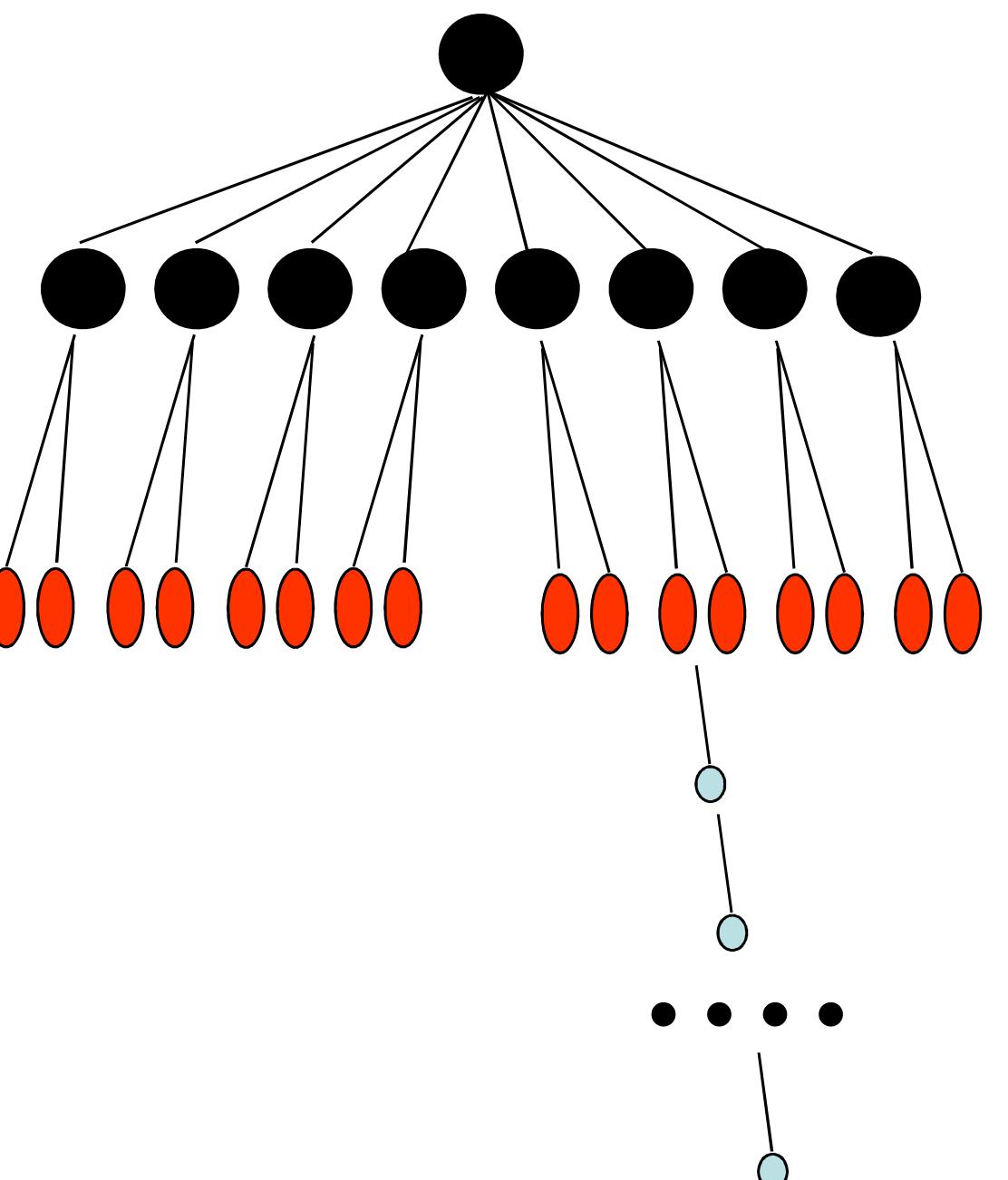
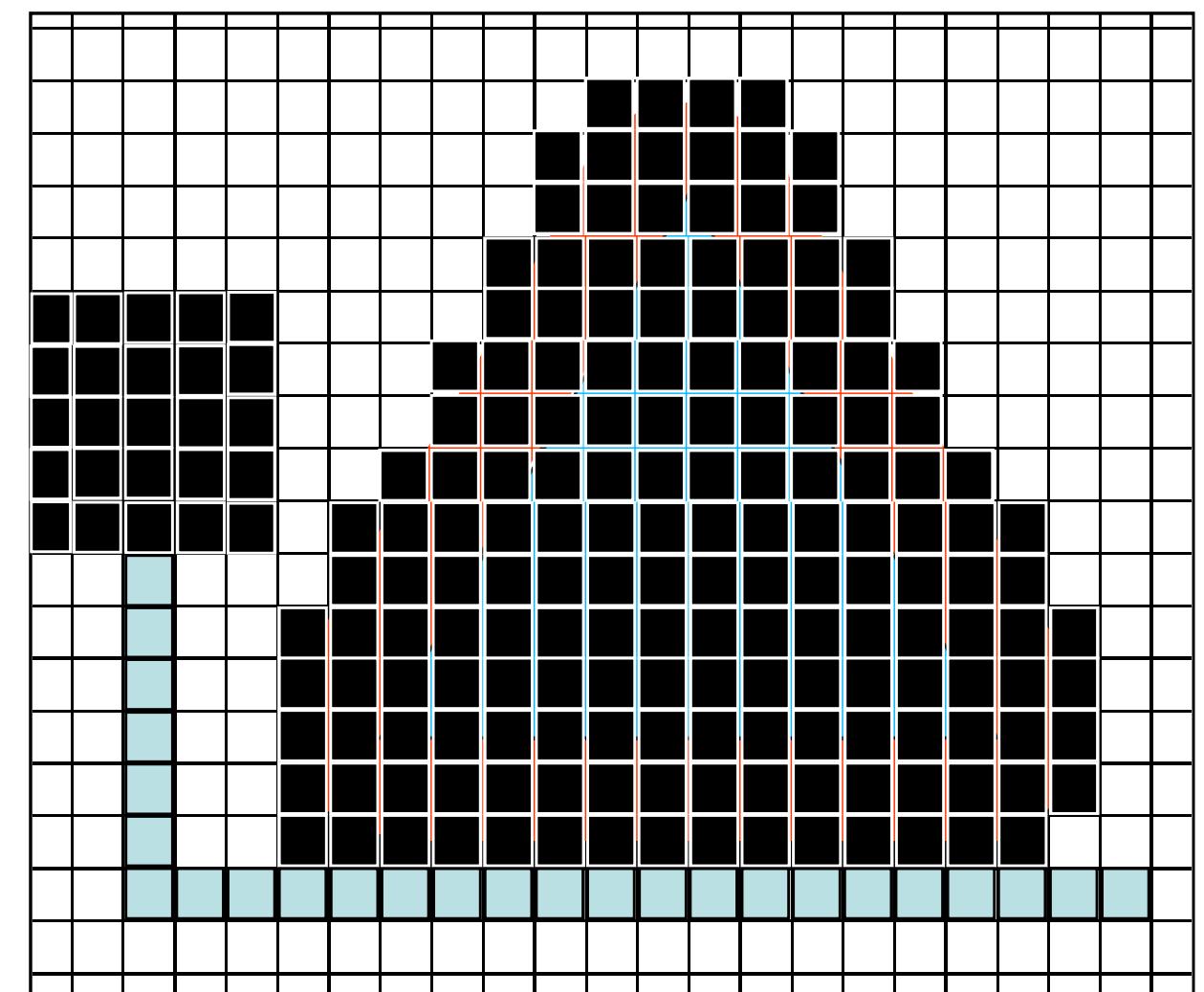
State-space Search Methods

- State-space search amounts to finding a “Path” from the start state to the goal state.
- Optionally this can involve an “objective” function as well: minimize cost or maximize reward



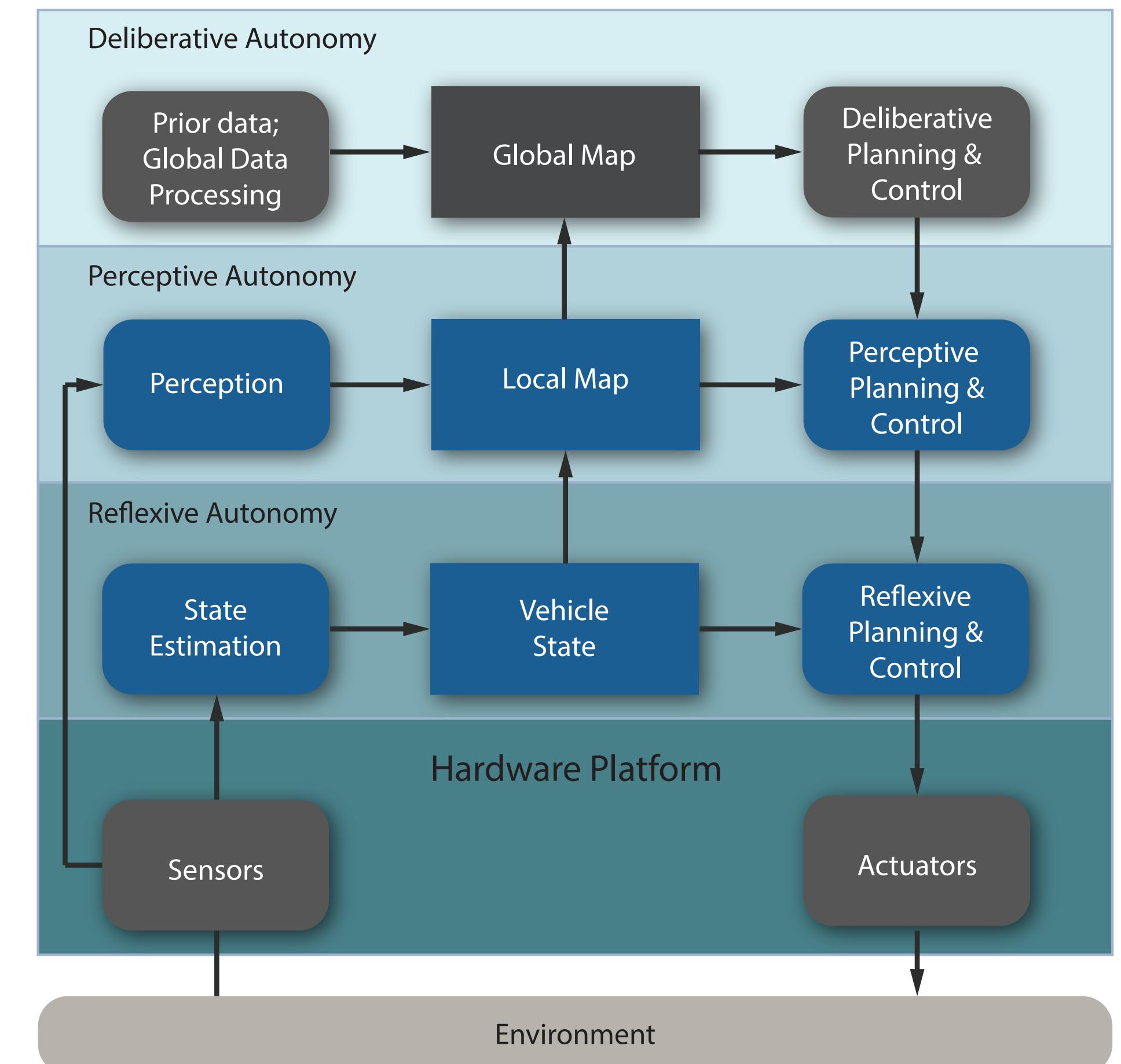
State-space Search Methods

- Which state-action pair to consider next?
 - **Shallowest next (Breadth-first search)**
 - Guarantees shortest path
 - but: storage intensive
 - **Deepest next (Depth-first search)**
 - Can use minimal storage
 - But: no optimality guarantee



Open-loop vs Closed-loop Execution

- **Planning in a static world:** Planning provides state-action pairs to reach a goal, but typically does not provide a means to ensure the state-action pairs succeed in reaching the consecutive state.
- **Closed-loop (low-level) controllers:** A closed-loop controller typically monitors the state of the system to ensure the state transitions are implemented as expected.
- **Planning in a dynamic world:** In many planning problems, the environment is not static - it changes unpredictably as the agent moves in the environment
 - **Policy/control design:** In those cases, we will design policies, as opposed to plans, that govern the entire planning process.



Key Takeaways

- **Autonomy** is at the core of AI: How can computers make decisions in the physical/social world interacting with an environment and/or other (AI/human) agents?
- **Planning** is the ability to find a “path” from a “start” configuration to a “goal” configuration, potentially optimizing an objective.
- **State-space models** allow the representation of (many) planning problems, where planning is reduced to “search” of a sequence of “state-action pairs” starting from a “start state” and reaching a “goal state”.
- **Depth-first search** and **breadth-first search** are two simplest search methods, in principle allows us to solve any planning problem described by a state-space model.

