
Introduction to Autonomy

On Robotics: High-level Broad Functional Differentiation

• Mobile robots

• Wheeled/flying/
swimming robots

• Legged robots

• Manipulation

• Arms and coarse motion

• Fingers and fine motion

Self-driving cars

• We believe autonomous driving capabilities will play a
fundamental role in future urban mobility systems:

• Safety/comfort: provide mobility to people who
cannot, should not, or prefer not to drive

• Efficiency/throughput: autonomous vehicles can
coordinate among themselves and with traffic control
infrastructure to minimize the effects of congestion

• Environment: Autonomous driving can reduce
emissions as much as 20-50%, and efficiently
interface with smart power grids and hybrid engines

Towards full autonomy

• Several projects on highway driving:
Eureka project (Europe, ’87-’95), USDOT
(US ’91-’97).

• US Congress mandate (’01) “one third of
ground combat vehicles unmanned by
2015”

• First DARPA Grand Challenge ’04

• Second DARPA Grand Challenge ’05

• DARPA Urban Challenge ’07

DARPA Grand Challenge (March 2004)

•Mission:
•Drive 142 miles in less than 10 hours

•Largely open desert and dirt roads

• Incentives:
•$1M prize for the winner

• Interest:
•106 teams joined the competition.

•Results:
•Within a few hours after the start, all
vehicles had critical failures.

•No vehicle went further than 7 miles.

DARPA Grand Challenge, Take 2 (October 2005)

• Mission: Drive 132 miles in less than 10 hours

• 195 teams participated, 5 vehicles finished, Stanford won the prize.

The DARPA Urban Challenge (November 2007)

• Urban challenge designed to be much harder than DGC I and II

• Urban course, with traffic (~70 vehicles)

• 60 miles in 6 hours

• Rules of the road (intersections, lanes, passing,  
merging into traffic)

• Uncertain due to human and robotic vehicle traffic

• Various maneuvers (parking, U-turns)

• $2M for the winner

• 89 teams entered the race

• MIT’s first serious entry

The Rules

• Route Network Definition File (RNDF)

• What the road network looks like

• Accurate, but incomplete

• Given 24 hours before the race

• Mission Definition File (MDF)

• Ordered waypoints to hit

• Given 5 minutes before the race

RNDF MDF

MIT’s Team

• MIT Faculty, postdocs, students
• Operating software, sensor/computer
selection, configuration

• 8 full time graduate students

• Draper Labs

• System engineering, vehicle integration, test/
logistics support

• Olin Collage of Engineering
• Vehicle engineering

MIT’s Vehicle

•Land Rover LR3

•EMC drive by wire

•Sensors:

•5 cameras

•16 radars

•12 planar laser scanners

•3D laser scanner

•GPS/IMU

•Computational power:

•40 CPU cores

•40 GB RAM

•6KW internally-mounted generator

•2KW auxiliary air conditioner

Velodyne

• 64 laser scanners on a vertical plane;  
rotates 15Hz to provide a 3D view.

• Main sensory equipment for all finishers.

• Used by the Google car as the primary sensor

Planar Laser Scanners

• Planar laser scan, ~50m range

• 7 on skirts (obstales), 5 on pushbrooms (ground)

Radars

• Range, bearing, closing rate

• Narrow field of view (16 to cover 288 degrees)

• Very long range (~150m)

Cameras

• 720x480 @ 22.8 fps

• 5 cameras for lane detection

GPS / IMU / Wheel Odometry

GPS

Odometry

IMU

Software architecture

Perception

Navigator
MDF

Goal

Trajectory

Steer, gas/brake

Drivable surface,
 Lane markings,
Obstacles, and
Vehicle Tracks

Local map

Grid Map
Motion
Planner

Vehicle
Controller

Vehicle

Vehicle State
Estimator

Sensors Sensors Sensors Sensors Sensors Sensors Sensors RNDF

Progress

Perception systems

• Obstacle Detection/Tracking

• Laser-based

• Radar-based

• Hazards and Road-Edge Detection

• Hazards = bad but traversable

• Tend to appear at road-edges

• Lane Estimation

• Road paint detection

• Curve fitting

• Lane estimation

Velodyne frontend

Planar LiDAR front end

Finding road edges

• Opted for simple algorithms:

Finding the lanes

• Used computer vision

Horizontal filter

Software architecture

Perception

Navigator
MDF

Goal

Trajectory

Steer, gas/brake

Drivable surface,
 Lane markings,
Obstacles, and
Vehicle Tracks

Local map

Grid Map
Motion
Planner

Vehicle
Controller

Vehicle

Vehicle State
Estimator

Sensors Sensors Sensors Sensors Sensors Sensors Sensors RNDF

Progress

Navigator

Navigator

Motion Planner

Controller

Goal Progress

Trajectory

Steer, pedals

A* Algorithm for Navigating through the Road Network

1

2

3T

T
T

T T

T
T

TTT

T
T

T
TT

RNDF “network” MDF “mission”

Navigator

T T

T

T
T

T T

T
T

TTT

T
T

T
TT

13

17

21

1

2

3

13

17

21

Navigator

Navigator

Motion Planner

Controller

Goal Progress

Trajectory

Steer, pedals

How can we program the navigator?

Navigator

Navigator

Motion Planner

Controller

Goal Progress

Trajectory

Steer, pedals

Task and Motion Planning Interaction

Navigator

Navigator

Motion Planner

Controller

Goal Progress

Trajectory

Steer, pedals

Rapidly-exploring Random Tree (RRT) for Motion Planning

Obstacle  
infeasible

Ty

Road  
infeasible

Ty

T

Car

Ty

Goal

Divider  
infeasible

Navigator

Navigator

Motion Planner

Controller

Goal Progress

Trajectory

Steer, pedals

Rapidly-exploring Random Tree (RRT) for Motion Planning

T Control point

Look-ahead PointT

T

T

T

T

T

d

Steering
command

Results

DARPA Challenge
(2007)

DARPA Challenge
(2007)

DARPA Challenge
(2007)

What do robots do exactly?

• Robots can be “defined” by the sensing-computation-actuation pipeline.

• Simple computation: Reflexive control

• Most often a direct mapping from sensor data into actuation.

Computation

Sensors Actuators

Environment

Hardware Platform

Jelly fish nerve net

React

• The tunicate (sea squirt) has an extreme life
cycle:

• Starts out mobile, with a primitive eye and a
nervous cord

• Then, settles to a good spot, and digests its
own brain once stationary.

• Many scientists believe nervous systems
evolved to satisfied the need to be mobile.

What do robots do exactly?

• Horizontal breakdown of computation:

• Perception and State Estimation: Process the data to understand the
environment and the state of the robot

• Planning and Control: Given an understanding of the robot and its
surroundings, make decisions to move the robot to accomplish the task

Human nervous system

Earthworm nervous system Computation

Sensors Actuators

Environment

Hardware Platform

What do robots do exactly?

• The vertical breakdown for computation:

• Most robotic systems rely on a three-layer software architecture.

• The there layers can roughly be divided according to spatial- and temporal-
scales.

• The scales depend on the size/weight/task of the robot.

Human nervous system

Earthworm nervous system

Perception Local Map
Perceptive
Planning &

Control

State
Estimation

Vehicle
State

Reflexive
Planning &

Control

Sensors Actuators

Prior data;
Global Data
Processing

Deliberative
Planning &

Control

Deliberative Autonomy

Perceptive Autonomy

Reflexive Autonomy

Environment

Hardware Platform

Global Map

Planning and Reasoning

Self-driving Cars

• Can you write down a simple state
representation for the self-driving car?

• What are key considerations?

• What makes this state representative?

• What are your underlying assumptions?

• How would these change for other similar
examples:

• Planetary rover

• Delivery drones

Warehouse order packing

• Can you write down a simple state
representation for the warehouse packing?

• What are key considerations?

• What makes this state representative?

• What are your underlying assumptions?

• How would these change for other similar
examples:

• Planetary rover

• Delivery drones

3

On State Space Modeling

• State-state models involve:

• Sates

• Actions

• Transition function

• Planning problems involve:

• State-space model

• Start state

• Goal state

• (Optional) cost/reward function

1

2

5

4

6

3

On The Representational Power of State-space Models

• State-state models can represent numerous
elements of a problem by encoding it into the
state, action and transition function:

• Obstacles

• Deadlines

• Coordination

• …

1

2

5

4

6

3

On Composing State-space Models

• State-state models for
multiple entities can be
composed to induce
multi-system behavior:

• States of composed
model: Tuples of states

• Actins of composed
model: Tuples of actions

• Transition function of
composed model:
Combines both entities
taking actions at the
same time

1

2

5

4

6

A

B

C

X

Representing State Space Models in Code

• Use lists or dictionaries to
represent states

• Use functions to represent
transition functions

states = [1, 2, 3, 4, 5, 6, 7, 8, 9]

actions = ["left", "right", "up", "down"]

def transition(state, action):

Representing State Space Models in Code

• Use lists or dictionaries to
represent states

• Use functions to represent
transition functions

def transition(state, action):
Try all combinations?

Representing State Space Models in Code

def transition(state, action):
 # Define grid dimensions
 grid = [
 [1, 2, 3],
 [4, 5, 6],
 [7, 8, 9]
]

 # Map state to (row, col)
 for row in range(3):
 for col in range(3):
 if grid[row][col] == state:
 r, c = row, col
 break
 else:
 continue
 break
 else:
 return None # state not found

 # Compute new position based on action
 if action == "up":
 r -= 1
 elif action == "down":
 r += 1
 elif action == "left":
 c -= 1
 elif action == "right":
 c += 1
 else:
 return None # Invalid action

 # Check bounds
 if 0 <= r < 3 and 0 <= c < 3:
 return grid[r][c]
 else:
 return None # Action not valid from this state

State-space Search Methods

• State-space search amounts
to finding a “Path” from the
start state to the goal state.

• Optionally this can involve
an “objective” function as
well: minimize cost or
maximize reward

10

Planning in Discrete State Space
• Cartesian space

• Actions take robot from
one state to another

• Objective: find a minimum-cost path
from the start state to the goal state

Planning as Tree Search

State-space Search Methods

• State-space search amounts
to finding a “Path” from the
start state to the goal state.

• Optionally this can involve
an “objective” function as
well: minimize cost or
maximize reward

10

Planning in Discrete State Space
• Cartesian space

• Actions take robot from
one state to another

• Objective: find a minimum-cost path
from the start state to the goal state

Planning as Tree Search

11

Planning as Tree Search

Planning as Tree Search

State-space Search Methods

• State-space search amounts
to finding a “Path” from the
start state to the goal state.

• Optionally this can involve
an “objective” function as
well: minimize cost or
maximize reward

10

Planning in Discrete State Space
• Cartesian space

• Actions take robot from
one state to another

• Objective: find a minimum-cost path
from the start state to the goal state

Planning as Tree Search

11

Planning as Tree Search

Planning as Tree Search
11

Planning as Tree Search

Planning as Tree Search

State-space Search Methods

• State-space search amounts
to finding a “Path” from the
start state to the goal state.

• Optionally this can involve
an “objective” function as
well: minimize cost or
maximize reward

10

Planning in Discrete State Space
• Cartesian space

• Actions take robot from
one state to another

• Objective: find a minimum-cost path
from the start state to the goal state

Planning as Tree Search

11

Planning as Tree Search

Planning as Tree Search
11

Planning as Tree Search

Planning as Tree Search

12

....

Planning as Tree Search

… How can such searching be made effective and efficient?

Move Generation
• Which state-action pair to consider next?
• Shallowest next

– Aka: Breadth-first search
– Guarantees shortest path
– But: storage-intensive

• Deepest next
– Aka: Depth-first search
– Can use minimal storage
– But: no optimality guarantee

State-space Search Methods

• Which state-action pair to consider next?

• Shallowest next (Breadth-first search)

• Guarantees shortest path

• but: storage intensive

• Deepest next (Depth-first search)

• Can use minimal storage

• But: no optimality guarantee

10

Planning in Discrete State Space
• Cartesian space

• Actions take robot from
one state to another

• Objective: find a minimum-cost path
from the start state to the goal state

Planning as Tree Search

11

Planning as Tree Search

Planning as Tree Search
11

Planning as Tree Search

Planning as Tree Search

12

....

Planning as Tree Search

… How can such searching be made effective and efficient?

Move Generation
• Which state-action pair to consider next?
• Shallowest next

– Aka: Breadth-first search
– Guarantees shortest path
– But: storage-intensive

• Deepest next
– Aka: Depth-first search
– Can use minimal storage
– But: no optimality guarantee

Open-loop vs Closed-loop Execution

Perception Local Map
Perceptive
Planning &

Control

State
Estimation

Vehicle
State

Reflexive
Planning &

Control

Sensors Actuators

Prior data;
Global Data
Processing

Deliberative
Planning &

Control

Deliberative Autonomy

Perceptive Autonomy

Reflexive Autonomy

Environment

Hardware Platform

Global Map

• Planning in a static world: Planning provides state-
action pairs to reach a goal, but typically does not
provide a means to ensure the state-action pairs
succeed in reaching the consecutive state.

• Closed-loop (low-level) controllers: A closed-
loop controller typically monitors the state of the
system to ensure the state transitions are
implemented as expected.

• Planning in a dynamic world: In many planning
problems, the environment is not static - it changes
unpredictably as the agent moves in the environment

• Policy/control design: In those cases, we will
design policies, as opposed to plans, that govern
the entire planning process.

Key Takeaways

Perception Local Map
Perceptive
Planning &

Control

State
Estimation

Vehicle
State

Reflexive
Planning &

Control

Sensors Actuators

Prior data;
Global Data
Processing

Deliberative
Planning &

Control

Deliberative Autonomy

Perceptive Autonomy

Reflexive Autonomy

Environment

Hardware Platform

Global Map

• Autonomy is at the core of AI: How can computers make decisions
in the physical/social world interacting with an environment and/or
other (AI/human) agents?

• Planning is the ability to find a “path” from a “start” configuration to
a “goal” configuration, potentially optimizing an objective.

• State-space models allow the representation of (many) planning
problems, where planning is reduced to “search” of a sequence of
“state-action pairs” starting from a “start state” and reaching a “goal
state”.

• Depth-first search and breadth-first search are two simplest
search methods, in principle allows us to solve any planning
problem described by a state-space model.

