
Introduction to Autonomy



On Robotics: High-level Broad Functional Differentiation

• Mobile robots 

• Wheeled/flying/
swimming robots 

• Legged robots 

• Manipulation 

• Arms and coarse motion 

• Fingers and fine motion







Self-driving cars

• We believe autonomous driving capabilities will play a 
fundamental role in future urban mobility systems:


• Safety/comfort: provide mobility to people who 
cannot, should not, or prefer not to drive


• Efficiency/throughput: autonomous vehicles can 
coordinate among themselves and with traffic control 
infrastructure to minimize the effects of congestion


• Environment: Autonomous driving can reduce 
emissions as much as 20-50%, and efficiently 
interface with smart power grids and hybrid engines



Towards full autonomy

• Several projects on highway driving: 
Eureka project (Europe, ’87-’95), USDOT 
(US ’91-’97).


• US Congress mandate (’01) “one third of 
ground combat vehicles unmanned by 
2015”


• First DARPA Grand Challenge ’04


• Second DARPA Grand Challenge ’05


• DARPA Urban Challenge ’07



DARPA Grand Challenge (March 2004)

•Mission: 
•Drive 142 miles in less than 10 hours

•Largely open desert and dirt roads


• Incentives: 
•$1M prize for the winner


• Interest: 
•106 teams joined the competition.


•Results: 
•Within a few hours after the start, all 
vehicles had critical failures.

•No vehicle went further than 7 miles.



DARPA Grand Challenge, Take 2 (October 2005)

• Mission: Drive 132 miles in less than 10 hours


• 195 teams participated, 5 vehicles finished, Stanford won the prize.



The DARPA Urban Challenge (November 2007)

• Urban challenge designed to  be much harder than DGC I and II 

• Urban course, with traffic (~70 vehicles)


• 60 miles in 6 hours


• Rules of the road (intersections, lanes, passing,  
merging into traffic)


• Uncertain due to human and robotic vehicle traffic


• Various maneuvers (parking, U-turns)


• $2M for the winner


• 89 teams entered the race


• MIT’s first serious entry



The Rules

• Route Network Definition File (RNDF)


• What the road network looks like


• Accurate, but incomplete


• Given 24 hours before the race


• Mission Definition File (MDF)


• Ordered waypoints to hit


• Given 5 minutes before the race

RNDF MDF



MIT’s Team

• MIT Faculty, postdocs, students 
• Operating software, sensor/computer 
selection, configuration


• 8 full time graduate students

• Draper Labs 

• System engineering, vehicle integration, test/
logistics support


• Olin Collage of Engineering 
• Vehicle engineering



MIT’s Vehicle

•Land Rover LR3

•EMC drive by wire

•Sensors:

•5 cameras 

•16 radars

•12 planar laser scanners

•3D laser scanner 

•GPS/IMU


•Computational power:

•40 CPU cores

•40 GB RAM


•6KW internally-mounted generator

•2KW auxiliary air conditioner



Velodyne

• 64 laser scanners on a vertical plane;  
rotates 15Hz to provide a 3D view.


• Main sensory equipment for all finishers.


• Used by the Google car as the primary sensor



Planar Laser Scanners

• Planar laser scan, ~50m range


• 7 on skirts (obstales), 5 on pushbrooms (ground)



Radars

• Range, bearing, closing rate


• Narrow field of view (16 to cover 288 degrees)


• Very long range (~150m)



Cameras

• 720x480 @ 22.8 fps


• 5 cameras for lane detection



GPS / IMU / Wheel Odometry

GPS

Odometry

IMU
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Perception systems

• Obstacle Detection/Tracking 

• Laser-based


• Radar-based


• Hazards and Road-Edge Detection 

• Hazards = bad but traversable


• Tend to appear at road-edges


• Lane Estimation 

• Road paint detection


• Curve fitting


• Lane estimation



Velodyne frontend



Planar LiDAR front end



Finding road edges

• Opted for simple algorithms: 



Finding the lanes

• Used computer vision

Horizontal filter





Software architecture

Perception 

Navigator 
MDF 

Goal 

Trajectory 

Steer, gas/brake 

 
 

Drivable surface, 
 Lane markings, 
Obstacles, and 
Vehicle Tracks 

Local map 

Grid Map 
Motion 
Planner 

Vehicle 
Controller 

Vehicle 

Vehicle State 
Estimator 

Sensors Sensors Sensors Sensors Sensors Sensors Sensors RNDF 

Progress 



Navigator

Navigator

Motion Planner

Controller

Goal Progress

Trajectory

Steer, pedals

A* Algorithm for Navigating through the Road Network
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Navigator

Navigator

Motion Planner

Controller

Goal Progress

Trajectory

Steer, pedals

How can we program the navigator?



Navigator
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Task and Motion Planning Interaction
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Results
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What do robots do exactly?

• Robots can be “defined” by the sensing-computation-actuation pipeline.


• Simple computation: Reflexive control 

• Most often a direct mapping from sensor data into actuation.

Computation

Sensors Actuators

Environment

Hardware Platform

Jelly fish nerve net

React

• The tunicate (sea squirt) has an extreme life 
cycle: 

• Starts out mobile, with a primitive eye and a 
nervous cord


• Then, settles to a good spot, and digests its 
own brain once stationary.


• Many scientists believe nervous systems 
evolved to satisfied the need to be mobile. 



What do robots do exactly?

• Horizontal breakdown of computation:  

• Perception and State Estimation: Process the data to understand the 
environment and the state of the robot


• Planning and Control: Given an understanding of the robot and its 
surroundings, make decisions to move the robot to accomplish the task

Human nervous system

Earthworm nervous system Computation

Sensors Actuators

Environment

Hardware Platform



What do robots do exactly?

• The vertical breakdown for computation: 


• Most robotic systems rely on a three-layer software architecture.


• The there layers can roughly be divided according to spatial- and temporal-
scales.


• The scales depend on the size/weight/task of the robot. 
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Planning and Reasoning



Self-driving Cars

• Can you write down a simple state 
representation for the  self-driving car?  

• What are key considerations? 

• What makes this state representative?  

• What are your underlying assumptions? 

• How would these change for other similar 
examples: 

• Planetary rover  

• Delivery drones



Warehouse order packing 

• Can you write down a simple state 
representation for the warehouse packing?  

• What are key considerations? 

• What makes this state representative?  

• What are your underlying assumptions? 

• How would these change for other similar 
examples: 

• Planetary rover  

• Delivery drones
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On State Space Modeling

• State-state models involve: 

• Sates 

• Actions  

• Transition function 

• Planning problems involve:  

• State-space model  

• Start state 

• Goal state 

• (Optional) cost/reward function
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On The Representational Power of State-space Models

• State-state models can represent numerous 
elements of a problem by encoding it into the 
state, action and transition function: 

• Obstacles 

• Deadlines 

• Coordination  

• …
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On Composing State-space Models

• State-state models for 
multiple entities can be 
composed to induce 
multi-system behavior:  

• States of composed 
model: Tuples of states  

• Actins of composed 
model: Tuples of actions 

• Transition function of 
composed model: 
Combines both entities 
taking actions at the 
same time
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Representing State Space Models in Code

• Use lists or dictionaries to 
represent states 

• Use functions to represent 
transition functions 

states = [1, 2, 3, 4, 5, 6, 7, 8, 9]

actions = ["left", "right", "up", "down"] 

def transition(state, action):



Representing State Space Models in Code

• Use lists or dictionaries to 
represent states 

• Use functions to represent 
transition functions 

def transition(state, action):
Try all combinations?



Representing State Space Models in Code

def transition(state, action): 
    # Define grid dimensions 
    grid = [ 
        [1, 2, 3], 
        [4, 5, 6], 
        [7, 8, 9] 
    ] 
     
    # Map state to (row, col) 
    for row in range(3): 
        for col in range(3): 
            if grid[row][col] == state: 
                r, c = row, col 
                break 
        else: 
            continue 
        break 
    else: 
        return None  # state not found 

    # Compute new position based on action 
    if action == "up": 
        r -= 1 
    elif action == "down": 
        r += 1 
    elif action == "left": 
        c -= 1 
    elif action == "right": 
        c += 1 
    else: 
        return None  # Invalid action 

    # Check bounds 
    if 0 <= r < 3 and 0 <= c < 3: 
        return grid[r][c] 
    else: 
        return None  # Action not valid from this state 



State-space Search Methods

• State-space search amounts 
to finding a “Path” from the 
start state to the goal state.  

• Optionally this can involve 
an “objective” function as 
well: minimize cost or 
maximize reward

10

Planning in Discrete State Space 
• Cartesian space

• Actions take robot from
one state to another

• Objective: find a minimum-cost path
from the start state to the goal state

Planning as Tree Search
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Planning as Tree Search

… How can such searching be made effective and efficient?

Move Generation
• Which state-action pair to consider next?
• Shallowest next

– Aka: Breadth-first search
– Guarantees shortest path
– But: storage-intensive

• Deepest next
– Aka: Depth-first search
– Can use minimal storage
– But: no optimality guarantee



State-space Search Methods

• Which state-action pair to consider next?


• Shallowest next (Breadth-first search) 

• Guarantees shortest path


• but: storage intensive


• Deepest next (Depth-first search) 

• Can use minimal storage


• But: no optimality guarantee
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Open-loop vs Closed-loop Execution
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• Planning in a static world: Planning provides state-
action pairs to reach a goal, but typically does not 
provide a means to ensure the state-action pairs 
succeed in reaching the consecutive state.  

• Closed-loop (low-level) controllers: A closed-
loop controller typically monitors the state of the 
system to ensure the state transitions are 
implemented as expected. 

• Planning in a dynamic world: In many planning 
problems, the environment is not static - it changes 
unpredictably as the agent moves in the environment 

• Policy/control design: In those cases, we will 
design policies, as opposed to plans, that govern 
the entire planning process.



Key Takeaways
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• Autonomy is at the core of AI: How can computers make decisions 
in the physical/social world interacting with an environment and/or 
other (AI/human) agents?  

• Planning is the ability to find a “path” from a “start” configuration to 
a “goal” configuration, potentially optimizing an objective. 

• State-space models allow the representation of (many) planning 
problems, where planning is reduced to “search” of a sequence of 
“state-action pairs” starting from a “start state” and reaching a “goal 
state”. 

• Depth-first search and breadth-first search are two simplest 
search methods, in principle allows us to solve any planning 
problem described by a state-space model. 


