Curve-fitting,
Train-validate-
test

MIT Department of Electrical

Engineering and Computer
Science

CURVE-FITTING METHODS
AND THE. MESSAGES THEY SEND

e

L/

"HEY, I DDA I WANTED A CURVED “LO0K, IT'S
REGRESSION. LINE, 50 T MADE ONE TAPERING OFF"
UITH MATH?

| B 0OESS . ] V‘r\l

\; . : \ NO S ; $

] . . . : J . % *

100K, TS GROUING "TM SOPHISTICATED, NOT “TM MAKING A

UNCONTROLLABLY™ LIKE THOSE BUMBLING SCATTER PLOT BUT
POLYNOMIAL PEOPLE® T DONT WANT T

! LOX ’ DENCE DIECEVISE o

, N . i :. .. .'.

] - - . j . /."/‘J'

e ] . . ® ke I L] . " k4

[ . ‘a ‘} .’_::_.,_.ir‘v—'_‘ r :"_:'."."'—: .

L . . ) ‘ ) .
*T NEED TO CONNECT THESE  “USTEN, SCENCE IS HARD. “T HAVE A THEORY,
W0 UNES, BUT MY FIRST IDEA  BUT IM A SERIOUS AND THIS I5 THE ONLY
DIDNT HAVE ENOUGH MATH®  PERSON DONG MY BEST®  DATA T COULD FIND® q

| CONNECTING

‘fnf

T CLICKED ‘SMOOTH
LINES IN EXCEL®

"I HAD AN IDEA FOR HOUJ
To CLEAN UP THE DATA.
WHAT DO YOU THINK?"

k)
| o 2
|
L.

"AS YOU CPN SEE, T THIS
MODEL SMOOTHLY FiTS
THE= WAIT NONO DONT
EXTEND IT APARAAY"

6.1000 LECTURE 22 1




Announcements
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Distributions Alone Lack Explanatory Power

Price of Lego Sets vs. Number of Pieces in Set
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Curve Fitting: Hooke’s Law

=sRobert Hooke
° 1635-1703
o Curator of experiments of the Royal Society
o Surveyor for City of London after the Great Fire
> Discovered law of elasticity
o Led to invention of balance spring, which led to first accurate watch

o Observed that gravity was an inverse effect, but didn’t know it
was inverse square (Newton gets credit for that)

> Huge believer in running experiments and then building
models

o “It is commonly believed that anyone who tabulates numbers is a
statistician. This is like believing that anyone who owns a scalpel is a
surgeon.”

o “The truth is, the Science of Nature has been already too long made
only a work of the Brain and the Fancy: It is now high time that it
should return to the plainness and soundness of Observations on
material and obvious things.”
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Example: Curve Fitting With Springs

Linear spring: amount of force needed to
stretch or compress spring is linear in the

distance the spring is stretched or
compressed, up to some maximum force

Each spring has a spring constant, k, that
determines how much force is needed
k=35,000N /m to achieve a specific compression
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Hooke’s Law

oF = kS Why the ~’? Because deflection in
T opposite direction to force

"*How much does a rider have to weigh
to compress spring 1 cm?

F =0.01m * 35,000N/m

F = 350N F = mass * acc

F = mass * 9.81m/s?
mass * 9.81m/s*=350N ) /

350N
mass = 9.81m/s?

_ 350
mass =981 6

mass = 35.68 kg (or about 79 lbs)

. v 1= 7\
6.1000 LECTURE 22 6




Finding k

oF =—k3
ok =—F/5
=k =9.81*m/d

=Each trial estimates k

20

By Yapparina (Own work) [CC BY-SA 3.0 (http://creativecommons.org/licenses/by-
sa/3.0)], via Wikimedia Commons
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Some Data

Mass (kg) Distance (m)

0.1 0.0865

0.15 0.1015

0.2 0.1106

0.25 0.1279

0.3 0.1892

0.35 0.2695 -

0.4 0.2888 —
0.45 0.2425 f

0.5 0.3465
0.55 0.3225 =

0.6 0.3764 20
0.65 0.4263 ==

0.7 0.4562 v

0.75 0.4502 In l
0.8 0.4499

g:gs g:zzig Each distance/mass pair 'n i
0.95 0.4304 provides an estimate of k

1.0 0.437
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Taking a Look at the Data

def plotData(fileName):
xVals, yVals = getData(fileName)
xVals = |np.array(xVals)
yVals = np.array(yVals)
xVals = xVals*9.81
plt.plot(xVals, yVals, 'bo',
label = '"Measured displacements')
TabelPlot()

A reminder/primer about numpy arrays:
 Converts a list into a linear data structure
 (Can treat arrays algebraically; e.g., if a and b are arrays, then:
* a*2 multiplies every element of a by 2
e a+3adds3toeveryelementof a
 a-—bsubtracts each element of b from corresponding element of a
 a*b multiplies each element of a by corresponding element of b
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Using Arrays Fhip’, hip’]

(hip hip array!)

testArray = np.array([1,2,3,4,5,6,7,8,9])
print(testArray)

[5 6 7 8 9]

secondArray = np.array([3,2,6,4,1,8,7,5,9])
print(secondArray)

3264187 5 9]
Note: operations on arrays

print(testArray * 2) do not mutate the array,
[2 4 6 8 10 12 14 16 18] they create a new one
print(testArray + 3)

[4 5 6 7 8 910 11 12]

print(testArray - secondArray)

@-3 0 4-2 0 3 0]

print(testArray * secondArray)

[ 3 4(18)(16) 5 48 49 40 81]
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Taking a Look at the Data

def get_data(filename):
with open(filename, 'r') as data_file:

y vals, x vals =[], []

data_file.readline()

for line in data file:
y, X = line.split()
y vals.append(float(y))
x_vals.append(float(x))

return|np.array(x_vals), np.array(y_vals)|

x_vals, y vals = get_data('springData.txt')
X_vals =|x_vals*9.81|
plt.plot(x vals, y vals, 'bo', label='Measured displacements")

A reminder/primer about numpy arrays:
. Converts a list into a linear data structure
. Can treat arrays algebraically; e.g., if a and b are arrays, then:
. a*2 multiplies every element of a by 2
. a + 3 adds 3 to every element of a
. a — b subtracts each element of b from corresponding element of a
. a*b multiplies each element of a by corresponding element of b
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Taking a Look at the Data

Measured Displacement of Spring

0.5
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What Can We Do With This Data?

=\We've run an experiment

"We can relate observations to
trials (distance d vs. force F —or
| Fl In thIS case) Measured Displacement of Spring

0.5
"Theory predicts a relationship m %0 0
between observations and trials ~ g°] . ®
o |F| = kd £031 o® ¢
) o
=Can we use these measurements £ °*] .
to determine k and to validate Bo1{ee®®
model? a
. R S
*Try to fit a curve to data, and use IForce| (Newtons)

to deduce relationship between
observation and trial

*Notice that points don’t lie on a
line. Experiments are noisy!

13
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Why not just compute “average” k?

Mass (kg) Distance (m)

0.1 0.0865 =Naive solution : For each data point,
0.2 0.1106

0.25 01279  1hen take the average

0.3 0.1892 : _ :

035 02605 "Obvious problem : what if we had a
0.4 0.2888 measurement form=07?

0.45 0.2425

0.5 03465 "Even measurements for small m are
0.55 0.3225 not as precise

0.6 0.3764

0.65 04263  =0Only works for a single parameter
0.7 04562 3nd a simple law like Hooke’s law
0.75 0.4502

0.8 04433  mDpesn’t tell us how good the law is
0.85 0.4534

0.9 0.4416

0.95 0.4304

1.0 0.437

6.1000 LECTURE 22 14



Could Just Try Guessing Line?

=Pick two sample points to define line and fit,

measure slope

Measured Displacement of Spring

0.5
@ Measured displacements

Y = Linear fit, k = 0.07604 000, o0
5 0.4-
-
Q
£ 0.3
Q
L 0.2
c
Y
wn 0.1
0

0.0 T T T T

2 4 8 10

|Force| (Newtons)
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Could Just Try Guessing Line?

=Pick two sample points to define line and fit,
measure slope

0.5

Distance (meters)
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Measured Displacement of Spring

@ Measured displacements
mmmm | inear fit, k = 0.04124
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|Force| (Newtons)
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Could Just Try Guessing Line?

=Pick two sample points to define line and fit,
measure slope

Measured Displacement of Spring

0.5
@ Measured displacements

0 memm | inear fit, k = 0.03058 ® oo, P Need some way
— 0.4 to evaluate how
% well the line fits
£ 0.3 the data
8 0.2 - Also need a
% robust
™ 0.1- algorithm that
0 finds “good” fits

00 | | | | |

2 4 6 8 10
|Force| (Newtons)
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Fitting Curves to Data — back to optimization

"When we fit a curve to a set of data, we are finding a
fit that relates an independent variable (the mass or
force) to an estimated value of a dependent variable
(the distance or displacement)
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Fitting Curves to Data — back to optimization

"When we fit a curve to a set of data, we are finding a
fit that relates an independent variable (the mass or
force) to an estimated value of a dependent variable
(the distance or displacement)

=To decide how well a curve fits the data, we need a
way to measure the goodness of the fit — called the
objective function (aka loss)

"Once we define the objective function, we also need
an algorithm to find the curve that minimizes it

"Theory says find a curve such that some function of
the distances from the curve to the measured points is
minimized. Simplest case finds line that best fits data.

=So need objective function that measures distances
from curve, and algorithm to find best curve
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Measuring Distance

Theory says find a curve such that some function
of the distances from the curve to the measured

points is minimized. Simplest case finds line that
best fits data.

Which should we choose?

Vertical distance because want to predict dependent
Y value for every given independent X value, and
vertical distance measures error in that prediction

6.1000 LECTURE 22 20




Least Squares Objective Function

len(observed)-1

. . )
E (observed|i]— predicted|i])
=0
=mobserved: actual measurements for each trial

spredicted: value that model suggests for each trial

(value on the fitted curve)

- Measured Displacement of Spring

Distance (meters)
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2 4 6 8 10
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Solving for Least Squares

len(observed )-1
(observed|i] - predicted|[i])’
i=0
*To minimize this objective function, want to find a
curve for the predicted observations that leads to
minimum value of sum of squared differences
> Remember that curve will define, for each independent

variable value, the associated predicted dependent
variable value

"Need to make a choice on kinds of curves — we will
use polynomials of one variable

"Need to find the best curve — use linear regression to
find a polynomial representation for the predicted
model that minimizes the objective function

6.1000 LECTURE 22
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Aside: Polynomials with One Variable (x)

=Definition: 0 or sum of finite number of non-
zero terms

=Each term of the form cx?
o ¢, the coefficient, a real number /

° p, the degree of the term, a non-negative :
integer 22

"The degree of the polynomial is the largest

degree of any non-zero term /\/
"Examples -/

o Line: ax+b
o Parabola: ax?+bx+c
o Cubic: aC+bx2+cx+d

o Quartic: ax*+bx3+cx2+dx+e
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Solving for Least Squares

len(observed )-1
(observed|i] - predicted|[i])’
=0
=Simple example:

o Use a degree-one polynomial, y = ax+b, as model of data
(best fitting line)

=\Want to find values of @ and b such that

len(observed )-1
(observed[i]-a* x[i]- b)’

i=0

is minimized, where x[i] is the it" data point, and
observed([i] is the corresponding measured value
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Finding the Best Curve (simplest case)

e Set of all possible lines
represented by points in (a, b)
space

* Point defines line ax+b

* Imagine a surface in this space,
where height is value of the
objective function

* The objective function is
qguadratic in terms of a and b, so
this surface is a two-dimensional
parabola

 The minimum point can be found
by “walking downhill”, or by
analytic differentiation
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Some Properties of Linear Regression

=Objective surface using sum-of-squared-differences is
differentiable

> Means we can compute gradient direction analytically
and use to efficiently compute next step to take in
searching space for optimal objective function value

=Qbjective surface in this case has a global minimum
> Means there is always a unique best fit

"Easy to solve for (linear system)
> Minimum: we want derivative to be zero
o Derivative of a quadratic is linear

6.1000 LECTURE 22

28



Derive it!

"Fory=ax+ b wherey is dependent variable and x is
independent variable

=yi, XI are measurements

*Find a & b that minimize 2(yi — axi — b)?
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Derive it!

"Fory=ax+ b wherey is dependent variable and x is
independent variable

=yi, XI are measurements

*Find a & b that minimize X(yi — axi — b)*
=Set derivative wrt a and wrt to b to zero
=Derivative wrt a: X — 2xi(yi —axi —b) =0
"Wrtb: X -(yi —axi —b)=0

"The xi and yi are known.

*We have two linear equationsin a & b.
o Easy to solve !

6.1000 LECTURE 22
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polyfit

*You could certainly write your own linear regression code

"Good news is that numpy provides built in functions to
find these polynomial fits

*np.polyfit(observed_x, observed_y, n)

finds coefficients of a polynomial, of degree n, that
provides a best least squares fit for the observed data

on=1-> bestline y=ax+b
o n =2 -2 best parabola y=ax?+bx+c
> n =3 -2 best cubic y=ax>+bx?+cx+d
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Using polyfit

a, b = np.polyfit(x vals, y vals, 1) = np.polyfit(x vals, y vals, 1)
y_pred = a*x vals + b
k

y_pred =|np.polyvallmodel, x_vals)

= 1/a k = 1/model[0]
prinf\f'a = {a:.5f}, b = {b:.5f}") print(f'a = {model[0]:.5f},
plt.glot(x vals, y pred) b = {model[1]:.5f}")
plt.plot(x vals, y pred)
Remember Hooke:
F=kd Measured Displacement of Spring
Here plOtting d = aF 0.5 @ Measured displacements
Sok=1/a my we |inear fit, k = 21.53686 @ ®e ®g0
5 0.4+
e
Q
€ 0.3
8()2-
9 0.
S
©nolig0®
(|
00 | | | | |

2 4 6 8 10
|Force| (Newtons)
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Quick Summary So Far

=Ran an experiment to gather data

="Theory predicts relationship between
measurements (displacements) and
experimental parameters (masses or forces)

"Linear regression lets us fit best model (line
in our case) to observed data

° Best here means minimize sum squared error |
between observed and predicted values : -

=So, let’s apply this idea to other data...

I ASSIGNED QUESTIONS 1 FWGURED You CouLD I CAN'T DECDE F  You
1 THROUGH 20, YET PLOT MY RESULTS, FinND YOU'RE STUPID OR  COULD

YOU ONLY DID QUESTIONS || THE BEST-FITTING CURVE, |

AND EXTRAPOLATE HOowW ||

I'D Do oN THE OTHERS, -~

\
A b




Five Minute Break




Another Experiment

350 | Mysterly Data

300p |
250+ =
200 @ =
150 —
100 | O |

50'— . . .. I

—50 |

—100 | | |
—-10 -5 0 5 10
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Fit a Line

350 | Mysterly Data

300 p -
250 |- _
200} @ -
150 |- -
100 be————————————

50_ . . .. ]

—50 .

_100 | | |
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Let’s Try a Higher-degree Model

model2 = np.polyfit(x vals, y vals,
plt.plot(x _vals, np.polyval(model2, x vals))

* Now we are fitting a best parabola instead of a best line

* Sometimes, this is still called linear regression, because
the model is linear in the parameters (i.e. coefficients of
the polynomial)

e Others call it polynomial regression

len(observed)—1
z (observed[i] — a x x[i]* — b x x[i] — ¢)?

=0

6.1000 LECTURE 22 40




Two meanings of linear in linear regression

=1/ the model we find is a linear polynomial
o Linearity wrt to x or m here
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Two meanings of linear in linear regression

=1/ the model we find is a linear polynomial
o Linearity wrt to x or m here

=2/ The equations we solve are linear in the model
parameters

° Linearity wrt k or a and b here

° True for any polynomial : i.e. even when we fit a
quadraticy = ax? + bx + c it’s still linear in a, b, c even
though it’s not linear in x.

*"The world can be confusing.
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Quadratic Appears to be a Better Fit

350

Mystery Data

300p
)
250+t
.

2001 ®

150 |-

[
® Data Points
m— | inear Model

= = = Quadratic Model |]

'_

’ q

N ® .
.. ® y
50 - ® .9’~ Py ."o ]
.. .*
0L ~.'. mm® _
° ®
50} |
0]
_100 | | |
—-10 -5 0 5
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How Good Are These Fits?

Mystery Data

350 : I
@® Data Points

300p = | inear Model B
" = == Quadratic Model |
250+t vl
\‘ " q
200 | .‘ ': |

“ o ':
B * |

150 PN ’,'.

o,
100 L " ;l—.;
. ® .
.. ]
50 I~ . ."~ . . " N
Q. e O'
O B v '- m® . N
® ®
—50 |
®
—-100 | I |
—-10 -5 0 5 10

"How good are they relative to each other?

"How good are they in an absolute sense?
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Relative to Each Other

=*Fit is a function from the independent variable to the
dependent variable

o Given an independent value, provides an estimate of the
dependent value

*Which model provides better estimates?

o Since we found fit by minimizing sum of square error,
could just evaluate goodness of fit by looking at that error
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We Can Look at Mean Squared Error

Mystery Data

350 | |
Measure ® Data Points
error of each  300p m— | inear Model
data point 50! = = = Quadratic Modgl

Take square
of difference

200

150

Find average 100
across all of
these 50

squared
differences

-10 -5 0 5 10
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Comparing Mean Squared Error

def mean_squared_error(data, predicted):
error = 0.0

for i in range(len(data)):
error += (data[i] - predicted[i])**2
return error/len(data)

6.1000 LECTURE 22
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Comparing Mean Squared Error

def mean_squared_error(data, predicted):
error = 0.0
for i in range(len(data)):
error += (data[i] - predicted[i])**2
return error/len(data)

y pred = np.polyval(modell, x vals)
print( 'Mean squared error for linear model =",
mean_squared_error(y vals, y pred))

y pred = np.polyval(model2, x vals)
print('Mean squared error for quadratic model ="',
mean_squared_error(y vals, y pred))

Mean squared error for linear model =9372.73
Mean squared error for quadratic model = 1524.02

Given this improvement in mean squared error from linear to
qguadratic model, is there something even better?
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In an Absolute Sense

*Mean squared error useful for comparing two different
models for the same data

"|s it also useful for getting a sense of absolute goodness of
fit?
°|s 1524 good?

"Hard to know — no bound on values; not scale independent
o For example, if we double the masses, get double the error
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In an Absolute Sense

Mean squared error useful for comparing two different
models for the same data

s it also useful for getting a sense of absolute goodness of
fit?
|s 1524 good?

Hard to know — no bound on values; not scale independent
For example, if we double the masses, get double the error

"|nstead we use coefficient of determination, R?,

Yi(Vi — Pi)?<— Error in estimates

2
R =1 >
y; are measured values Zi(yi _ #) @ Variability in
p, are predicted values measured data
L is mean of measured values
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If You Prefer Code

(Vi — pi)?
2.i(yi — )2

R* =1

def r_squared(observed, predicted):
error = ((predicted - observed)**2).sum()
mean_error = error/len(observed)
return 1 - mean_error / np.var(observed)
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If You Prefer Code

2i(yi —pi)*
2.i(yi — )2

R* =1

Subtracting two arrays
component-wise

Squaring each element

Note:

of an array
def r_squared(observed, predicted): Need to
error = |((predicted - observed)**Z).sumK) invoke
mean_error = error/len(observed) function
return 1 - mean_error / np.var(observed)
Add all
elements

 Numerator is sum of squared errors

* Dividing by number of samples gives mean squared error
 Denominator is variance times number of samples

e So mean SSE/variance is same as R? ratio

6.1000 LECTURE 22

52




R2 %jf

R%0.06 REXTHOR, THE DOG-BEARER

T DONT TRUST LINEAR REGRESSIONS WHEN ITS HARDER
To GUESS THE DIRECTION OF THE CORRELATION FROM THE
SCATTER PLOT” THAN TO FIND NELJ CONSTELLATIONS ON IT.

"By comparing the estimation errors (the numerator)
with the variability of the original values (the
denominator), R? is intended to capture the proportion
of variability in a data set that is accounted for by the
statistical model provided by the fit

° Said differently: compare model to a constant model

> The mean is the best constant estimate under least
squares
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2 2 _ 1 _ 2ivi — pi)?
R SR e

"Always between 0 and 1 when fit generated by a linear
regression” and tested on training data

o If R? = 1, the model explains all of the variability in the
data.

° niyi — Pi)2= 0

o If R? =0, there is no relationship between the values
predicted by the model and the actual data. (No better
than constant prediction)

o N —p)*= iy — w*

o If R? = 0.5, the model explains half the variability in the
data.

* Assuming the model has a free constant term
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Testing Goodness of Fits

def gen_fits(x vals, y vals, |degrees)):

def

models = []
for d in degrees:
model = np.polyfit(x vals, y vals, d)
models.append(model)
return|{models

List of ints: different order
models to try

List of fitted polynomial models,
each a list of coefficients

test_fits(models, degrees, x vals, y vals, title):

plt.
plt.
for

figure()
plot(x va

ls, y vals, 'o', label='Data')
i in range(len(models)):

y _pred =

np.polyval(models[i], x_vals)

error = r_squared(y _vals, y pred)

plt.
plt

plt.plot(x vals, y pred,
label=f'Fit of degree {degrees[i]})

legend()

Ltitle(tit

le)

6.1000 LECTURE 22

55




How Well Do Fits Explain Variance?

350 | Mysterly Data

® Data

300 2 e Fit of degree 1, R2 04 7
== Fit Of degree 2, R2

.0.83748
250 = 4

200

150

100

50

—-100 ! ! |
—-10 -5 0 5 10
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Can We Do Better?

=Saw that linear fit was poor — both visually and
through R2 measure

=Saw that quadratic fit was better — again both visually
and through R? measure

"What about fitting higher order polynomials to data?
°c Degree 47
°c Degree 8?

°c Degree 167?
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Order 2 Fit

Mystery Data

3004 © ® Data
s Fit of degree 2, R2 = 0.83748 O

200 -

100 -
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Order 4 Fit

Mystery Data

3001 © ® Data
s Fit of degree 4, R2 = 0.84895 O

200 -

100 -

-10 -5 0 5 10
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Order 8 Fit

Mystery Data

300 - ® Data

s Fit of degree 8, R2 = 0.86556 O

200 -

100 -

-10 -5 0 5 10
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Order 16 Fit

Mystery Data
300 ® Data

e Fit of degree 16, R2 = 0.96553 \

200 -

100

-10 -5 0 5 10
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Can We Get a Tighter Fit?

350 Myster[y Data

® Data
== Fit of degree 2, R2 = 0.83748
== Fit of degree 4, R2 = 0.84895

Fit of degree 8, R2 = 0.
Fit of degree 16, R2 £ 0.96553

300

250

200

150

100

50 | Does this mean that a
16" order polynomial is
)= the best fit for the data?
—50 |
O
—100 ' l |

—-10 -5 0 5 10
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Does Tightest = Best?

"Looks like an order 16 fit is really good — so should we
just use this as our model?

> To answer, need to ask — why build models in first place?

"Help us understand process that generated the data
o E.g., the properties of a particular linear spring

"Help us make predictions about out-of-sample data

o E.g., predict the displacement of a spring when a force is
applied to it

o E.g., predict the effect of treatment on a patient
o E.g., predict the outcome of an election

=A good model helps us do both of these things
o Let’s specifically look at using second property
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How Mystery Data Was Generated

def gen_noisy parabolic_data(a, b, c, x vals, filename):
y vals = []
for x in x vals:
theoretical val = a*x**2 + b*x + c
y vals.append(theoretical val + random.gauss(0, 35))

with open(filename, 'w') as f: \
f.wr‘}t(.e( 'y x\n") Zero mean, Gaussian noise
for i in range(len(y_vals)):
f.write(str(y vals[i]) + " ' + str(x_vals[i]) + "\n’)

X_vals = range(-10, 11, 1)
a, b, c =3, 0, 0
gen_noisy parabolic_data(a, b, c, x vals, 'mysteryData.txt')
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How Mystery Data Was Generated

def gen_noisy parabolic_data(a, b, c, x vals, filename):
y vals = []
for x in x vals:
theoretical val = a*x**2 + b*x + c
y vals.append(theoretical val + random.gauss(0, 35))

with open(filename, 'w') as f: \
f.wr‘}t(.e( Y X\n") Zero mean, Gaussian noise
for i in range(len(y_vals)):
f.write(str(y vals[i]) + " ' + str(x_vals[i]) + "\n’)

X_vals = range(-10, 11, 1)
a, b, c =3, 0, 0
gen_noisy parabolic_data(a, b, c, x vals, 'mysteryData.txt')

If data was generated by Because it fit the noise
quadratic, why was 16" order
polynomial the “best” fit?
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Increasing the Complexity

"|s it just luck that we got a “better” fit on training data
with higher order model?

"What happens when we increase order of polynomial
during training?
o Can we get a worse fit to training data?
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Increasing the Complexity

"|s it just luck that we got a “better” fit on training data with
higher order model?

=\What happens when we increase order of polynomial
during training?
o Can we get a worse fit to training data?

=|f extra term is useless, coefficient will merely be zero

Interpolation Theorem:
An order n polynomial will perfectly fit
n+1 data points

=But if data is noisy, can fit the noise rather than the
underlying pattern in the data

> May lead to a “better” R? value, but not really a “better” fit

o Might yield terrible predictions for unseen data — will look at
this shortly
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Validate the training

= One way to separate out impact of noise on model is
to take advantage of fact that each time we sample a
system

o Signal will be roughly the same
o Noise will be different

= Use set of data as a “training”
set to fit a model

= Use asecond set of dataasa (ki “"*6
“validation” set, and see how well the
model from the training set

accounts for the validation set
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Generate 2 Data Sets from Same Distribution

X_vals = range(-10, 11, 1)
a, b, c =3, 0, 0

gen_noisy parabolic_data(a, b, c, x vals, 'parabolal.txt')
gen_noisy parabolic_data(a, b, c, x vals, 'parabola2.txt')

Generate two data sets

degrees = (1, 2, 16)

X_valsl, y valsl = get_data('parabolal.txt"') :
modelsl = gen_fits(x valsl, y valsl, degrees) Model first data|set
test_fits(modelsl, degrees, x valsl, y valsl, 'Parabola 1')

X_vals2, y vals2 = get_data('parabola2.txt"')
models2 = gen_fits(x _vals2, y vals2, degrees)
test_fits(models2, degrees, x vals2, y vals2, 'Parabola 2')

Model second datajset

Have two different models, one for each
data set, where x_vals are the same, but
y_vals differ
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Training and Validation Errors

test_fits(model@ degrees, x_val@ y_val@ "Parabola 1')

350

Parabola 1

I
® ® Data
300 === Fit of degree 1, R2 = 2e-05 _
=== Fit of degree 2, R2 = 0.86088
250 L === Fit of degree 16, R2 = 0.99615

200

150

100

50

=50

-10
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Training and Validation Errors

test_fits(modeli:) degrees, x_val<:) y_valiZ) "Parabola 1')

test_fits(modelfz) degrees, x_val<:> y val
"Apply Parabola 1 Model to Parabola 2')

350 Parat?ola 1

Apply Parabola 1 Model to Parabola 2

® @ Data
=== Fit of degree 1, R2 = -0.00518
=== Fit of degree 2, € = 0.86721
=== Fit of degree 16

400

I
® @ Data
=== Fit of degree 1, R2 = 2e-05
=== Fit of degree 2, €
=== Fit of degree 16

300

250 300

200+
200
150}
100 100
50}
0
oL
o
_50 | | | — | | |
-10 -5 0 5 10 10910 -5 0 5 10

Now we see that the quadratic model actually is
much better fit when applied to a new data set
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The Moral of the Story

= 16-degree polynomial is an
example of overfitting to the
data

= |f we only look at how well
model fits training data, we
may not detect that model is
too complex

= Need to cross-validate: Train
on one data set, then validate
on a different set
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If We Can’t Run Another Experiment?

*|f we only have one data set, an alternative way to
cross-validate is to split the existing data:

o A training subset (which we use to build a model)
o A (on which we apply the model)

"Could split data evenly, or use more to train than to
validate

"|deally select validating data at random
> So that it has the same “distribution” as the training data
> Many ways of doing this
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Split a Data Set into Train/Validate Subsets

def split_data(x _vals, y vals, frac_training, plot=True):
train_size = int(len(x_vals) * frac_training)
train_indices =|random.sample(range(len(x _vals)), train_size)
train_x, train_y, validate x, validate y = [1, L1, L1, L]

for i in range(len(x vals)): sampling without
if 1 in tr‘ain_indices: replacement,
train_x.append(x_vals[i]) unique indices
train_y.append(y vals[i])
else: Partition based on
validate x.append(x_vals[i]) | training-selected
validate_y.append(y_vals[i]) indices

if plot:
plt.figure()
plt.plot(train_x, train_y, , label='Training')
plt.plot(validate x, validate y, '.', label='Test')
plt.legend()
plt.title('Training and Validation Data Splits"')
return (train_x, train_y), (validate_x, validate_ y)
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Split a Data Set into Train/Validate Subsets

Training and Validation Data Splits

1200 — s} o Tra.lmng
® \Validation

10004 o’
800
600 — o o®
400 - ) e .

200 ‘o

e
|
-20 -15 -10 =5 0 5 10 15 20
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Cross-Validation on a Single Data Set

def fit_and_validate(x_vals, y vals, degrees):
train, validate =r§plit_data(x_vals, y vals, 0.5)

models = []
for d in degrees:‘<: i
models.append|(np.polyfit(train[@], train[1], d))

for m in models:
print([round(coeff, 2) for coeff in m])

4_4 i
evaluate_fits(models| degrees, |train[0@], train[1]
'"Fit to Training Data’)

A

evaluate_fits(models| degrees, |validate[©], validate[1])
"‘Applied to Validation Data')

X_vals, y vals = get_data('parabola.txt')
degrees = (1, 2, 16)
fit_and_validate(x _vals, y vals, degrees)
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Validating a Model

Fit to Training Data degree = 2 model
| @® Data —_ 2
1200 s Fit of degree 1, R2 = 0.03771 Y= 2.99x“ +0.07x + 4.11
ws Fit of degree 2, R2 = 0.98945
1000 = Fit of degree 16, R2 = 0.99475

degree = 16 model

800 —
y =-0.03x% + 0.23x> - 0.95x%—5.82x3 +

0007 15.94x2 + 54.55x — 17.95

400

200 Applied to Validation Data

0 0 W
| | I | I I | |
-20 -15 -10 -5 0 5 10 15 10000 -
—-20000 —
—30000 —
—-40000 —
® Data
—50000 7 . Fit of degree 1, R2 = -0.06481 \(\Q
w== Fit of degree 2, R2 = 0.9 “\)

—60000 - === Fit of degree 16, R2<— -1685.89935 >

1 | | | L | | | |
-20 -15 -10 -5 0 5 10 15 20
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Validating a Model

Fit to Training Data degree = 2 model
ala — 2
12007 : l?ittofdegree 1, R2 = 0.03771 y - 2'99)( + O'O7X + 4'11
w=s Fit of degree 2, R2 = 0.98945

1000 = Fit of degree 16, R2 = 0.99475
degree = 16 model

800 —
y = -0.03x6 + 0.23x5 - 0.95x* — 5.82x3 +

600 15.94x%2 + 54.55x — 17.95

400

200 Applied to Validation Data

0- 0 W
| [ [ [ [ | [ [
-20 -15 -10 -5 0 5 10 15 10000 4

200007 1 R2 between 0 and 1

-300004 | only for training data

—40000 —

@® Data
=50000 4 . kit of degree 1, R2 = -0.06481

2
mes Fit Of degree 2, R2 = 0.9 Y\\)\\
—~60000 — == Fit of degree 16, R2€-1685.89935 )

1 | | | L | | | |
-20 -15 -10 -5 0 5 10 15 20
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Final evaluation after validation

sRemember the original purpose of fitting a curve to data is
to obtain a model that can predict and explain unseen
examples

"Prepare another test data set for evaluating the chosen
model

o Same evaluation procedure: apply model to data and evaluate
R? or related metric

o But only apply the

sSummary of data sets
o Training data is for fitting the parameters of a model

o is for finding the most appropriate model
structure

o Testing data is for evaluating the chosen model’s predictive
power on the data/phenomenon being observed
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One Last Thought

"Combining model information with goodness of fit can
provide additional insight

=Consider the fit to the original spring data

Measured Displacement of Spring

@® Measured points
= | inear fit, k = 21.53686

0.6

Distance (meters)
= =
w w

o
=
I

OO | | | |
|Force| (Newtons)

= R2 value is .8815 — which is decent
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One Last Thought

=But visual inspection suggests that something might be
happening for large forces?

Measured Displacement of Spring

@® Measured points
= | inear fit, k = 21.53686

0.6

Is there something
going on here?

Distance (meters)

0 2 4 6 8 10
|Force| (Newtons)

sRemember theory said Hooke’s law applied up to some
maximum force
> Have you ever stretched a slinky too far?
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One Last Thought

=Could search for point at which to break data into two
modes, and fit models to both subsets separately; look for
break that minimizes sum of residual error in both parts

Measured Displacement of Spring

0
q) 0.4 .
'
£
£03-
Q
c
0.2 -
B @® Measured points
7)) @® Measured points
) 0.1 — Lmear f?t, k =15.87119
= |inear fit, k = -100.5123

2 4 6 8 10
|Force| (Newtons)

=R?2 value for first part now .9581; for second part .6784;
without break, have R? of .8815
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One Last Thought

sAlternatively, search for point at which to break data, and
fit model to first set but fit constant line to second set; look
for break that minimizes sum of residual error in both parts

Measured Displacement of Spring

— %

n

« 0.4

Q

e’

Q

£ 0.3

S—

"

c 0.2

B @® Measured points

wn @® Measured points

0 0.1 | inear fit, k = 15.45337
mm= (Constant fit, d = 0.44375

| | | | |

2 4 6 8 10
|Force| (Newtons)

=R? value for lower part now .9539; without break, have R?
of .8815
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Take-home message

="\We can use linear regression to fit a curve to data
> Mapping from independent values to dependent values

*That curve is a model of the data that can be used to
predict the value associated with independent values
we haven’t seen (out-of-sample data)

=R-squared used to evaluate model
o Higher not always “better” because of risk of over fitting

"Choose complexity of model based on

> Theory about structure s  CVERYTHING SHOULD BE MADE
of data %0\ ASSIMPLERS POSSIBLE

o Cross validation :" . \ BUT NUT
o SIMPLER
o Simplicity ;
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