
6.1000 Fall 2025 Page 1

Midterm 1

6.1000 Midterm 1
October 6, 2025

• Write your full name and Kerberos username (your MIT email without the @mit.edu)

below.

• The exam will begin at 3:05 pm and end at 4:25 pm.

• The exam is closed-book – no notes, electronics, or additional resources are allowed.

• You may separate the sheets, but you must turn in all of them at the end.

• If you need more space, you may use any of the blank pages. If you need additional space

beyond those, ask a staff member to bring you some scratch paper, and turn it in at the

end. Write your name and Kerberos on the scratch paper as well.

• There are four questions total. They will be weighted roughly equally. Make sure you

spend enough time on each question.

• For questions that ask you to write Python code, do your best on syntax, and focus on

expressing the computational ideas. Small syntax errors may be penalized lightly or not

at all.

• If you are unsure about certain Python details, write down your assumptions and do your

best to make progress.

• For questions that ask you to explain an outcome or result, provide a brief justification

of your reasoning. An answer alone without justification will receive no credit.

 Name: __

 Kerberos: __

SOLUTIONS

Page 2 6.1000 Fall 2025

 Midterm 1

 BLANK PAGE

6.1000 Fall 2025 Page 3

Midterm 1

Reference list of some built-in Python functions

str.count(substr)

str.find(substr)

str.strip(chars=None)

str.split(separator=None)

str.join(iterable)

list.count(value)

list.index(value)

list.append(value)

list.extend(iterable)

list.remove(value)

list.insert(index, value)

list.pop(index=-1)

list.reverse()

list.sort(reverse=False)

list.clear()

list.copy()

dict.keys()

dict.values()

dict.items()

dict.get(key, default=None)

dict.update(mapping)

dict.pop(key, default)

dict.clear()

dict.copy()

Page 4 6.1000 Fall 2025

 Midterm 1

Question 1

Consider the following code:

word = "eagerbeaver"

result = []

for i in range(len(word)):

 result = result + [len(word.split(word[i]))]

Part A

After running this code, what would be the output of print(result)?

Solution:

[5, 3, 2, 5, 3, 2, 5, 3, 2, 5, 3]

Common mistakes:

• When .split() is called with a separator that matches the beginning or end, an empty

string "" is included in the list it returns. (Why does this make sense?)

Part B

How many list objects are created when running this code? Explain briefly.

Solution:

34 list objects

• 1 empty list initially created

• 3 lists created in each loop iteration, 11 iterations total

o output of word.split()

o list with single int object

o concatenation with existing result creates new list

Common mistakes:

• The + operator on two lists creates a new list.

• Need to count the initial empty list.

• Need to provide an explanation.

6.1000 Fall 2025 Page 5

Midterm 1

Question 1 (continued)

Part C

Rewrite the code on the previous page so that: a) it avoids using the built-in len() and

str.split() functions, and b) it creates only a single list object throughout its execution.

After running your code, the variable result should refer to an equivalent (==) object as before.

Hint: You may use other str functions.

Solution:

 word = "eagerbeaver"

 result = []

 for char in word:

 result.append(word.count(char) + 1)

Explanation (not required):

word.split() removes instances of the separator and collects the substrings in between and

outside. The number of such substrings is thus the number of separator occurrences plus one. We

avoid creating new lists by mutating the original empty list.

Common mistakes:

• Wrapping an object in square brackets [obj] creates a list.

• Incorrect Part A’s were taken into account when grading Part C.

Page 6 6.1000 Fall 2025

 Midterm 1

Question 2

Given a Python list of unique numbers, consider the task of locating the index positions of the

largest k numbers and returning a list of those indices in increasing order of index value. The

input list should not be mutated, and you may assume k does not exceed the length of the list.

Part A

Alyssa P. Hacker proposes the following code to achieve the task. Unfortunately, there are a few

problems with it.

1 def locate_top(numbers, k):

2 numbers_indexed = []

3 for i in range(len(numbers)):

4 numbers_indexed.append((numbers[i], i))

5 numbers_indexed.sort()

 numbers_indexed.reverse()

6 indices = []

7 for (num, i) in numbers_indexed[:k]:

8 indices.append(i)

9 return indices sorted(indices)

(continued on next page)

6.1000 Fall 2025 Page 7

Midterm 1

Question 2 (continued)

Part A (continued)

Below, write what the expression locate_top([5, 1, 4, 2, 3], 3) would return for

Alyssa’s code. If it would raise an error instead of returning, say the line number where the error

occurs and briefly explain why.

Then, writing directly on the previous page’s code, change no more than five lines to correct the

implementation. (We will count a single line change as either editing a line, crossing one out, or

inserting a new one.)

Solution:

[1, 3, 4, 2, 0]

Explanation (not required):

Alyssa’s code sorts the numbers in ascending order, with original indices attached. Then it reads

off those indices in that order.

Common mistakes:

• No error on line 4: it successfully appends a tuple object.

• No error on line 5: it is possible to .sort() a list of tuples.

o If two items can be compared with <, then they can be sorted into a sequence.

• No error on line 7: (num, i) is a valid way to assign two loop variables.

o See Lecture 7 code.

Common mistakes when correcting code:

• If getting the first k elements from numbers_indexed, need to .reverse() the list

first.

• Need to sort index values before returning.

• indices.sort() mutates the list but evaluates to None, so shouldn’t return that

expression directly.

Page 8 6.1000 Fall 2025

 Midterm 1

Question 2 (continued)

Part B

Ben Bitdiddle has a different approach to solving the problem. His code is below. Unfortunately,

it is also incorrect.

1 def locate_top(numbers, k):

2 indices = []

3 remaining = numbers.copy()

4 for _ in range(k):

5 num = max(numbers) max(remaining)

6 loc = numbers.index(num)

7 remaining.remove(loc) remove(num)

8 indices.append(loc)

9 return indices sorted(indices)

(continued on next page)

6.1000 Fall 2025 Page 9

Midterm 1

Question 2 (continued)

Part B (continued)

As in Part A, write below what the expression locate_top([5, 1, 4, 2, 3], 3) would

return for Ben’s code. If it would raise an error instead of returning, say the line number where

the error occurs and briefly explain why.

Then, writing directly on the previous page’s code, change no more than five lines to correct the

implementation.

Solution:

Error on line 7.

On the first iteration through the loop, the max number is 5 at index 0. When we try to remove 0,

Python can’t find 0 in the list and raises a ValueError. (We did not require you to specify the

exact type of error.)

Further explanation (not required):

Ben’s code attempts to repeatedly find the max of the numbers list and remove them from

remaining. Problems with his code include: First, numbers and remaining are aliases of the

same list. Second, he’s using the index location from line 6 as the argument to .remove() in

line 7. However, .remove() accepts an element value to remove, not an index location.

Common mistakes:

• No error on line 4: possible to use _ as a variable name.

o See Lecture 6 code. The underscore is a convention for an unused loop variable.

• Saying abstractly that .remove() should accept an element value instead of an index,

but not specifying the argument to .remove() that causes it to fail.

Common mistakes when correcting code:

• Line 6 looks up index in original numbers list, which should not be mutated. Thus, need

remaining to be a copy, not an alias, of numbers.

• Need to sort index values before returning, and make sure not to return None.

Page 10 6.1000 Fall 2025

 Midterm 1

Question 3

Consider the following code:

1 def classifies_as(group, target):

2 if group == target:

3 return True

4 for child in taxonomy.get(group, []):

5 if classifies_as(child, target):

6 return True

7 return False

8

9

10 taxonomy = {

11 "canine": ["dog", "wolf", "fox"],

12 "dog": ["beagle", "husky"],

13 }

14 classifies_as("canine", "wolf")

Part A

This code runs without errors. How many calls to classifies_as() are made in total?

Explain briefly.

Solution:

5 calls

This code performs a depth-first search through the taxonomy graph. It explores the "dog"

subtree before continuing to "wolf" and then stops the search.

classifies_as("canine", "wolf")

 classifies_as("dog", "wolf")

 classifies_as("beagle", "wolf")

 classifies_as("husky", "wolf")

 classifies_as("wolf", "wolf")

Common mistakes:

• Need to explore the entire "dog" subtree before moving on to "wolf".

• After finding "wolf", this code does not continue to explore "fox".

6.1000 Fall 2025 Page 11

Midterm 1

Question 3 (continued)

Here is the code reproduced:

1 def classifies_as(group, target):

2 if group == target:

3 return True

4 for child in taxonomy.get(group, []):

5 if classifies_as(child, target):

6 return True

7 return False

8

9

10 taxonomy = {

11 "canine": ["dog", "wolf", "fox"],

12 "dog": ["beagle", "husky"],

13 }

14 classifies_as("canine", "wolf")

Part B

On the following page, we have started a diagram showing the state of memory right before

line 14 is executed. Extend the diagram to show the state of memory during the execution of

line 14 and right before line 3 is executed.

You may add any function call frames and objects as needed. However, you do not need to show

any objects that have no references to them.

Common mistakes:

• Need to draw function call frames, not additional function objects.

• Inside function call frames, there should only be variable names pointing to objects

outside. str objects do not belong inside frames.

• Frames for function calls that have completed should be removed.

• “right before line 3 is executed” means when we’ve determined the if condition on

line 2 is True, not whenever we execute line 2.

Page 12 6.1000 Fall 2025

 Midterm 1

Question 3 (continued)

Part B (continued)

Explanation (not required):

Active function call frames are stacked underneath (or “on top of”) the global frame. Each

function call initializes local variables group and target according to what arguments are

passed into the call. When line 4 is reached, the for loop sets a child variable as well to iterate

over the elements of a list.

The DFS search structure of the code results in line 3 executing exactly once when we reach the

recursive call where group is assigned to "wolf". Right before we execute that return

statement, the active frames represent the top-level call and the recursive call we’re about to

return from.

6.1000 Fall 2025 Page 13

Midterm 1

Question 3 (continued)

Part B (continued)

Use this page only if you would like to start over on the diagram. If so, clearly indicate that on

the previous page. We will grade either the previous page or this one, but not both.

Page 14 6.1000 Fall 2025

 Midterm 1

Question 4

Recall that in Problem Set 2, we were searching for a model that describes the

relationship between the amount of dust on a solar panel () and its power efficiency (). Given a

set of and data points, we could determine the mean squared-error (MSE) for any setting of

the parameters and . We also noted the MSE is a quadratic expression in terms of and , and

when we freeze the value of , the MSE becomes a quadratic expression in terms

of a single variable .

We then provided the function slice_mse_model(), which computes , , and for a given

setting of . However, note that the implementation considers all the and data points each

time it is called. For example, the individual -values get squared and summed into gamma. This

can be wasteful when the function is called repeatedly.

def slice_mse_model(x_vals, y_vals, a):

 assert len(x_vals) == len(y_vals)

 num_points = len(x_vals)

 alpha = 0

 beta = 0

 gamma = 0

 for i in range(num_points):

 x, y = x_vals[i], y_vals[i]

 alpha += 1

 beta += 2*a*x - 2*y

 gamma += y**2 + (a*x)**2 - 2*y*a*x

 alpha /= num_points

 beta /= num_points

 gamma /= num_points

 return [alpha, beta, gamma]

(continued on next page)

6.1000 Fall 2025 Page 15

Midterm 1

Question 4 (continued)

Consider a more efficient strategy where we precompute some values based on the data points,

so we can use them directly in slice_mse_model(). The data_sums() function below

constructs a dict with such precomputed values.

On the following page, implement a revised slice_mse_model(), where in place of the full

data points, it accepts a precomputed dict output from data_sums() and the number of data

points it was computed from.

def pairwise_mul(values1, values2):

 assert len(values1) == len(values2)

 num_points = len(values1)

 result = []

 for i in range(num_points):

 result.append(values1[i] * values2[i])

 return result

def data_sums(x_vals, y_vals):

 return {

 "x": sum(x_vals),

 "y": sum(y_vals),

 "x2": sum(pairwise_mul(x_vals, x_vals)),

 "xy": sum(pairwise_mul(x_vals, y_vals)),

 "y2": sum(pairwise_mul(y_vals, y_vals)),

 }

(continued on next page)

Page 16 6.1000 Fall 2025

 Midterm 1

Question 4 (continued)

def slice_mse_model(accum, num_points, a):

 """

 For a linear regression model, determine the MSE quadratic

 polynomial over the parameter "b", when the parameter "a" is

 fixed at a given value.

 Parameters:

 accum (dict): The output of data_sums().

 num_points (int): The number of (x, y) data points the

 values in accum were computed from.

 a (float): The "a" parameter in the linear model y = ax + b.

 Return a list of float coefficients [alpha, beta, gamma],

 specifying the desired quadratic polynomial (alpha * b**2

 + beta * b + gamma) in terms of "b".

 """

 # your code here

 beta = (2 * a * accum["x"] - 2 * accum["y"]) / num_points

 gamma = (

 accum["y2"]

 + a**2 * accum["x2"]

 - 2 * a * accum["xy"]

) / num_points

 return [1, beta, gamma]

Explanation (not required):

In the original implementation, for a term like 2*a*x, the a value can be factored out of the for

loop, and what remains is twice the sum of all the x values. The data_sums() function

precomputes the relevant sums, which we can retrieve using dict lookup, and thus avoid

looping over all and data points again.

Common mistakes:

• x_vals and y_vals are not available

anymore, should not reference them.

• No need for any loops.

• The sum of all x**2 values is

accum["x2"], not accum["x"]**2.

6.1000 Fall 2025 Page 17

Midterm 1

 BLANK PAGE

Page 18 6.1000 Fall 2025

 Midterm 1

 BLANK PAGE

6.1000 Fall 2025 Page 19

Midterm 1

 BLANK PAGE

Page 20 6.1000 Fall 2025

 Midterm 1

 BLANK PAGE

