6.1000 Fall 2025 Page 1

Midterm 2
6.1000 Midterm 2
November 12, 2025

e Write your full name and Kerberos username below. (Your Kerberos is your MIT
email without the @mit.edu. It is not your MIT ID number.)

e The exam will begin at 3:05 pm and end at 4:25 pm.

e The exam is closed-book — no notes, electronics, or additional resources are allowed.

¢ You may separate the sheets, but you must turn in all of them at the end.

e If you need more space, you may use any of the blank pages. If you need additional space
beyond those, ask a staff member to bring you some scratch paper, and turn it in at the
end. Write your name and Kerberos on the scratch paper as well. You may not use your
own scratch paper.

e There are four questions total. They will be weighted roughly equally. Make sure you
spend enough time on each question.

e For questions that ask you to write Python code, do your best on syntax, and focus on
expressing the computational ideas. Small syntax errors may be penalized lightly or not
at all.

e Ifyou are unsure about certain Python details, write down your assumptions, and do your
best to make progress.

e For questions that ask you to explain an outcome or result, provide a brief justification
of your reasoning. An answer alone without justification will receive no credit.

SOLUTIONS

Name:

Kerberos:

Page 2 6.1000 Fall 2025
Midterm 2

BLANK PAGE

6.1000 Fall 2025 Page 3
Midterm 2

Reference list of some built-in Python functions

str.count(substr)
str.find(substr)
str.strip(chars=None)
str.split(separator=None)
str.join(iterable)

List.count(value)
List.index(value)
List.append(value)
list.extend(iterable)
List.remove(value)
list.insert(index, value)
list.pop(index=-1)
List.reverse()
List.sort(reverse=False)
list.clear()

List.copy()

dict.keys()

dict.values()

dict.items()

dict.get(key, default=None)
dict.update(mapping)
dict.pop(key, default)
dict.clear()

dict.copy()

Page 4 6.1000 Fall 2025
Midterm 2

Question 1

Consider the graph shown below.

Part A

Suppose we run Dijkstra’s algorithm to find the shortest path from the start S to the goal G. What
path will be returned? No explanation is needed.

Solution:
S A-B->-D-C->G

Total weight is 5.

6.1000 Fall 2025 Page 5
Midterm 2

Question 1 (continued)

Part B

Suppose we add a directed edge S — G with weight 4 and run Dijkstra’s algorithm again.

Louis Reasoner claims that because this edge forms the new shortest path from S to G, Dijkstra’s
would terminate immediately after expanding from S to G.

Explain instead, after S gets expanded to its neighbors, which other nodes must also be expanded
to their neighbors, before G itself gets expanded.

Solution:
A, B,and D

Dijkstra’s begins by expanding S to its neighbors, putting (1, A), (3, B), and (4, G) on the
priority queue.

Next, it takes the (1, A) off the queue, which expands to (2, B) and (5, C). When we put those on
the queue, (2, B) effectively overshadows (3, B).

Some implementations of Dijkstra’s also remove (3, B) from the queue at this point, because
(2, B) will always be expanded before (3, B). For simplicity, we will assume (3, B) is removed.

Now (2, B) is the smallest element on the queue, and that expands to (3, D).
Then (3, D) is expanded to (4, C) and (6, G).

At this point, (4, G) and (4, C) are the smallest elements on the queue. A valid implementation of
Dijkstra’s could pick either to expand next. Hence, C is not guaranteed to be expanded before G,
but our analysis above shows A, B, and D are.

Common mistakes:

e Expanding B before expanding A, and therefore using an incorrect shortest path distance
for B of 3 rather than 2.

e Identifying that C and G are both in the priority queue with distances of 4, but incorrectly
claiming that Dijkstra’s is required to expand C before expanding G.

Page 6 6.1000 Fall 2025
Midterm 2

Question 1 (continued)

Part C

Consider the following code, which uses a queue-based implementation for breadth-first search
and depth-first search, except it alternates between the two strategies for choosing which node to
expand. For simplicity, we only consider graphs that are directed trees.

def alternate_bfs_dfs(tree, root):
queue = [root]
counter = 0
while len(queue) > @:
if counter % 2 ==
current_node = queue.pop(9)
else:
current_node = queue.pop(-1)
counter += 1

print(current_node)
for next_node in neighbors(tree, current_node):
queue. append(next_node)

Given the tree below, suppose that the neighbors () function returns a list of a node’s children
in left-to-right order. If alternate_bfs_dfs() is called on this tree with node 1 as the root,
determine the order in which nodes are printed.

(Write your answer on the following page.)

6.1000 Fall 2025
Midterm 2

Question 1 (continued)

Part C (continued)

Page 7

Write your answer down the right column in the table below. Justify by showing the state of the
queue at each loop iteration. (You do not have to use all the rows.)

Queue state Node printed
A1 1
2,3, 4] 4
12,3,7, 8] 2
3,7, 8, 8] 5
13,7, 8] 3
17, 8, 6 6
17, 8] 7
31 8

Common mistakes:

e Traversing the graph only using BFS or DFS instead of tracing through the code.

e Replacing the entire queue with the popped node’s neighbors, rather than just removing
the one popped node and appending neighbors to the end.

Page 8

Question 2

Consider the following code.

W 00 N OV A WDN B

N NN NN DNPRPRPRPPRPRPERPRPRERERERER
i ph W NERPOLOOONOOULPD,WNERO

def

def

def

run_

avg(numbers):
total = ©
count = ©

while count < 3:
total += numbers[count]
count += 1

return total / count

test_avg(seq_length):

sequence = list(range(seq_length))
expected = (seq_length - 1) / 2
assert avg(sequence) == expected

run_tests():

results = []
for n in (3, 2):
try:

test_avg(n)
except IndexError:
results.append(False)
else:
results.append(True)
return results

tests()

6.1000 Fall 2025
Midterm 2

When this code is run, line 20 is executed exactly once due to an IndexError. On the following
page, draw an environment diagram showing the frames and objects in memory at the moment
when the IndexError is raised. (This is not the same as when line 20 is executed.)

In addition to the global frame, you should only show frames for active function calls. It is fine

to cross out frames for completed calls, or not to show them at all.

Label all objects with their type. You do not need to fill in the contents of function objects. You

also do not need to show any objects that have no references to them.

6.1000 Fall 2025
Midterm 2

Question 2 (continued)

Draw your environment diagram here.

Solution:

function
global frame
.- function
avg —
test_avg o
function
run_tests() .
list bool
results @ > M True
n o— int
\ 2
list
test_avg() /
seq_length o—
) int int
sequence o— 0 1
float
expected o— 0.5
avg()
int
numbers *— n
/ 1
total o
int
count [2

Page 9

Page 10 6.1000 Fall 2025
Midterm 2

Question 2 (continued)

Use this page only if you would like to start over on the diagram. If so, clearly indicate that on
the previous page. We will grade either the previous page or this one, but not both.

global frame

Common mistakes:

e Treating function objects as function call frames.
e Not removing frames for completed function calls.
e Missing n variable in run_test() frame.

6.1000 Fall 2025 Page 11
Midterm 2

BLANK PAGE

Page 12 6.1000 Fall 2025
Midterm 2

Question 3

Below is an environment diagram showing the state of memory after running some code. (Note
that the function objects are not empty; we’ve just omitted their contents.)

int

type
count *— function
global frame _init__ o—
_’ function
Virus o— __mul__ .—\}
Cell o—]
type function
LungCell o—] __init__
target o— get_copy_factor function
flu o
function
copies
LungCell int

list id o—

AEVES
Virusl \ Virus Virus
id o id o— id \

int int

_copy_factor @ }El

Unfortunately, we’ve lost the code that produced this environment, but we know the last three
lines were:

flu = Virus()
target = LungCell()
copies = flu * target

(continued on next page)

6.1000 Fall 2025 Page 13
Midterm 2

Question 3 (continued)

Given the diagram and the code fragment on the previous page, reconstruct the class definitions
for Virus, Cell, and LungCell preceding the code. (Use the following page as additional
space for your answer if needed.)

For full credit, your answer needs to have the following features:

e No direct access to the _copy_factor attribute outside of the class that defines it.
e The __init__() methods’ parameter lists should be consistent with how the f1u and
target objects were created.

Your code may create additional objects in memory as long as there are no references to them
after executing your code followed by the code fragment above.

your code here

(solution on next page)

Page 14 6.1000 Fall 2025
Midterm 2

Question 3 (continued)

(Use this page as additional space for your answer if needed.)

your code here

Solution:

class Virus:
count = ©

def __init_ (self):
Virus.count += 1
self.id = Virus.count

def _mul_ (self, cell):
return [Virus() for _ in range(cell.get copy factor())]

class Cell:

def __init_ (self, copy_factor):
self. copy_ factor = copy_factor

def get_copy_ factor(self):
return self. copy_factor

class LungCell(Cell):

def _init_(self):
super()._ init_ (copy_factor=3)

Common mistakes:

e Defining Virus.count as a function. The name needs to be assigned to an integer.

e Incomplete relationship between Virus.count and self.id.

e Too many parameters in the __init__ () methods.

e UsingVirus.__init__ () instead of Virus() to create a new Virus object.

e Incorrect syntax for class LungCell to inherit from class Cell.

e Redefining _copy_factor as an attribute of LungCell instances (e.g., assigning
self._copy_factor within LungCell. _init__()).

e Incorrect syntax or placement of super().__init__ () call.

6.1000 Fall 2025 Page 15
Midterm 2

BLANK PAGE

Page 16 6.1000 Fall 2025
Midterm 2

Question 4

In Problem Set 4, we ran simulations of MBTA trains running on a circular track for a specified
number of time steps. The output of each simulation was a list of lists we’ll call history, where
history[t][i] was the location of train i on the track at time step t. By running many trials
of these simulations, we estimated the expected duration between a train leaving a station and the
next train arriving.

Suppose we now wish to estimate, for a given passenger, the expected travel time between
stations, meaning: from when they walk into a station, to when they get off the train at a later
station. This includes the time spent waiting at the first station for a train to arrive.

To model this, we can leverage the history data from our MBTA train simulations. Given the
history output from a single simulation, write the following function to determine how many
time steps it would take a passenger to travel between stations at start_loc and end_loc,
assuming they walked into the first station at time step start_time.

def get_travel time(history, start_loc, end_loc, start_time):

Determine how long a passenger's trip on the MBTA would take.

Parameters:
history (list): A history of train locations at each time step.
history[t][i] is the location of train i at time step t.
start_loc (int): The location of the passenger’s start station.
end_loc (int): The location of the passenger’s destination station.
start_time (int): The time step when the passenger walks into
the station at start_loc.

Return an int indicating the number of time steps since start_time
until the passenger reaches the station at end_loc.

Write your code on the following page. You may assume the following:

e All locations of stations on the train track are integers.

e Trains do not overlap or pass each other.

e The passenger gets on the first train that is available to them.

e history is long enough for the passenger to complete their trip, given their
start_time.

6.1000 Fall 2025 Page 17
Midterm 2

Question 4 (continued)

Write your implementation below. You are welcome, though not required, to write helper
functions.

Hint: How would you determine whether a passenger has boarded a train or not?

def get_travel time(history, start_loc, end_loc, start_time):
your code here

Solution:

boarded = False
for step in range(start_time, len(history)):
train_locations = history[step]
if not boarded:
for train_id in range(len(train_locations)):

if train_locations[train_id] == start_loc:
boarded = True
break
else:
if train_locations[train_id] == end_loc:

return step - start_time

Common mistakes:

e Interpreting history[t][1] as a point in time rather than a location/position along the
track.

e Attempting to identify the train that the passenger boards by looking only at
start_time for train locations that are less than start_loc. Because the track is a
loop, this misses the case where the next train to arrive at start_loc is “in front” of
start_loc, but will loop back around, past the point where location values jump back
to zero.

e Need to break or return immediately after the train first reaches end_loc. Otherwise, the
train may complete another full loop around the track in history.

Page 18 6.1000 Fall 2025
Midterm 2

BLANK PAGE

6.1000 Fall 2025 Page 19
Midterm 2

BLANK PAGE

Page 20 6.1000 Fall 2025
Midterm 2

BLANK PAGE

