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Announcements
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Distributions Alone Lack Explanatory Power
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https://www.wired.com/2014/08/lego-cost



§Robert Hooke
◦ 1635-1703
◦ Curator of experiments of the Royal Society
◦ Surveyor for City of London after the Great Fire
◦ Discovered law of elasticity

◦ Led to invention of balance spring, which led to first accurate watch
◦ Observed that gravity was an inverse effect, but didn’t know it 

was inverse square (Newton gets credit for that)
◦ Huge believer in running experiments and then building 

models
◦ “It is commonly believed that anyone who tabulates numbers is a 

statistician. This is like believing that anyone who owns a scalpel is a 
surgeon.”

◦ “The truth is, the Science of Nature has been already too long made 
only a work of the Brain and the Fancy: It is now high time that it 
should return to the plainness and soundness of Observations on 
material and obvious things.”

Curve Fitting: Hooke’s Law
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Example: Curve Fitting With Springs
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Linear spring: amount of force needed to 
stretch or compress spring is linear in the 
distance the spring is stretched or 
compressed, up to some maximum force

Each spring has a spring constant, k, that 
determines how much force is needed 
to achieve a specific compressionk ≈ 35,000N /m

k ≈1N /m



§F = –kd

§How much does a rider have to weigh 
to compress spring 1 cm?

Hooke’s Law
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𝐹 = 0.01𝑚	 ∗ 	35,000𝑁/𝑚

𝐹 = 350𝑁 𝐹 = 𝑚𝑎𝑠𝑠 ∗ 𝑎𝑐𝑐

𝐹 = 𝑚𝑎𝑠𝑠 ∗ 9.81𝑚/𝑠!
𝑚𝑎𝑠𝑠 ∗ 9.81𝑚/𝑠!=350𝑁

𝑚𝑎𝑠𝑠 =
350𝑁

9.81𝑚/𝑠!

𝑚𝑎𝑠𝑠 ≈ 35.68	kg	(𝑜𝑟	𝑎𝑏𝑜𝑢𝑡	79	lbs)

𝑚𝑎𝑠𝑠 =
350
9.81

	kg

Why the ‘–’?   Because deflection in 
opposite direction to force



§F = –kd

§k = –F/d

§k = 9.81*m/d

§Each trial estimates k

Finding k
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By Yapparina (Own work) [CC BY-SA 3.0 (http://creativecommons.org/licenses/by-
sa/3.0)], via Wikimedia Commons

m

m

m



Some Data
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Mass (kg)  Distance (m)
0.1    0.0865 
0.15    0.1015
0.2    0.1106  
0.25    0.1279
0.3    0.1892 
0.35    0.2695
0.4    0.2888
0.45    0.2425
0.5    0.3465
0.55    0.3225
0.6    0.3764
0.65     0.4263
0.7    0.4562
0.75    0.4502
0.8    0.4499
0.85    0.4534 
0.9    0.4416
0.95    0.4304
1.0    0.437

m

m

mEach distance/mass pair 
provides an estimate of k



def plotData(fileName):
    xVals, yVals = getData(fileName)
    xVals = np.array(xVals) #masses
    yVals = np.array(yVals) #distances/displacements
    xVals = xVals*9.81  #acc. due to gravity; forces
    plt.plot(xVals, yVals, 'bo',
             label = 'Measured displacements')
    labelPlot()

Taking a Look at the Data
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A reminder/primer about numpy arrays:
• Converts a list into a linear data structure
• Can treat arrays algebraically; e.g., if a and b are arrays, then:

• a*2 multiplies every element of a by 2
• a + 3 adds 3 to every element of a
• a – b subtracts each element of b from corresponding element of a
• a*b multiplies each element of a by corresponding element of b



testArray = np.array([1,2,3,4,5,6,7,8,9])

print(testArray)

[1 2 3 4 5 6 7 8 9]

secondArray = np.array([3,2,6,4,1,8,7,5,9])

print(secondArray)

[3 2 6 4 1 8 7 5 9]

print(testArray * 2)

[ 2  4  6  8 10 12 14 16 18]

print(testArray + 3)

[ 4  5  6  7  8  9 10 11 12]

print(testArray - secondArray)

[-2  0 -3  0  4 -2  0  3  0]

print(testArray * secondArray)

[ 3  4 18 16  5 48 49 40 81]

Using Arrays
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Note: operations on arrays 
do not mutate the array, 
they create a new one



def get_data(filename):
  with open(filename, 'r') as data_file:
    y_vals, x_vals = [], [] 
    data_file.readline() # discard header
    for line in data_file:
      y, x = line.split()
      y_vals.append(float(y))
      x_vals.append(float(x))
    return np.array(x_vals), np.array(y_vals)

x_vals, y_vals = get_data('springData.txt')
x_vals = x_vals*9.81 # force due to gravity
plt.plot(x_vals, y_vals, 'bo', label='Measured displacements')

Taking a Look at the Data

6.1000 LECTURE 22 11

A reminder/primer about numpy arrays:
• Converts a list into a linear data structure
• Can treat arrays algebraically; e.g., if a and b are arrays, then:

• a*2 multiplies every element of a by 2
• a + 3 adds 3 to every element of a
• a – b subtracts each element of b from corresponding element of a
• a*b multiplies each element of a by corresponding element of b



Taking a Look at the Data
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§We’ve run an experiment
§We can relate observations to 
trials (distance d vs. force F – or 
|F| in this case)
§Theory predicts a relationship 
between observations and trials
◦ |F| = kd

§Can we use these measurements 
to determine k and to validate 
model?
§Try to fit a curve to data, and use 
to deduce relationship between 
observation and trial
§Notice that points don’t lie on a 
line. Experiments are noisy!

What Can We Do With This Data?
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§Naïve solution : For each data point, 
compute k = m/d
Then take the average

§Obvious problem : what if we had a 
measurement for m = 0 ?

§Even measurements for small m are 
not as precise

§Only works for a single parameter 
and a simple law like Hooke’s law

§Doesn’t tell us how good the law is

Why not just compute “average” k?
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Mass (kg)  Distance (m)
0.1    0.0865 
0.15    0.1015
0.2    0.1106  
0.25    0.1279
0.3    0.1892 
0.35    0.2695
0.4    0.2888
0.45    0.2425
0.5    0.3465
0.55    0.3225
0.6    0.3764
0.65     0.4263
0.7    0.4562
0.75    0.4502
0.8    0.4499
0.85    0.4534 
0.9    0.4416
0.95    0.4304
1.0    0.437



§Pick two sample points to define line and fit, 
measure slope

Could Just Try Guessing Line?
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§Pick two sample points to define line and fit, 
measure slope

Could Just Try Guessing Line?
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§Pick two sample points to define line and fit, 
measure slope

Could Just Try Guessing Line?

6.1000 LECTURE 22 17

Need some way 
to evaluate how 
well the line fits 
the data

Also need a 
robust 
algorithm that 
finds “good” fits



§When we fit a curve to a set of data, we are finding a 
fit that relates an independent variable (the mass or 
force) to an estimated value of a dependent variable 
(the distance or displacement)

Fitting Curves to Data – back to optimization
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§When we fit a curve to a set of data, we are finding a 
fit that relates an independent variable (the mass or 
force) to an estimated value of a dependent variable 
(the distance or displacement)
§To decide how well a curve fits the data, we need a 
way to measure the goodness of the fit – called the 
objective function (aka loss)
§Once we define the objective function, we also need 
an algorithm to find the curve that minimizes it
§Theory says find a curve such that some function of 
the distances from the curve to the measured points is 
minimized.  Simplest case finds line that best fits data.
§So need objective function that measures distances 
from curve, and algorithm to find best curve

Fitting Curves to Data – back to optimization
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Measuring Distance
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X

Y
P

Which should we choose?

Vertical distance because want to predict dependent 
Y value for every given independent X value, and 
vertical distance measures error in that prediction

Theory says find a curve such that some function 
of the distances from the curve to the measured 
points is minimized.  Simplest case finds line that 
best fits data.



§observed: actual measurements for each trial

§predicted: value that model suggests for each trial 
(value on the fitted curve)

Least Squares Objective Function
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(observed[i]− predicted[i])2
i=0

len(observed )−1

∑



§To minimize this objective function, want to find a 
curve for the predicted observations that leads to 
minimum value of sum of squared differences 
◦ Remember that curve will define, for each independent 

variable value, the associated predicted dependent 
variable value

§Need to make a choice on kinds of curves – we will 
use polynomials of one variable
§Need to find the best curve – use linear regression to 
find a polynomial representation for the predicted 
model that minimizes the objective function

Solving for Least Squares
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(observed[i]− predicted[i])2
i=0

len(observed )−1

∑



§Definition: 0 or sum of finite number of non-
zero terms
§Each term of the form cxp

◦ c, the coefficient, a real number
◦ p, the degree of the term, a non-negative 

integer

§The degree of the polynomial is the largest 
degree of any non-zero term
§Examples

◦ Line:              ax + b
◦ Parabola:     ax2 + bx + c
◦ Cubic:           ax3 + bx2 + cx + d
◦ Quartic:       ax4 + bx3 + cx2 + dx + e

Aside: Polynomials with One Variable (x)
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§Simple example:
◦ Use a degree-one polynomial, y = ax+b, as model of data 

(best fitting line)

§Want to find values of a and b such that

 

is minimized, where x[i] is the ith data point, and 
observed[i] is the corresponding measured value 

Solving for Least Squares
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(observed[i]− predicted[i])2
i=0

len(observed )−1

∑

(observed[i]− a* x[i]− b)2
i=0

len(observed )−1

∑



a

b

Finding the Best Curve (simplest case)
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• Set of all possible lines 
represented by points in (a, b) 
space 
• Point defines line ax+b

• Imagine a surface in this space, 
where height is value of the 
objective function

• The objective function is 
quadratic in terms of a and b, so 
this surface is a two-dimensional 
parabola

• The minimum point can be found 
by “walking downhill”, or by 
analytic differentiation



§Objective surface using sum-of-squared-differences is 
differentiable
◦ Means we can compute gradient direction analytically 

and use to efficiently compute next step to take in 
searching space for optimal objective function value

§Objective surface in this case has a global minimum
◦ Means there is always a unique best fit

§Easy to solve for (linear system)
◦ Minimum: we want derivative to be zero
◦ Derivative of a quadratic is linear

Some Properties of Linear Regression
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§For y = ax + b where y is dependent variable and x is 
independent variable

§yi, xi are measurements

§Find a & b that minimize Σ 𝑦𝑖 − 𝑎𝑥𝑖 − 𝑏 !

Derive it!
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§For y = ax + b where y is dependent variable and x is 
independent variable

§yi, xi are measurements

§Find a & b that minimize Σ 𝑦𝑖 − 𝑎𝑥𝑖 − 𝑏 !

§Set derivative wrt a and wrt to b to zero

§Derivative wrt a: Σ − 2xi 𝑦𝑖 − 𝑎𝑥𝑖 − 𝑏 = 0
§Wrt b: Σ	- 𝑦𝑖 − 𝑎𝑥𝑖 − 𝑏  = 0

§The xi and yi are known. 

§We have two linear equations in a & b. 
◦ Easy to solve !

Derive it!
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§You could certainly write your own linear regression code

§Good news is that numpy provides built in functions to 
find these polynomial fits
§np.polyfit(observed_x, observed_y, n)

finds coefficients of a polynomial, of degree n, that 
provides a best least squares fit for the observed data

◦ n = 1 à best line   y = ax + b
◦ n = 2 à best parabola  y = ax2 + bx + c
◦ n = 3 à best cubic   y = ax3 + bx2 + cx + d

polyfit
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Using polyfit
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a, b = np.polyfit(x_vals, y_vals, 1)
y_pred = a*x_vals + b
k = 1/a
print(f'a = {a:.5f}, b = {b:.5f}')
plt.plot(x_vals, y_pred)

Remember Hooke:
  F = kd
Here plotting d = aF
So k = 1/a

model = np.polyfit(x_vals, y_vals, 1)
y_pred = np.polyval(model, x_vals)
k = 1/model[0]
print(f'a = {model[0]:.5f},
       b = {model[1]:.5f}')
plt.plot(x_vals, y_pred)



§Ran an experiment to gather data

§Theory predicts relationship between 
measurements (displacements) and 
experimental parameters (masses or forces)

§Linear regression lets us fit best model (line 
in our case) to observed data
◦ Best here means minimize sum squared error 

between observed and predicted values

§So, let’s apply this idea to other data…

Quick Summary So Far

6.1000 LECTURE 22 36



Five Minute Break
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Another Experiment
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Fit a Line
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Let’s Try a Higher-degree Model
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model2 = np.polyfit(x_vals, y_vals, 2)
plt.plot(x_vals, np.polyval(model2, x_vals))

• Now we are fitting a best parabola instead of a best line
• Sometimes, this is still called linear regression, because 

the model is linear in the parameters (i.e. coefficients of 
the polynomial)

• Others call it polynomial regression

!
!"#

$%& '()%*+%, -.

𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑖 − 𝒂 ∗ 𝑥 𝑖 / 	− 𝒃 ∗ 𝑥 𝑖 − 𝒄 /



§1/ the model we find is a linear polynomial 
◦ Linearity wrt to x or m here

Two meanings of linear in linear regression
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§1/ the model we find is a linear polynomial 
◦ Linearity wrt to x or m here

§2/ The equations we solve are linear in the model 
parameters 
◦ Linearity wrt k or a and b here
◦ True for any polynomial : i.e. even when we fit a 

quadratic 𝑦 = 𝑎𝑥/ + 𝑏𝑥 + 𝑐 it’s still linear in a, b, c even 
though it’s not linear in x. 

§The world can be confusing. 

Two meanings of linear in linear regression
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Quadratic Appears to be a Better Fit
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§How good are they relative to each other?

§How good are they in an absolute sense?

How Good Are These Fits?
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§Fit is a function from the independent variable to the 
dependent variable
◦ Given an independent value, provides an estimate of the 

dependent value

§Which model provides better estimates?
◦ Since we found fit by minimizing sum of square error, 

could just evaluate goodness of fit by looking at that error

Relative to Each Other
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We Can Look at Mean Squared Error

6.1000 LECTURE 22 46

Measure 
error of each 
data point

Find average 
across all of 
these 
squared 
differences

Take square 
of difference



Comparing Mean Squared Error
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def mean_squared_error(data, predicted):
  error = 0.0
  for i in range(len(data)):
    error += (data[i] - predicted[i])**2
  return error/len(data)



Comparing Mean Squared Error
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def mean_squared_error(data, predicted):
  error = 0.0
  for i in range(len(data)):
    error += (data[i] - predicted[i])**2
  return error/len(data)

y_pred = np.polyval(model1, x_vals)
print('Mean squared error for linear model =',
   mean_squared_error(y_vals, y_pred))

y_pred = np.polyval(model2, x_vals)
print('Mean squared error for quadratic model =',
   mean_squared_error(y_vals, y_pred))

Mean squared error for linear model = 9372.73
Mean squared error for quadratic model = 1524.02
Given this improvement in mean squared error from linear to
quadratic model, is there something even better?



§Mean squared error useful for comparing two different 
models for the same data

§Is it also useful for getting a sense of absolute goodness of 
fit?
◦ Is 1524 good?

§Hard to know – no bound on values; not scale independent
◦ For example, if we double the masses, get double the error

In an Absolute Sense
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§Mean squared error useful for comparing two different 
models for the same data

§Is it also useful for getting a sense of absolute goodness of 
fit?
◦ Is 1524 good?

§Hard to know – no bound on values; not scale independent
◦ For example, if we double the masses, get double the error 

§Instead we use coefficient of determination, R2,

In an Absolute Sense
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Error in estimates

Variability in 
measured data

yi are measured values
pi are predicted values
µ is mean of measured values



If You Prefer Code
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def r_squared(observed, predicted):
  error = ((predicted - observed)**2).sum()
  mean_error = error/len(observed)
  return 1 - mean_error / np.var(observed)



If You Prefer Code
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def r_squared(observed, predicted):
  error = ((predicted - observed)**2).sum()
  mean_error = error/len(observed)
  return 1 - mean_error / np.var(observed)

Note:
• Numerator is sum of squared errors
• Dividing by number of samples gives mean squared error
• Denominator is variance times number of samples
• So mean SSE/variance is same as R2 ratio  

Subtracting two arrays 
component-wise

Squaring each element 
of an array 

Add all 
elements

Need to 
invoke 
function



§By comparing the estimation errors (the numerator) 
with the variability of the original values (the 
denominator), R2 is intended to capture the proportion 
of variability in a data set that is accounted for by the 
statistical model provided by the fit
◦ Said differently: compare model to a constant model
◦ The mean is the best constant estimate under least 

squares

R2
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§Always between 0 and 1 when fit generated by a linear 
regression* and tested on training data

◦ If R2 = 1, the model explains all of the variability in the 
data. 
◦ ∑!(𝑦! − 𝑝!)"= 0

◦ If R2 = 0, there is no relationship between the values 
predicted by the model and the actual data. (No better 
than constant prediction)
◦ ∑!(𝑦! − 𝑝!)"= ∑!(𝑦! − 𝜇)"

◦ If R2 = 0.5, the model explains half the variability in the 
data.

R2
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* Assuming the model has a free constant term



Testing Goodness of Fits
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def gen_fits(x_vals, y_vals, degrees):
  models = []
  for d in degrees:
    model = np.polyfit(x_vals, y_vals, d)
    models.append(model)
  return models

def test_fits(models, degrees, x_vals, y_vals, title):
    plt.figure()
  plt.plot(x_vals, y_vals, 'o', label='Data')
  for i in range(len(models)):
    y_pred = np.polyval(models[i], x_vals)
    error = r_squared(y_vals, y_pred)
    plt.plot(x_vals, y_pred,

                 label=f'Fit of degree {degrees[i]})
  plt.legend()
  plt.title(title)

List of ints: different order 
models to try

List of fitted polynomial models, 
each a list of coefficients



How Well Do Fits Explain Variance?
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§Saw that linear fit was poor – both visually and 
through R2 measure

§Saw that quadratic fit was better – again both visually 
and through R2 measure

§What about fitting higher order polynomials to data?
◦ Degree 4?
◦ Degree 8?
◦ Degree 16?

Can We Do Better?
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Order 2 Fit
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Order 4 Fit

6.1000 LECTURE 22 59



Order 8 Fit
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Order 16 Fit
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Can We Get a Tighter Fit?
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Does this mean that a 
16th order polynomial is 
the best fit for the data?



§Looks like an order 16 fit is really good – so should we 
just use this as our model?
◦ To answer, need to ask – why build models in first place?

§Help us understand process that generated the data
◦ E.g., the properties of a particular linear spring

§Help us make predictions about out-of-sample data
◦ E.g., predict the displacement of a spring when a force is 

applied to it
◦ E.g., predict the effect of treatment on a patient
◦ E.g., predict the outcome of an election

§A good model helps us do both of these things
◦ Let’s specifically look at using second property

Does Tightest = Best?
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How Mystery Data Was Generated
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def gen_noisy_parabolic_data(a, b, c, x_vals, filename):
  y_vals = []
  for x in x_vals:
    theoretical_val = a*x**2 + b*x + c
    y_vals.append(theoretical_val + random.gauss(0, 35))
  with open(filename,'w') as f:
    f.write('y    x\n')
    for i in range(len(y_vals)):
      f.write(str(y_vals[i]) + ' ' + str(x_vals[i]) + '\n’)

x_vals = range(-10, 11, 1)
a, b, c = 3, 0, 0
gen_noisy_parabolic_data(a, b, c, x_vals, 'mysteryData.txt')

Zero mean, Gaussian noise



How Mystery Data Was Generated

6.1000 LECTURE 22 65

def gen_noisy_parabolic_data(a, b, c, x_vals, filename):
  y_vals = []
  for x in x_vals:
    theoretical_val = a*x**2 + b*x + c
    y_vals.append(theoretical_val + random.gauss(0, 35))
  with open(filename,'w') as f:
    f.write('y    x\n')
    for i in range(len(y_vals)):
      f.write(str(y_vals[i]) + ' ' + str(x_vals[i]) + '\n’)

x_vals = range(-10, 11, 1)
a, b, c = 3, 0, 0
gen_noisy_parabolic_data(a, b, c, x_vals, 'mysteryData.txt')

If data was generated by 
quadratic, why was 16th order 
polynomial the “best” fit?

Because it fit the noise

Zero mean, Gaussian noise



§Is it just luck that we got a “better” fit on training data 
with higher order model?

§What happens when we increase order of polynomial 
during training?
◦ Can we get a worse fit to training data?

Increasing the Complexity
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§Is it just luck that we got a “better” fit on training data with 
higher order model?

§What happens when we increase order of polynomial 
during training?
◦ Can we get a worse fit to training data?

§If extra term is useless, coefficient will merely be zero

§But if data is noisy, can fit the noise rather than the 
underlying pattern in the data
◦ May lead to a “better” R2 value, but not really a “better” fit
◦ Might yield terrible predictions for unseen data – will look at 

this shortly

Increasing the Complexity
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Interpolation Theorem: 
An order n polynomial will perfectly fit 

n+1 data points



§ One way to separate out impact of noise on model is 
to take advantage of fact that each time we sample a 
system
◦ Signal will be roughly the same
◦ Noise will be different

§ Use set of data as a “training” 
set to fit a model

§ Use a second set of data as a 
“validation” set, and see how well the 
model from the training set 
accounts for the validation set

Validate the training
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Generate 2 Data Sets from Same Distribution
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x_vals = range(-10, 11, 1)
a, b, c = 3, 0, 0
gen_noisy_parabolic_data(a, b, c, x_vals, 'parabola1.txt')
gen_noisy_parabolic_data(a, b, c, x_vals, 'parabola2.txt')

degrees = (1, 2, 16)

x_vals1, y_vals1 = get_data('parabola1.txt')
models1 = gen_fits(x_vals1, y_vals1, degrees)
test_fits(models1, degrees, x_vals1, y_vals1, 'Parabola 1')

x_vals2, y_vals2 = get_data('parabola2.txt')
models2 = gen_fits(x_vals2, y_vals2, degrees)
test_fits(models2, degrees, x_vals2, y_vals2, 'Parabola 2')

Have two different models, one for each 
data set, where x_vals are the same, but 
y_vals differ

Model first data set

Model second data set

Generate two data sets



test_fits(models1, degrees, x_vals1, y_vals1, 'Parabola 1')

Training and Validation Errors
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test_fits(models1, degrees, x_vals1, y_vals1, 'Parabola 1')

test_fits(models1, degrees, x_vals2, y_vals2,
         'Apply Parabola 1 Model to Parabola 2')

Training and Validation Errors
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Now we see that the quadratic model actually is 
much better fit when applied to a new data set



§ 16-degree polynomial is an 
example of overfitting to the 
data

§ If we only look at how well 
model fits training data, we 
may not detect that model is 
too complex

§ Need to cross-validate: Train 
on one data set, then validate 
on a different set

The Moral of the Story
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§If we only have one data set, an alternative way to 
cross-validate is to split the existing data:
◦ A training subset (which we use to build a model)
◦ A validation subset (on which we apply the model)

§Could split data evenly, or use more to train than to 
validate

§Ideally select validating data at random
◦ So that it has the same “distribution” as the training data
◦ Many ways of doing this

If We Can’t Run Another Experiment?
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Split a Data Set into Train/Validate Subsets
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def split_data(x_vals, y_vals, frac_training, plot=True):
  train_size = int(len(x_vals) * frac_training)
  train_indices = random.sample(range(len(x_vals)), train_size)
  train_x, train_y, validate_x, validate_y = [], [], [], []
  for i in range(len(x_vals)):
    if i in train_indices:
      train_x.append(x_vals[i])
      train_y.append(y_vals[i])
    else:
      validate_x.append(x_vals[i])
      validate_y.append(y_vals[i])
  if plot:
    plt.figure()
    plt.plot(train_x, train_y, '.', label='Training')
    plt.plot(validate_x, validate_y, '.', label='Test')
    plt.legend()
    plt.title('Training and Validation Data Splits')
  return (train_x, train_y), (validate_x, validate_y)

Sampling without 
replacement, 
unique indices

Partition based on 
training-selected 
indices



Split a Data Set into Train/Validate Subsets
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def fit_and_validate(x_vals, y_vals, degrees):
  train, validate = split_data(x_vals, y_vals, 0.5)
  models = []
  for d in degrees:
    models.append(np.polyfit(train[0], train[1], d))
  for m in models:
    print([round(coeff, 2) for coeff in m])

  evaluate_fits(models, degrees, train[0], train[1], 
                  'Fit to Training Data’)

  evaluate_fits(models, degrees, validate[0], validate[1],
                 'Applied to Validation Data')

x_vals, y_vals = get_data('parabola.txt')
degrees = (1, 2, 16)
fit_and_validate(x_vals, y_vals, degrees)

Cross-Validation on a Single Data Set
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Validating a Model
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degree = 2 model
y = 2.99x2 + 0.07x + 4.11

degree = 16 model
y = -0.03x6 + 0.23x5  - 0.95x4 – 5.82x3 + 
15.94x2 + 54.55x – 17.95

Huh?



Validating a Model
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degree = 2 model
y = 2.99x2 + 0.07x + 4.11

degree = 16 model
y = -0.03x6 + 0.23x5  - 0.95x4 – 5.82x3 + 
15.94x2 + 54.55x – 17.95

Huh?

R2 between 0 and 1 
only for training data



§Remember the original purpose of fitting a curve to data is 
to obtain a model that can predict and explain unseen 
examples
§Prepare another test data set for evaluating the chosen 
model
◦ Same evaluation procedure: apply model to data and evaluate 

R2 or related metric
◦ But only apply the best validated model

§Summary of data sets
◦ Training data is for fitting the parameters of a model
◦ Validation data is for finding the most appropriate model 

structure
◦ Testing data is for evaluating the chosen model’s predictive 

power on the data/phenomenon being observed

Final evaluation after validation
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§Combining model information with goodness of fit can 
provide additional insight
§Consider the fit to the original spring data

§ R2 value is .8815 – which is decent

One Last Thought
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§But visual inspection suggests that something might be 
happening for large forces?

§Remember theory said Hooke’s law applied up to some 
maximum force
◦ Have you ever stretched a slinky too far?

One Last Thought
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Is there something 
going on here?



§Could search for point at which to break data into two 
modes, and fit models to both subsets separately; look for 
break that minimizes sum of residual error in both parts

§R2 value for first part now .9581; for second part .6784; 
without break, have R2 of .8815

One Last Thought
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§Alternatively, search for point at which to break data, and 
fit model to first set but fit constant line to second set; look 
for break that minimizes sum of residual error in both parts

§R2 value for lower part now .9539; without break, have R2 
of .8815

One Last Thought
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§We can use linear regression to fit a curve to data
◦ Mapping from independent values to dependent values

§That curve is a model of the data that can be used to 
predict the value associated with independent values 
we haven’t seen (out-of-sample data)

§R-squared used to evaluate model
◦ Higher not always “better” because of risk of over fitting

§Choose complexity of model based on
◦ Theory about structure 

of data
◦ Cross validation
◦ Simplicity

Take-home message
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https://quoteinvestigator.com/2011/05/13/einstein-simple/

?


