
6.1000 Fall 2025 Page 1

Midterm 2

6.1000 Midterm 2
November 12, 2025

• Write your full name and Kerberos username below. (Your Kerberos is your MIT

email without the @mit.edu. It is not your MIT ID number.)

• The exam will begin at 3:05 pm and end at 4:25 pm.

• The exam is closed-book – no notes, electronics, or additional resources are allowed.

• You may separate the sheets, but you must turn in all of them at the end.

• If you need more space, you may use any of the blank pages. If you need additional space

beyond those, ask a staff member to bring you some scratch paper, and turn it in at the

end. Write your name and Kerberos on the scratch paper as well. You may not use your

own scratch paper.

• There are four questions total. They will be weighted roughly equally. Make sure you

spend enough time on each question.

• For questions that ask you to write Python code, do your best on syntax, and focus on

expressing the computational ideas. Small syntax errors may be penalized lightly or not

at all.

• If you are unsure about certain Python details, write down your assumptions, and do your

best to make progress.

• For questions that ask you to explain an outcome or result, provide a brief justification

of your reasoning. An answer alone without justification will receive no credit.

 Name: __

 Kerberos: __

SOLUTIONS

Page 2 6.1000 Fall 2025

 Midterm 2

 BLANK PAGE

6.1000 Fall 2025 Page 3

Midterm 2

Reference list of some built-in Python functions

str.count(substr)

str.find(substr)

str.strip(chars=None)

str.split(separator=None)

str.join(iterable)

list.count(value)

list.index(value)

list.append(value)

list.extend(iterable)

list.remove(value)

list.insert(index, value)

list.pop(index=-1)

list.reverse()

list.sort(reverse=False)

list.clear()

list.copy()

dict.keys()

dict.values()

dict.items()

dict.get(key, default=None)

dict.update(mapping)

dict.pop(key, default)

dict.clear()

dict.copy()

Page 4 6.1000 Fall 2025

 Midterm 2

Question 1

Consider the graph shown below.

Part A

Suppose we run Dijkstra’s algorithm to find the shortest path from the start 𝑆 to the goal 𝐺. What

path will be returned? No explanation is needed.

Solution:

Total weight is 5.

6.1000 Fall 2025 Page 5

Midterm 2

Question 1 (continued)

Part B

Suppose we add a directed edge 𝑆 → 𝐺 with weight 4 and run Dijkstra’s algorithm again.

Louis Reasoner claims that because this edge forms the new shortest path from 𝑆 to 𝐺, Dijkstra’s

would terminate immediately after expanding from 𝑆 to 𝐺.

Explain instead, after 𝑆 gets expanded to its neighbors, which other nodes must also be expanded

to their neighbors, before 𝑮 itself gets expanded.

Solution:

, , and

Dijkstra’s begins by expanding to its neighbors, putting , , and on the

priority queue.

Next, it takes the off the queue, which expands to and . When we put those on

the queue, effectively overshadows .

Some implementations of Dijkstra’s also remove from the queue at this point, because

 will always be expanded before . For simplicity, we will assume is removed.

Now is the smallest element on the queue, and that expands to .

Then is expanded to and .

At this point, and are the smallest elements on the queue. A valid implementation of

Dijkstra’s could pick either to expand next. Hence, is not guaranteed to be expanded before ,

but our analysis above shows , , and are.

Common mistakes:

• Expanding before expanding , and therefore using an incorrect shortest path distance

for of 3 rather than 2.

• Identifying that and are both in the priority queue with distances of 4, but incorrectly

claiming that Dijkstra’s is required to expand before expanding .

Page 6 6.1000 Fall 2025

 Midterm 2

Question 1 (continued)

Part C

Consider the following code, which uses a queue-based implementation for breadth-first search

and depth-first search, except it alternates between the two strategies for choosing which node to

expand. For simplicity, we only consider graphs that are directed trees.

def alternate_bfs_dfs(tree, root):

 queue = [root]

 counter = 0

 while len(queue) > 0:

 if counter % 2 == 0:

 current_node = queue.pop(0)

 else:

 current_node = queue.pop(-1)

 counter += 1

 print(current_node)

 for next_node in neighbors(tree, current_node):

 queue.append(next_node)

Given the tree below, suppose that the neighbors() function returns a list of a node’s children

in left-to-right order. If alternate_bfs_dfs() is called on this tree with node 1 as the root,

determine the order in which nodes are printed.

(Write your answer on the following page.)

6.1000 Fall 2025 Page 7

Midterm 2

Question 1 (continued)

Part C (continued)

Write your answer down the right column in the table below. Justify by showing the state of the

queue at each loop iteration. (You do not have to use all the rows.)

Queue state Node printed

[1] 1

[2, 3, 4] 4

[2, 3, 7, 8] 2

[3, 7, 8, 5] 5

[3, 7, 8] 3

[7, 8, 6] 6

[7, 8] 7

[8] 8

Common mistakes:

• Traversing the graph only using BFS or DFS instead of tracing through the code.

• Replacing the entire queue with the popped node’s neighbors, rather than just removing

the one popped node and appending neighbors to the end.

Page 8 6.1000 Fall 2025

 Midterm 2

Question 2

Consider the following code.

1 def avg(numbers):

2 total = 0

3 count = 0

4 while count < 3:

5 total += numbers[count]

6 count += 1

7 return total / count

8

9 def test_avg(seq_length):

10 sequence = list(range(seq_length))

11 expected = (seq_length - 1) / 2

12 assert avg(sequence) == expected

13

14 def run_tests():

15 results = []

16 for n in (3, 2):

17 try:

18 test_avg(n)

19 except IndexError:

20 results.append(False)

21 else:

22 results.append(True)

23 return results

24

25 run_tests()

When this code is run, line 20 is executed exactly once due to an IndexError. On the following

page, draw an environment diagram showing the frames and objects in memory at the moment

when the IndexError is raised. (This is not the same as when line 20 is executed.)

In addition to the global frame, you should only show frames for active function calls. It is fine

to cross out frames for completed calls, or not to show them at all.

Label all objects with their type. You do not need to fill in the contents of function objects. You

also do not need to show any objects that have no references to them.

6.1000 Fall 2025 Page 9

Midterm 2

Question 2 (continued)

Draw your environment diagram here.

Solution:

Page 10 6.1000 Fall 2025

 Midterm 2

Question 2 (continued)

Use this page only if you would like to start over on the diagram. If so, clearly indicate that on

the previous page. We will grade either the previous page or this one, but not both.

Common mistakes:

• Treating function objects as function call frames.

• Not removing frames for completed function calls.

• Missing n variable in run_test() frame.

6.1000 Fall 2025 Page 11

Midterm 2

BLANK PAGE

Page 12 6.1000 Fall 2025

 Midterm 2

Question 3

Below is an environment diagram showing the state of memory after running some code. (Note

that the function objects are not empty; we’ve just omitted their contents.)

Unfortunately, we’ve lost the code that produced this environment, but we know the last three

lines were:

flu = Virus()

target = LungCell()

copies = flu * target

(continued on next page)

6.1000 Fall 2025 Page 13

Midterm 2

Question 3 (continued)

Given the diagram and the code fragment on the previous page, reconstruct the class definitions

for Virus, Cell, and LungCell preceding the code. (Use the following page as additional

space for your answer if needed.)

For full credit, your answer needs to have the following features:

• No direct access to the _copy_factor attribute outside of the class that defines it.

• The __init__() methods’ parameter lists should be consistent with how the flu and

target objects were created.

Your code may create additional objects in memory as long as there are no references to them

after executing your code followed by the code fragment above.

your code here

(solution on next page)

Page 14 6.1000 Fall 2025

 Midterm 2

Question 3 (continued)

(Use this page as additional space for your answer if needed.)

your code here

Solution:

class Virus:

 count = 0

 def __init__(self):

 Virus.count += 1

 self.id = Virus.count

 def __mul__(self, cell):

 return [Virus() for _ in range(cell.get_copy_factor())]

class Cell:

 def __init__(self, copy_factor):

 self._copy_factor = copy_factor

 def get_copy_factor(self):

 return self._copy_factor

class LungCell(Cell):

 def __init__(self):

 super().__init__(copy_factor=3)

Common mistakes:

• Defining Virus.count as a function. The name needs to be assigned to an integer.

• Incomplete relationship between Virus.count and self.id.

• Too many parameters in the __init__() methods.

• Using Virus.__init__() instead of Virus() to create a new Virus object.

• Incorrect syntax for class LungCell to inherit from class Cell.

• Redefining _copy_factor as an attribute of LungCell instances (e.g., assigning

self._copy_factor within LungCell.__init__()).

• Incorrect syntax or placement of super().__init__() call.

6.1000 Fall 2025 Page 15

Midterm 2

BLANK PAGE

Page 16 6.1000 Fall 2025

 Midterm 2

Question 4

In Problem Set 4, we ran simulations of MBTA trains running on a circular track for a specified

number of time steps. The output of each simulation was a list of lists we’ll call history, where

history[t][i] was the location of train i on the track at time step t. By running many trials

of these simulations, we estimated the expected duration between a train leaving a station and the

next train arriving.

Suppose we now wish to estimate, for a given passenger, the expected travel time between

stations, meaning: from when they walk into a station, to when they get off the train at a later

station. This includes the time spent waiting at the first station for a train to arrive.

To model this, we can leverage the history data from our MBTA train simulations. Given the

history output from a single simulation, write the following function to determine how many

time steps it would take a passenger to travel between stations at start_loc and end_loc,

assuming they walked into the first station at time step start_time.

def get_travel_time(history, start_loc, end_loc, start_time):

 """

 Determine how long a passenger's trip on the MBTA would take.

 Parameters:

 history (list): A history of train locations at each time step.

 history[t][i] is the location of train i at time step t.

 start_loc (int): The location of the passenger’s start station.

 end_loc (int): The location of the passenger’s destination station.

 start_time (int): The time step when the passenger walks into

 the station at start_loc.

 Return an int indicating the number of time steps since start_time

 until the passenger reaches the station at end_loc.

 """

Write your code on the following page. You may assume the following:

• All locations of stations on the train track are integers.

• Trains do not overlap or pass each other.

• The passenger gets on the first train that is available to them.

• history is long enough for the passenger to complete their trip, given their

start_time.

6.1000 Fall 2025 Page 17

Midterm 2

Question 4 (continued)

Write your implementation below. You are welcome, though not required, to write helper

functions.

Hint: How would you determine whether a passenger has boarded a train or not?

def get_travel_time(history, start_loc, end_loc, start_time):

 # your code here

Solution:

 boarded = False

 for step in range(start_time, len(history)):

 train_locations = history[step]

 if not boarded:

 for train_id in range(len(train_locations)):

 if train_locations[train_id] == start_loc:

 boarded = True

 break

 else:

 if train_locations[train_id] == end_loc:

 return step - start_time

Common mistakes:

• Interpreting history[t][i] as a point in time rather than a location/position along the

track.

• Attempting to identify the train that the passenger boards by looking only at

start_time for train locations that are less than start_loc. Because the track is a

loop, this misses the case where the next train to arrive at start_loc is “in front” of

start_loc, but will loop back around, past the point where location values jump back

to zero.

• Need to break or return immediately after the train first reaches end_loc. Otherwise, the

train may complete another full loop around the track in history.

Page 18 6.1000 Fall 2025

 Midterm 2

 BLANK PAGE

6.1000 Fall 2025 Page 19

Midterm 2

 BLANK PAGE

Page 20 6.1000 Fall 2025

 Midterm 2

 BLANK PAGE

