Introduction to Autonomy

On Robotics: High-level Broad Functional Differentiation

e Mobile robots

e Wheeled/flying/
swimming robots

* | egged robots

e Manipulation
e Arms and coarse motion

* Fingers and fine motion

" nﬁil.iza«;.;.- ks

B --:m-,;."_ Ay

Self-driving cars

» We believe autonomous driving capabilities will play a
fundamental role in future urban mobility systems:

- Safety/comfort: provide mobility to people who
cannot, should not, or prefer not to drive

- Efficiency/throughput: autonomous vehicles can
coordinate among themselves and with traffic control
infrastructure to minimize the effects of congestion

- Environment: Autonomous driving can reduce
emissions as much as 20-50%, and efficiently
interface with smart power grids and hybrid engines

Towards full autonomy

« Several projects on highway driving:
Eureka project (Europe, '87-95), USDOT
(US ’91-'97).

- US Congress mandate ('01) “one third of

ground combat vehicles unmanned by
2015”

 First DARPA Grand Challenge '04
- Second DARPA Grand Challenge ‘05
- DARPA Urban Challenge 07

DARPA Grand Challenge (March 2004)

» Mission:
* Drive 142 miles in less than 10 hours
» Largely open desert and dirt roads
* Incentives:
* $1M prize for the winner
* Interest:
» 106 teams joined the competition.
* Results:

* Within a few hours after the start, all
vehicles had critical failures.

* No vehicle went further than 7 miles.

DARPA Grand Challenge, Take 2

October 2005

« Mission: Drive 132 miles in less than 10 hours

- 195 teams participated, 5 vehicles finished, Stanford won the prize.

2005 Grand Challenge Results

STATUS BOARD
Final Results as of 10/9/2005

ID TEAM TIME
3 Stanford Racing Team
9 Red Team
Red Team Too
Gray Team
1 Team TerraMax
B Team ENSCO DNF
Axion Racing ONF
} Virginia Tech Grand Challenge DNF
y Virginia Tech Team Rocky DNF

vesert Buckeyes ONF

N J
e
o N

£

Qo 9O O

Team DAD (Diaital Auto Drive DNF

~N

W U

nsight Racing DNF

1 Molavaton DNF

NN
N

B The Golem Group / UCLA DNF

Qo O

—
-

Team CajunBot DNF

SciAutonics/Audurn Engineer DNF

Qo O

ntelhagent Vehicle Saftety Tec! DNF
I CIMAR DNF

-t wud

O W a v
o O Y N A O

> O ©

1 Princeton University DNF

Team Cornell DNF

e O
) © ¥
4

Team Caltech DNF
MonsterMoto ONF
The MITRE Meteorites DNF

\ 2004 Distance

~N
w O O

O ~

Narrow Underpass

CLE st

Lake Beds

Narrow Gates

Close Obstacles

7

The DARPA Urban Challenge (November 2007)

- Urban challenge designed to be much harder than DGC | and li
- Urban course, with traffic (~70 vehicles)

« 60 miles in 6 hours

 Rules of the road (intersections, lanes, passing,
merging into traffic)

« Uncertain due to human and robotic vehicle traffic
- Various maneuvers (parking, U-turns)

« $2M for the winner

« 89 teams entered the race

* MIT’s first serious entry

The Rules

« Route Network Definition File (RNDF)
- What the road network looks like
- Accurate, but incomplete

« GGiven 24 hours before the race

» Mission Definition File (MDF)
» Ordered waypoints to hit

« Given 5 minutes before the race

s Waypoint

Lane
Zone

Stop Sign ~TE |+ |*Note: The southern 6
3 waypoints in the Parking

O et Lot (Zone 14) are
(©) Checkpoint ID Checkpoints (12)= (17

MIT’s Team

* MIT Faculty, postdocs, students

- Operating software, sensor/computer
selection, configuration

- 8 full time graduate students
- Draper Labs

» System engineering, vehicle integration, test/
logistics support

* Olin Collage of Engineering

* Vehicle engineering

B Em Massachusett I] MITMECHE MIT <77]
I Institute of = Lincoln i t g
HIT = 1 Lincoln Mosieve] Acumentrics

Technology Quanta Computer

- e ovanced - APPLANIX — INOKIA
DeLPHI 15T 20 Technoiops a £"””"”’T§ TS BT (onnecting People

MIT’s Vehicle

* Land Rover LR3
* EMC drive by wire
« Sensors:

* 5 cameras

* 16 radars

» 12 planar laser scanners
* 3D laser scanner

- GPS/IMU

- Computational power:

« 40 CPU cores
40 GB RAM

* 6KW internally-mounted generator
« 2KW auxiliary air conditioner

Velodyne

* 64 laser scanners on a vertical plane;
rotates 15Hz to provide a 3D view.

» Main sensory equipment for all finishers.

» Used by the Google car as the primary sensor

Planar Laser Scanners

 Planar laser scan, ~50m range

» 7 on skirts (obstales), 5 on pushbrooms (ground)

!

- o
=
w
¥ o - d -
. & N O

o

adl L7

Quanfa Computer

Y
, b =/

L e

Radars

» Range, bearing, closing rate

/ ﬁ Quanfa Computer

- J —

oot

- Narrow field of view (16 to cover 288 degrees)

 Very long range (~150m)

- |
o
-, <

Cameras

. 720x480 @ 22.8 fps

« 5 cameras for lane detection

GPS / IMU / Wheel Odometry

MU

Software architecture

or_
Navigator
J - |
W l[| Sensors
Goall I Progress / L/#/
Motion | .
<4»| Grid Map [€¥»| Perception
Planner
Drivable surface,
Trajectory Lane markings, T
\ 4 Obstacles, and
: Vehicle Tracks _
Vehicle < Vehicle State
Controller Estimator

Steer, gas/brake

Perception systems

- Obstacle Detection/Tracking

« |Laser-based

* Radar-based planar point BD point Points with
XX louds \& louds closing rates 7
- Hazards and Road-Edge Detection Sick Front-end Mgl Data
Front-end .
association
- Hazards = bad but traversable
Off-ground
int detecti
- Tend to appear at road-edges Sl s @ 7
Spatial clustering Least-squares
trajectory
. . T estimation
- Lane Estimation ;:> Temporal Association A
- Road paint detection
. " V V7
Curve flttmg Stationary objects Velocity tracks

| ane estimation

Velodyne frontend

A tree,

perhaps O 5
o O
O

Ground Estimate
(10t percentile)

/OV
E{neous /

long ranges

Towards
Underpass

One Grid Cell Interpolated ground detections, colored by height

Planar LIDAR front end

» Given planar scans, extract those that are not the ground.
* Problem: Obstacles and hills look the same

Obstacle

Just a hill...

» Solution: Use multiple scanners at different heights
— Implemented using occupancy grid with sensor ids

Obstacle Just a hill...

b - - ————————————

Sensors agree -> Sensors disagree =
sharp vertical feature not an obstacle

FINnding road edges

o Opted for Simple algOritth: . 7877 0h25Sm18s, 4..?_0 mi @ 11.1 mph, 21 checkpoints, Failsafe 0 time 0.12 log: 02

Oh2Bm25s, 4.96 mi @ 11.3 mph, 21 checkpoints, Failsafe 0 time 0.25 log: 02

R

0h26m25s, 4.96 mi @ 11.3 mph, 21 checkpoints, Failsafe 0 time 0.25 log: 02

FINding the lanes

» Used computer vision

Horizontal filter

Software architecture

or_
Navigator
J - |
W l[| Sensors
Goall I Progress / L/#/
Motion | .
<4»| Grid Map [€¥»| Perception
Planner
Drivable surface,
Trajectory Lane markings, T
\ 4 Obstacles, and
: Vehicle Tracks _
Vehicle < Vehicle State
Controller Estimator

Steer, gas/brake

Navigator

Navigator

Goal l I Progress

Motion Planner

Trajectory l

Controller

Steer, pedals

A* Algorithm for Navigating through the Road Network

20 remgining

0.00 mfs

RNDF “network” MDF “mission”

Navigator

Navigator

Navigator

|
Goal l I Progress |

Motion Planner

— I —

How can we program the navigator?

Trajectory l

Controller

Steer, pedals

Navigator

Task and Motion Planning Interaction

svn: fo77 Oh0Om13s, 0.0Z2 mi @ 3.6 mph, 256 checkpoints, Failsafe 0 time 0.25 log: 02

1

Navigator i bl iz

Goal l I Progress
|

| Motion Planner

— e ——

Trajectory l

Controller

Steer, pedals

Navigator

_— Rapidly-exploring Random Tree (RRT) for Motion Planning

Oh07m54s, 054 mi @ 7.1 mph, S chackpoints, Fallsata 0 4ime 1.2¢

Navigator
' Divider {=
Goal l I Progress | infeasible Obstacle
P» % \ infeasible
| Motion Planner / /.
\8
| /
Trajectory l Road
infeasible
Controller
Car

Steer, pedals

Navigator

Navigator

Goal l I Progress

Motion Planner

Trajectory l

Controller

Steer, pedals

—_— e —

Rapidly-exploring Random Tree (RRT) for Motion Planning

Oh07m54s, 054 mi @ 7.1 mph, S chackpoints, Fallsata 0 4ime 1.2¢

Steering
command

\

1
1
d
1
1

@® Control point
O Look-ahead Point

Results

Oh07m54s, 054 mi @ 7.1 mph, 9 chackpoints, Fallsate 0 4ims .22,

20 remgining

0.00 mis

FAaUSE

OPTIMUS

RIDE

svh: 7877 Th12mebs, 13.27 mi @ 11.0 mph, 1 checkpoint, Failsafe 0 time 2.38 log: 03
gt

DARPA Challenge
(2007)

SV

— -
g
)
'

677 Th1Z2ma3as, 13.26 mi @ 11.0 mph, 1 checkpoint, Failsafe 0 time
‘ . -

D

DARPA Challenge
(2007)

DARPA Challenge
(2007)

What do robots do exactly?

- Robots can be “defined” by the sensing-computation-actuation pipeline.

- Simple computation: Reflexive control

« Most often a direct mapping from sensor data into actuation.

React

Computation

Sensors

Jelly fish nerve net

Environment

Actuators

- The tunicate (sea squirt) has an extreme life
cycle:

- Starts out mobile, with a primitive eye and a
nervous cord

« Then, settles to a good spot, and digests its
own brain once stationary.

e Many scientists believe nervous systems
evolved to satisfied the need to be mobile.

Future
Endostyle Mouth | Ocallus

What do robots do exactly?

- Horizontal breakdown of computation:

- Perception and State Estimation: Process the data to understand the
environment and the state of the robot

 Planning and Control: Given an understanding of the robot and its
surroundings, make decisions to move the robot to accomplish the task

Supraasophasnl

Commissure Ganglia ord
Brai (i\ /X;
§
A

Earthworm nervous system

Computation

= Human nervous system Sensors Actuators

Environment

What do robots do exactly?

- The vertical breakdown for computation:

« Most robotic systems rely on a three-layer software architecture. Deliberative Autonomy

* The there layers can roughly be divided according to spatial- and temporal- PO, Deliberative

scales. Global Data Global Map Planning &
Processing Control

* The scales depend on the size/weight/task of the robot.

Perceptive Autonomy

Perceptive
Local Map

Brain o
Perception Planning &
- Control
Supraasoplngnl

Commissure

Ganglia ord
Brai (i};\ &
A
State Vehicle

Earthworm nervous system >tate
Estimation State

Reflexive
Planning &
Control

= Human nervous system Sensors Actuators

Environment

Planning and Reasoning

Self-driving Cars

e Can you write down a simple state
representation for the selt-driving car?

e \What are key considerations?
e \What makes this state representative?

e \What are your underlying assumptions?

e How would these change for other similar
examples:

* Planetary rover

® Delivery drones

Warehouse order packing

e Can you write down a simp
representation for the ware

e state

nouse packing?

e \What are key considerations?

e \What makes this state representative?

e \What are your underlying assumptions?

e How would these change for other similar

examples:
* Planetary rover

® Delivery drones

On State Space Modeling

o State-state models involve:
e Sates
e Actions

e Transition function

e Planning problems involve:
e State-space model
e Start state

e Goal state

* (Optional) cost/reward function

On The Representational Power of State-space Models

o State-state models can represent numerous
elements of a problem by encoding it into the
state, action and transition function:

e Obstacles
e Deadlines

e Coordination

On Composing State-space Models

e State-state models for
multiple entities can be
composed to induce

multi-system behavior: ° a
e States of composed G

model: Tuples of states X
e Actins of composed

model: Tuples of actions

e Transition function of
composed model: °
Combines both entities ‘
taking actions at the
same time

Representing State Space Models in Code

e Use lists or dictionaries to

represent states states = [1, 2, 3, 4, 5, 6, 7, 8, 9]

e Use functions to represent
transition functions

actions = ["left", "right", "up", "down"]

def transition(state, action):

Representing State Space Models in Code

e Use lists or dictionaries to
represent states

e Use functions to represent
transition functions

def transition(state, action):

Iry all combinations?

Representing State Space Models in Code

def transition(state, action):

Defl d di | iti |
efine grid dimensions # Compute new position based on action

grld — [' : I ",
103 |farct|£>n__ up™:
4’ 5! 6) . __' o i1 |
7.8.9 ehfrafﬂcqn == "down":
| elif action == "left":
C-=1
Map state to (row, col) elif action == "right"
for row in range(3): o
for col in range(3): -
else:

if grid[row][col] == state:

return None # Invalid action
r, C = row, col

else: reak # Check bounds
C(.)ntinue TO<=r<3and 0O <=cCc < 3:
break return grid|r][c]

else:

else: return None # Action not valid from this state

return None # state not found

State-space Search Methods

e State-space search amounts
to finding a "Path” from the

start state to the goal state. O CEmEE_
EEEEEE
EEEEEEER
ENEEEEEN
| | | EEEEEEEEEN
e Optionally this can involve IR EEREE RS
RPN - EEEENENEEEEEE
an “objective” tfunction as EENNEENEENEEE
well: minimize cost or HHHHHHHHHH
o AEEEENENEEEEEE
maximize reward T

State-space Search Methods

e State-space search amounts
to finding a “Path” from the

start state to the goal state. EEEN
EEEEEN
ENEEEE
EEEEEEES
ENEEEEEN
EREEEEEEE
e Optionally this can involve EEEEEEEEEEER
yoLe . NN
an objectlve function as il==============
well: minimize cost or e
. EEEEEEEEEENEEEE
maximize reward EEENEEENEEEEEER

HEEN

to finding a "Path” from the
start state to the goal state.

State-space Search Methods

e State-space search amounts

eS

= ©

O

> O
.m.Mo
nmﬁ
O @)
Cr_MCAru
LA ea
c o N S
+~ > ‘=~ O
2.2 g &
”C.me
m.e.l.i
6 9 E E
B = X
pﬂea
O © 2 &
o

““mﬁmmmmmmmmﬁ

HEEEE
EEEEN
HEEEE
HEEEE

‘\-
N‘ ” 0

e

4‘
'4‘
‘4‘
'4‘
(7p)
O
——
-
)
—— 8o
O cC 9 v
b S5 = m© = ©
a O + O
& w -
m > -
O c O ®© .m.MO
D c = 0 c O 1
CWug © £ 0 1o
D O n = ©
a - 0O ._Lm.le
S © & -5 € “
@ 128 T 8EQ
O S © o= =
O 2T 5 0 € €
P N S O O @ =2 &
/) o o

State-space Search Methods

- Which state-action pair to consider next?

EEEEEE

sEEEEEE

EEEN

EEEEN

- Shallowest next (Breadth-first search)

« Guarantees shortest path

* but: storage intensive

‘k-

N‘
k- —©
-

e __ 0O
_O o

4‘
’4‘
‘%‘
‘4‘

- Deepest next (Depth-first search)
Can use minimal storage
- But: no optimality guarantee

Open-loop vs Closed-loop Execution

e Planning in a static world: Planning provides state-

action pairs to reach a goal, but typically does not Deliberative Autonomy
provide a means to ensure the state-action pairs Prior data; Deliberative
. . . Global Dat Global Ma Planning &
succeed in reaching the consecutive state. ESe—— ° Control
e Closed-loop (low-level) controllers: A closed- Perceptive Autonomy
loop controller typically monitors the state of the . Perceptive
- P ti ocal Map :
system to ensure the state transitions are I SR . . AR S
implemented as expected.
State Vehicle PTae:r?in: \g/e&
e Planning in a dynamic world: In many planning Estimation otate e,

problems, the environment is not static - it changes
unpredictably as the agent moves in the environment

Actuators

e Policy/control design: In those cases, we will Sensors
design policies, as opposed to plans, that govern
the entire planning process.

Environment

Key Takeaways

e Autonomy is at the core of Al: How can computers make decisions
in the physical/social world interacting with an environment and/or Deliberative Autonomy

other (Al/human) agents? Prior data; Deliberative
Global Data Global Map Planning &

Processing Control

Perceptive Autonomy

e Planning is the ability to find a “path” from a “start” configuration to
a “goal” configuration, potentially optimizing an objective. Perception Local Map

Perceptive

Planning &
I . . Control

e State-space models allow the representation of (many) planning
problems, where planning is reduced to “search” of a sequence of
“state-action pairs” starting from a “start state” and reaching a “goal
state”.

Reflexive
Planning &
Control

State Vehicle
Estimation State

e Depth-first search and breadth-first search are two simplest oo Aetuators
search methods, in principle allows us to solve any planning
problem described by a state-space model.

Environment

