
Curve-fitting,
Train-validate-
test
MIT Department of Electrical
Engineering and Computer
Science

6.1000 LECTURE 22 1

Announcements

6.1000 LECTURE 22 2

Distributions Alone Lack Explanatory Power

6.1000 LECTURE 22 3

https://www.wired.com/2014/08/lego-cost

§Robert Hooke
◦ 1635-1703
◦ Curator of experiments of the Royal Society
◦ Surveyor for City of London after the Great Fire
◦ Discovered law of elasticity

◦ Led to invention of balance spring, which led to first accurate watch
◦ Observed that gravity was an inverse effect, but didn’t know it

was inverse square (Newton gets credit for that)
◦ Huge believer in running experiments and then building

models
◦ “It is commonly believed that anyone who tabulates numbers is a

statistician. This is like believing that anyone who owns a scalpel is a
surgeon.”

◦ “The truth is, the Science of Nature has been already too long made
only a work of the Brain and the Fancy: It is now high time that it
should return to the plainness and soundness of Observations on
material and obvious things.”

Curve Fitting: Hooke’s Law

6.1000 LECTURE 22 4

Example: Curve Fitting With Springs

6.1000 LECTURE 22 5

Linear spring: amount of force needed to
stretch or compress spring is linear in the
distance the spring is stretched or
compressed, up to some maximum force

Each spring has a spring constant, k, that
determines how much force is needed
to achieve a specific compressionk ≈ 35,000N /m

k ≈1N /m

§F = –kd

§How much does a rider have to weigh
to compress spring 1 cm?

Hooke’s Law

6.1000 LECTURE 22 6

𝐹 = 0.01𝑚	 ∗ 	35,000𝑁/𝑚

𝐹 = 350𝑁 𝐹 = 𝑚𝑎𝑠𝑠 ∗ 𝑎𝑐𝑐

𝐹 = 𝑚𝑎𝑠𝑠 ∗ 9.81𝑚/𝑠!
𝑚𝑎𝑠𝑠 ∗ 9.81𝑚/𝑠!=350𝑁

𝑚𝑎𝑠𝑠 =
350𝑁

9.81𝑚/𝑠!

𝑚𝑎𝑠𝑠 ≈ 35.68	kg	(𝑜𝑟	𝑎𝑏𝑜𝑢𝑡	79	lbs)

𝑚𝑎𝑠𝑠 =
350
9.81

	kg

Why the ‘–’? Because deflection in
opposite direction to force

§F = –kd

§k = –F/d

§k = 9.81*m/d

§Each trial estimates k

Finding k

6.1000 LECTURE 22 7

By Yapparina (Own work) [CC BY-SA 3.0 (http://creativecommons.org/licenses/by-
sa/3.0)], via Wikimedia Commons

m

m

m

Some Data

6.1000 LECTURE 22 8

Mass (kg) Distance (m)
0.1 0.0865
0.15 0.1015
0.2 0.1106
0.25 0.1279
0.3 0.1892
0.35 0.2695
0.4 0.2888
0.45 0.2425
0.5 0.3465
0.55 0.3225
0.6 0.3764
0.65 0.4263
0.7 0.4562
0.75 0.4502
0.8 0.4499
0.85 0.4534
0.9 0.4416
0.95 0.4304
1.0 0.437

m

m

mEach distance/mass pair
provides an estimate of k

def plotData(fileName):
 xVals, yVals = getData(fileName)
 xVals = np.array(xVals) #masses
 yVals = np.array(yVals) #distances/displacements
 xVals = xVals*9.81 #acc. due to gravity; forces
 plt.plot(xVals, yVals, 'bo',
 label = 'Measured displacements')
 labelPlot()

Taking a Look at the Data

6.1000 LECTURE 22 9

A reminder/primer about numpy arrays:
• Converts a list into a linear data structure
• Can treat arrays algebraically; e.g., if a and b are arrays, then:

• a*2 multiplies every element of a by 2
• a + 3 adds 3 to every element of a
• a – b subtracts each element of b from corresponding element of a
• a*b multiplies each element of a by corresponding element of b

testArray = np.array([1,2,3,4,5,6,7,8,9])

print(testArray)

[1 2 3 4 5 6 7 8 9]

secondArray = np.array([3,2,6,4,1,8,7,5,9])

print(secondArray)

[3 2 6 4 1 8 7 5 9]

print(testArray * 2)

[2 4 6 8 10 12 14 16 18]

print(testArray + 3)

[4 5 6 7 8 9 10 11 12]

print(testArray - secondArray)

[-2 0 -3 0 4 -2 0 3 0]

print(testArray * secondArray)

[3 4 18 16 5 48 49 40 81]

Using Arrays

6.1000 LECTURE 22 10

Note: operations on arrays
do not mutate the array,
they create a new one

def get_data(filename):
 with open(filename, 'r') as data_file:
 y_vals, x_vals = [], []
 data_file.readline() # discard header
 for line in data_file:
 y, x = line.split()
 y_vals.append(float(y))
 x_vals.append(float(x))
 return np.array(x_vals), np.array(y_vals)

x_vals, y_vals = get_data('springData.txt')
x_vals = x_vals*9.81 # force due to gravity
plt.plot(x_vals, y_vals, 'bo', label='Measured displacements')

Taking a Look at the Data

6.1000 LECTURE 22 11

A reminder/primer about numpy arrays:
• Converts a list into a linear data structure
• Can treat arrays algebraically; e.g., if a and b are arrays, then:

• a*2 multiplies every element of a by 2
• a + 3 adds 3 to every element of a
• a – b subtracts each element of b from corresponding element of a
• a*b multiplies each element of a by corresponding element of b

Taking a Look at the Data

6.1000 LECTURE 22 12

§We’ve run an experiment
§We can relate observations to
trials (distance d vs. force F – or
|F| in this case)
§Theory predicts a relationship
between observations and trials
◦ |F| = kd

§Can we use these measurements
to determine k and to validate
model?
§Try to fit a curve to data, and use
to deduce relationship between
observation and trial
§Notice that points don’t lie on a
line. Experiments are noisy!

What Can We Do With This Data?

6.1000 LECTURE 22 13

§Naïve solution : For each data point,
compute k = m/d
Then take the average

§Obvious problem : what if we had a
measurement for m = 0 ?

§Even measurements for small m are
not as precise

§Only works for a single parameter
and a simple law like Hooke’s law

§Doesn’t tell us how good the law is

Why not just compute “average” k?

6.1000 LECTURE 22 14

Mass (kg) Distance (m)
0.1 0.0865
0.15 0.1015
0.2 0.1106
0.25 0.1279
0.3 0.1892
0.35 0.2695
0.4 0.2888
0.45 0.2425
0.5 0.3465
0.55 0.3225
0.6 0.3764
0.65 0.4263
0.7 0.4562
0.75 0.4502
0.8 0.4499
0.85 0.4534
0.9 0.4416
0.95 0.4304
1.0 0.437

§Pick two sample points to define line and fit,
measure slope

Could Just Try Guessing Line?

6.1000 LECTURE 22 15

§Pick two sample points to define line and fit,
measure slope

Could Just Try Guessing Line?

6.1000 LECTURE 22 16

§Pick two sample points to define line and fit,
measure slope

Could Just Try Guessing Line?

6.1000 LECTURE 22 17

Need some way
to evaluate how
well the line fits
the data

Also need a
robust
algorithm that
finds “good” fits

§When we fit a curve to a set of data, we are finding a
fit that relates an independent variable (the mass or
force) to an estimated value of a dependent variable
(the distance or displacement)

Fitting Curves to Data – back to optimization

6.1000 LECTURE 22 18

§When we fit a curve to a set of data, we are finding a
fit that relates an independent variable (the mass or
force) to an estimated value of a dependent variable
(the distance or displacement)
§To decide how well a curve fits the data, we need a
way to measure the goodness of the fit – called the
objective function (aka loss)
§Once we define the objective function, we also need
an algorithm to find the curve that minimizes it
§Theory says find a curve such that some function of
the distances from the curve to the measured points is
minimized. Simplest case finds line that best fits data.
§So need objective function that measures distances
from curve, and algorithm to find best curve

Fitting Curves to Data – back to optimization

6.1000 LECTURE 22 19

Measuring Distance

6.1000 LECTURE 22 20

X

Y
P

Which should we choose?

Vertical distance because want to predict dependent
Y value for every given independent X value, and
vertical distance measures error in that prediction

Theory says find a curve such that some function
of the distances from the curve to the measured
points is minimized. Simplest case finds line that
best fits data.

§observed: actual measurements for each trial

§predicted: value that model suggests for each trial
(value on the fitted curve)

Least Squares Objective Function

6.1000 LECTURE 22 21

(observed[i]− predicted[i])2
i=0

len(observed)−1

∑

§To minimize this objective function, want to find a
curve for the predicted observations that leads to
minimum value of sum of squared differences
◦ Remember that curve will define, for each independent

variable value, the associated predicted dependent
variable value

§Need to make a choice on kinds of curves – we will
use polynomials of one variable
§Need to find the best curve – use linear regression to
find a polynomial representation for the predicted
model that minimizes the objective function

Solving for Least Squares

6.1000 LECTURE 22 22

(observed[i]− predicted[i])2
i=0

len(observed)−1

∑

§Definition: 0 or sum of finite number of non-
zero terms
§Each term of the form cxp

◦ c, the coefficient, a real number
◦ p, the degree of the term, a non-negative

integer

§The degree of the polynomial is the largest
degree of any non-zero term
§Examples

◦ Line: ax + b
◦ Parabola: ax2 + bx + c
◦ Cubic: ax3 + bx2 + cx + d
◦ Quartic: ax4 + bx3 + cx2 + dx + e

Aside: Polynomials with One Variable (x)

6.1000 LECTURE 22 23

§Simple example:
◦ Use a degree-one polynomial, y = ax+b, as model of data

(best fitting line)

§Want to find values of a and b such that

is minimized, where x[i] is the ith data point, and
observed[i] is the corresponding measured value

Solving for Least Squares

6.1000 LECTURE 22 24

(observed[i]− predicted[i])2
i=0

len(observed)−1

∑

(observed[i]− a* x[i]− b)2
i=0

len(observed)−1

∑

a

b

Finding the Best Curve (simplest case)

6.1000 LECTURE 22 26

• Set of all possible lines
represented by points in (a, b)
space
• Point defines line ax+b

• Imagine a surface in this space,
where height is value of the
objective function

• The objective function is
quadratic in terms of a and b, so
this surface is a two-dimensional
parabola

• The minimum point can be found
by “walking downhill”, or by
analytic differentiation

§Objective surface using sum-of-squared-differences is
differentiable
◦ Means we can compute gradient direction analytically

and use to efficiently compute next step to take in
searching space for optimal objective function value

§Objective surface in this case has a global minimum
◦ Means there is always a unique best fit

§Easy to solve for (linear system)
◦ Minimum: we want derivative to be zero
◦ Derivative of a quadratic is linear

Some Properties of Linear Regression

6.1000 LECTURE 22 28

§For y = ax + b where y is dependent variable and x is
independent variable

§yi, xi are measurements

§Find a & b that minimize Σ 𝑦𝑖 − 𝑎𝑥𝑖 − 𝑏 !

Derive it!

6.1000 LECTURE 22 29

§For y = ax + b where y is dependent variable and x is
independent variable

§yi, xi are measurements

§Find a & b that minimize Σ 𝑦𝑖 − 𝑎𝑥𝑖 − 𝑏 !

§Set derivative wrt a and wrt to b to zero

§Derivative wrt a: Σ − 2xi 𝑦𝑖 − 𝑎𝑥𝑖 − 𝑏 = 0
§Wrt b: Σ	- 𝑦𝑖 − 𝑎𝑥𝑖 − 𝑏 = 0

§The xi and yi are known.

§We have two linear equations in a & b.
◦ Easy to solve !

Derive it!

6.1000 LECTURE 22 30

§You could certainly write your own linear regression code

§Good news is that numpy provides built in functions to
find these polynomial fits
§np.polyfit(observed_x, observed_y, n)

finds coefficients of a polynomial, of degree n, that
provides a best least squares fit for the observed data

◦ n = 1 à best line y = ax + b
◦ n = 2 à best parabola y = ax2 + bx + c
◦ n = 3 à best cubic y = ax3 + bx2 + cx + d

polyfit

6.1000 LECTURE 22 31

Using polyfit

6.1000 LECTURE 22 35

a, b = np.polyfit(x_vals, y_vals, 1)
y_pred = a*x_vals + b
k = 1/a
print(f'a = {a:.5f}, b = {b:.5f}')
plt.plot(x_vals, y_pred)

Remember Hooke:
 F = kd
Here plotting d = aF
So k = 1/a

model = np.polyfit(x_vals, y_vals, 1)
y_pred = np.polyval(model, x_vals)
k = 1/model[0]
print(f'a = {model[0]:.5f},
 b = {model[1]:.5f}')
plt.plot(x_vals, y_pred)

§Ran an experiment to gather data

§Theory predicts relationship between
measurements (displacements) and
experimental parameters (masses or forces)

§Linear regression lets us fit best model (line
in our case) to observed data
◦ Best here means minimize sum squared error

between observed and predicted values

§So, let’s apply this idea to other data…

Quick Summary So Far

6.1000 LECTURE 22 36

Five Minute Break

6.1000 LECTURE 22 37

Another Experiment

6.1000 LECTURE 22 38

Fit a Line

6.1000 LECTURE 22 39

Let’s Try a Higher-degree Model

6.1000 LECTURE 22 40

model2 = np.polyfit(x_vals, y_vals, 2)
plt.plot(x_vals, np.polyval(model2, x_vals))

• Now we are fitting a best parabola instead of a best line
• Sometimes, this is still called linear regression, because

the model is linear in the parameters (i.e. coefficients of
the polynomial)

• Others call it polynomial regression

!
!"#

$%& '()%*+%, -.

𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑖 − 𝒂 ∗ 𝑥 𝑖 / 	− 𝒃 ∗ 𝑥 𝑖 − 𝒄 /

§1/ the model we find is a linear polynomial
◦ Linearity wrt to x or m here

Two meanings of linear in linear regression

6.1000 LECTURE 22 41

§1/ the model we find is a linear polynomial
◦ Linearity wrt to x or m here

§2/ The equations we solve are linear in the model
parameters
◦ Linearity wrt k or a and b here
◦ True for any polynomial : i.e. even when we fit a

quadratic 𝑦 = 𝑎𝑥/ + 𝑏𝑥 + 𝑐 it’s still linear in a, b, c even
though it’s not linear in x.

§The world can be confusing.

Two meanings of linear in linear regression

6.1000 LECTURE 22 42

Quadratic Appears to be a Better Fit

6.1000 LECTURE 22 43

§How good are they relative to each other?

§How good are they in an absolute sense?

How Good Are These Fits?

6.1000 LECTURE 22 44

§Fit is a function from the independent variable to the
dependent variable
◦ Given an independent value, provides an estimate of the

dependent value

§Which model provides better estimates?
◦ Since we found fit by minimizing sum of square error,

could just evaluate goodness of fit by looking at that error

Relative to Each Other

6.1000 LECTURE 22 45

We Can Look at Mean Squared Error

6.1000 LECTURE 22 46

Measure
error of each
data point

Find average
across all of
these
squared
differences

Take square
of difference

Comparing Mean Squared Error

6.1000 LECTURE 22 47

def mean_squared_error(data, predicted):
 error = 0.0
 for i in range(len(data)):
 error += (data[i] - predicted[i])**2
 return error/len(data)

Comparing Mean Squared Error

6.1000 LECTURE 22 48

def mean_squared_error(data, predicted):
 error = 0.0
 for i in range(len(data)):
 error += (data[i] - predicted[i])**2
 return error/len(data)

y_pred = np.polyval(model1, x_vals)
print('Mean squared error for linear model =',
 mean_squared_error(y_vals, y_pred))

y_pred = np.polyval(model2, x_vals)
print('Mean squared error for quadratic model =',
 mean_squared_error(y_vals, y_pred))

Mean squared error for linear model = 9372.73
Mean squared error for quadratic model = 1524.02
Given this improvement in mean squared error from linear to
quadratic model, is there something even better?

§Mean squared error useful for comparing two different
models for the same data

§Is it also useful for getting a sense of absolute goodness of
fit?
◦ Is 1524 good?

§Hard to know – no bound on values; not scale independent
◦ For example, if we double the masses, get double the error

In an Absolute Sense

6.1000 LECTURE 22 49

§Mean squared error useful for comparing two different
models for the same data

§Is it also useful for getting a sense of absolute goodness of
fit?
◦ Is 1524 good?

§Hard to know – no bound on values; not scale independent
◦ For example, if we double the masses, get double the error

§Instead we use coefficient of determination, R2,

In an Absolute Sense

6.1000 LECTURE 22 50

Error in estimates

Variability in
measured data

yi are measured values
pi are predicted values
µ is mean of measured values

If You Prefer Code

6.1000 LECTURE 22 51

def r_squared(observed, predicted):
 error = ((predicted - observed)**2).sum()
 mean_error = error/len(observed)
 return 1 - mean_error / np.var(observed)

If You Prefer Code

6.1000 LECTURE 22 52

def r_squared(observed, predicted):
 error = ((predicted - observed)**2).sum()
 mean_error = error/len(observed)
 return 1 - mean_error / np.var(observed)

Note:
• Numerator is sum of squared errors
• Dividing by number of samples gives mean squared error
• Denominator is variance times number of samples
• So mean SSE/variance is same as R2 ratio

Subtracting two arrays
component-wise

Squaring each element
of an array

Add all
elements

Need to
invoke
function

§By comparing the estimation errors (the numerator)
with the variability of the original values (the
denominator), R2 is intended to capture the proportion
of variability in a data set that is accounted for by the
statistical model provided by the fit
◦ Said differently: compare model to a constant model
◦ The mean is the best constant estimate under least

squares

R2

6.1000 LECTURE 22 53

§Always between 0 and 1 when fit generated by a linear
regression* and tested on training data

◦ If R2 = 1, the model explains all of the variability in the
data.
◦ ∑!(𝑦! − 𝑝!)"= 0

◦ If R2 = 0, there is no relationship between the values
predicted by the model and the actual data. (No better
than constant prediction)
◦ ∑!(𝑦! − 𝑝!)"= ∑!(𝑦! − 𝜇)"

◦ If R2 = 0.5, the model explains half the variability in the
data.

R2

6.1000 LECTURE 22 54

* Assuming the model has a free constant term

Testing Goodness of Fits

6.1000 LECTURE 22 55

def gen_fits(x_vals, y_vals, degrees):
 models = []
 for d in degrees:
 model = np.polyfit(x_vals, y_vals, d)
 models.append(model)
 return models

def test_fits(models, degrees, x_vals, y_vals, title):
 plt.figure()
 plt.plot(x_vals, y_vals, 'o', label='Data')
 for i in range(len(models)):
 y_pred = np.polyval(models[i], x_vals)
 error = r_squared(y_vals, y_pred)
 plt.plot(x_vals, y_pred,

 label=f'Fit of degree {degrees[i]})
 plt.legend()
 plt.title(title)

List of ints: different order
models to try

List of fitted polynomial models,
each a list of coefficients

How Well Do Fits Explain Variance?

6.1000 LECTURE 22 56

§Saw that linear fit was poor – both visually and
through R2 measure

§Saw that quadratic fit was better – again both visually
and through R2 measure

§What about fitting higher order polynomials to data?
◦ Degree 4?
◦ Degree 8?
◦ Degree 16?

Can We Do Better?

6.1000 LECTURE 22 57

Order 2 Fit

6.1000 LECTURE 22 58

Order 4 Fit

6.1000 LECTURE 22 59

Order 8 Fit

6.1000 LECTURE 22 60

Order 16 Fit

6.1000 LECTURE 22 61

Can We Get a Tighter Fit?

6.1000 LECTURE 22 62

Does this mean that a
16th order polynomial is
the best fit for the data?

§Looks like an order 16 fit is really good – so should we
just use this as our model?
◦ To answer, need to ask – why build models in first place?

§Help us understand process that generated the data
◦ E.g., the properties of a particular linear spring

§Help us make predictions about out-of-sample data
◦ E.g., predict the displacement of a spring when a force is

applied to it
◦ E.g., predict the effect of treatment on a patient
◦ E.g., predict the outcome of an election

§A good model helps us do both of these things
◦ Let’s specifically look at using second property

Does Tightest = Best?

6.1000 LECTURE 22 63

How Mystery Data Was Generated

6.1000 LECTURE 22 64

def gen_noisy_parabolic_data(a, b, c, x_vals, filename):
 y_vals = []
 for x in x_vals:
 theoretical_val = a*x**2 + b*x + c
 y_vals.append(theoretical_val + random.gauss(0, 35))
 with open(filename,'w') as f:
 f.write('y x\n')
 for i in range(len(y_vals)):
 f.write(str(y_vals[i]) + ' ' + str(x_vals[i]) + '\n’)

x_vals = range(-10, 11, 1)
a, b, c = 3, 0, 0
gen_noisy_parabolic_data(a, b, c, x_vals, 'mysteryData.txt')

Zero mean, Gaussian noise

How Mystery Data Was Generated

6.1000 LECTURE 22 65

def gen_noisy_parabolic_data(a, b, c, x_vals, filename):
 y_vals = []
 for x in x_vals:
 theoretical_val = a*x**2 + b*x + c
 y_vals.append(theoretical_val + random.gauss(0, 35))
 with open(filename,'w') as f:
 f.write('y x\n')
 for i in range(len(y_vals)):
 f.write(str(y_vals[i]) + ' ' + str(x_vals[i]) + '\n’)

x_vals = range(-10, 11, 1)
a, b, c = 3, 0, 0
gen_noisy_parabolic_data(a, b, c, x_vals, 'mysteryData.txt')

If data was generated by
quadratic, why was 16th order
polynomial the “best” fit?

Because it fit the noise

Zero mean, Gaussian noise

§Is it just luck that we got a “better” fit on training data
with higher order model?

§What happens when we increase order of polynomial
during training?
◦ Can we get a worse fit to training data?

Increasing the Complexity

6.1000 LECTURE 22 66

§Is it just luck that we got a “better” fit on training data with
higher order model?

§What happens when we increase order of polynomial
during training?
◦ Can we get a worse fit to training data?

§If extra term is useless, coefficient will merely be zero

§But if data is noisy, can fit the noise rather than the
underlying pattern in the data
◦ May lead to a “better” R2 value, but not really a “better” fit
◦ Might yield terrible predictions for unseen data – will look at

this shortly

Increasing the Complexity

6.1000 LECTURE 22 67

Interpolation Theorem:
An order n polynomial will perfectly fit

n+1 data points

§ One way to separate out impact of noise on model is
to take advantage of fact that each time we sample a
system
◦ Signal will be roughly the same
◦ Noise will be different

§ Use set of data as a “training”
set to fit a model

§ Use a second set of data as a
“validation” set, and see how well the
model from the training set
accounts for the validation set

Validate the training

6.1000 LECTURE 22 69

Generate 2 Data Sets from Same Distribution

6.1000 LECTURE 22 70

x_vals = range(-10, 11, 1)
a, b, c = 3, 0, 0
gen_noisy_parabolic_data(a, b, c, x_vals, 'parabola1.txt')
gen_noisy_parabolic_data(a, b, c, x_vals, 'parabola2.txt')

degrees = (1, 2, 16)

x_vals1, y_vals1 = get_data('parabola1.txt')
models1 = gen_fits(x_vals1, y_vals1, degrees)
test_fits(models1, degrees, x_vals1, y_vals1, 'Parabola 1')

x_vals2, y_vals2 = get_data('parabola2.txt')
models2 = gen_fits(x_vals2, y_vals2, degrees)
test_fits(models2, degrees, x_vals2, y_vals2, 'Parabola 2')

Have two different models, one for each
data set, where x_vals are the same, but
y_vals differ

Model first data set

Model second data set

Generate two data sets

test_fits(models1, degrees, x_vals1, y_vals1, 'Parabola 1')

Training and Validation Errors

6.1000 LECTURE 22 73

test_fits(models1, degrees, x_vals1, y_vals1, 'Parabola 1')

test_fits(models1, degrees, x_vals2, y_vals2,
 'Apply Parabola 1 Model to Parabola 2')

Training and Validation Errors

6.1000 LECTURE 22 74

Now we see that the quadratic model actually is
much better fit when applied to a new data set

§ 16-degree polynomial is an
example of overfitting to the
data

§ If we only look at how well
model fits training data, we
may not detect that model is
too complex

§ Need to cross-validate: Train
on one data set, then validate
on a different set

The Moral of the Story

6.1000 LECTURE 22 75

§If we only have one data set, an alternative way to
cross-validate is to split the existing data:
◦ A training subset (which we use to build a model)
◦ A validation subset (on which we apply the model)

§Could split data evenly, or use more to train than to
validate

§Ideally select validating data at random
◦ So that it has the same “distribution” as the training data
◦ Many ways of doing this

If We Can’t Run Another Experiment?

6.1000 LECTURE 22 76

Split a Data Set into Train/Validate Subsets

6.1000 LECTURE 22 77

def split_data(x_vals, y_vals, frac_training, plot=True):
 train_size = int(len(x_vals) * frac_training)
 train_indices = random.sample(range(len(x_vals)), train_size)
 train_x, train_y, validate_x, validate_y = [], [], [], []
 for i in range(len(x_vals)):
 if i in train_indices:
 train_x.append(x_vals[i])
 train_y.append(y_vals[i])
 else:
 validate_x.append(x_vals[i])
 validate_y.append(y_vals[i])
 if plot:
 plt.figure()
 plt.plot(train_x, train_y, '.', label='Training')
 plt.plot(validate_x, validate_y, '.', label='Test')
 plt.legend()
 plt.title('Training and Validation Data Splits')
 return (train_x, train_y), (validate_x, validate_y)

Sampling without
replacement,
unique indices

Partition based on
training-selected
indices

Split a Data Set into Train/Validate Subsets

6.1000 LECTURE 22 78

def fit_and_validate(x_vals, y_vals, degrees):
 train, validate = split_data(x_vals, y_vals, 0.5)
 models = []
 for d in degrees:
 models.append(np.polyfit(train[0], train[1], d))
 for m in models:
 print([round(coeff, 2) for coeff in m])

 evaluate_fits(models, degrees, train[0], train[1],
 'Fit to Training Data’)

 evaluate_fits(models, degrees, validate[0], validate[1],
 'Applied to Validation Data')

x_vals, y_vals = get_data('parabola.txt')
degrees = (1, 2, 16)
fit_and_validate(x_vals, y_vals, degrees)

Cross-Validation on a Single Data Set

6.1000 LECTURE 22 79

Validating a Model

6.1000 LECTURE 22 80

degree = 2 model
y = 2.99x2 + 0.07x + 4.11

degree = 16 model
y = -0.03x6 + 0.23x5 - 0.95x4 – 5.82x3 +
15.94x2 + 54.55x – 17.95

Huh?

Validating a Model

6.1000 LECTURE 22 81

degree = 2 model
y = 2.99x2 + 0.07x + 4.11

degree = 16 model
y = -0.03x6 + 0.23x5 - 0.95x4 – 5.82x3 +
15.94x2 + 54.55x – 17.95

Huh?

R2 between 0 and 1
only for training data

§Remember the original purpose of fitting a curve to data is
to obtain a model that can predict and explain unseen
examples
§Prepare another test data set for evaluating the chosen
model
◦ Same evaluation procedure: apply model to data and evaluate

R2 or related metric
◦ But only apply the best validated model

§Summary of data sets
◦ Training data is for fitting the parameters of a model
◦ Validation data is for finding the most appropriate model

structure
◦ Testing data is for evaluating the chosen model’s predictive

power on the data/phenomenon being observed

Final evaluation after validation

6.1000 LECTURE 22 82

§Combining model information with goodness of fit can
provide additional insight
§Consider the fit to the original spring data

§ R2 value is .8815 – which is decent

One Last Thought

6.1000 LECTURE 22 103

§But visual inspection suggests that something might be
happening for large forces?

§Remember theory said Hooke’s law applied up to some
maximum force
◦ Have you ever stretched a slinky too far?

One Last Thought

6.1000 LECTURE 22 104

Is there something
going on here?

§Could search for point at which to break data into two
modes, and fit models to both subsets separately; look for
break that minimizes sum of residual error in both parts

§R2 value for first part now .9581; for second part .6784;
without break, have R2 of .8815

One Last Thought

6.1000 LECTURE 22 105

§Alternatively, search for point at which to break data, and
fit model to first set but fit constant line to second set; look
for break that minimizes sum of residual error in both parts

§R2 value for lower part now .9539; without break, have R2
of .8815

One Last Thought

6.1000 LECTURE 22 106

§We can use linear regression to fit a curve to data
◦ Mapping from independent values to dependent values

§That curve is a model of the data that can be used to
predict the value associated with independent values
we haven’t seen (out-of-sample data)

§R-squared used to evaluate model
◦ Higher not always “better” because of risk of over fitting

§Choose complexity of model based on
◦ Theory about structure

of data
◦ Cross validation
◦ Simplicity

Take-home message

6.1000 LECTURE 22 107
https://quoteinvestigator.com/2011/05/13/einstein-simple/

?

