
Knapsack and 
Dynamic 
Programming
6.1000 LECTURE 21

FALL 2025

16.1000 LECTURE 21



Announcements

▪ Pset 5 checkoff due today

▪ Pset 6 due 12/1, Monday after Thanksgiving

▪ No office hours on 11/26, Wednesday before Thanksgiving

▪ No office hours on 12/10, last day of classes

▪ Instructor office hours on 12/11, Thursday before finals

6.1000 LECTURE 21 2



Recall: Knapsack problems

6.100B LECTURE 1 3

▪ You have limited strength, so there is a maximum 
weight knapsack that you can carry

▪ You want to take more stuff than you can carry

▪ How do you choose what to take vs. leave behind?
◦ Want to optimize “value” of things to take 

▪ Two variants
◦ Continuous or fractional knapsack problem

◦ 0/1 knapsack problem

versus

Straightforward

Much more interesting 

Quanta are 
infinitesimal 
relative to 
available space

Quanta are 
large relative to 
available space

https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.pinterest.com%2Fpin%2F15270086217035741%2F&psig=AOvVaw3a-HIMHIZ0Ojn9vn91_XOM&ust=1616099369837000&source=images&cd=vfe&ved=0CAIQjRxqFwoTCMDTh72VuO8CFQAAAAAdAAAAABAK


Greedy solutions

▪ Repeatedly pick the best item among what’s available
◦ Once you pick, you have to commit, no backtracking

▪ Continuous knapsack
◦ Pick as much of the most value-dense item as possible

▪ 0/1 knapsack
◦ Must take an entire object or leave it behind

◦ Possible greedy metrics: by value, by weight, by density

◦ None are guaranteed to yield optimal solution

6.1000 LECTURE 21 4



Enumeration of item combinations

▪ Optimal solution
◦ Enumerate all possible item selections
◦ For each, check whether it satisfies the capacity constraint
◦ Among those that do, keep the one with the most value

▪ How to enumerate
◦ Approach 1: recursively generate

◦ generate all combinations for items[1:]
◦ collect each combo both with and without item[0]

◦ Approach 2: read off binary digits
◦ let 𝒏 be len(items)
◦ generate binary representations of 𝟎 through 𝟐𝒏 − 𝟏
◦ each is an 𝒏-character string of 𝟎’s and 𝟏’s
◦ each 𝟏 selects the item at that index

6.1000 LECTURE 21 5



Runtime performance of enumeration

▪ 𝟐𝒏 combinations, grows exponentially in number of items
◦ 210~103, 220~106, 230~109

◦ Processor speeds ~109 Hz (cycles per second)

◦ ~103 cycles to process each combination

▪ Solution times become user-unfriendly around 𝒏~𝟐𝟓
◦ Each increment in 𝒏 will double the size of the solution 

space to consider

◦ Not scalable

◦ Are we doomed to rely on 
greedy solutions?

6.1000 LECTURE 21 6



Pruning branches in decision tree

▪ While generating the combinations, keep track of remaining 
capacity as we go descend branches in the decision tree

▪ If taking the next object would cause our selection to go over 
capacity, do not consider that branch

▪ Testing result
◦ Can solve up to 𝒏~𝟑𝟓 in less than a minute
◦ Better, but still not practical

▪ In-class exercise
◦ Decision-tree implementation

makes list copies when slicing
◦ Rewrite so that it recurses on

index of next item to consider,
rather than on list of remaining 
items

6.1000 LECTURE 21 7



Avoid re-solving overlapping subproblems

▪ Consider items 𝑨,𝑩, 𝑪,𝑫,… with weights 𝟐, 𝟑, 𝟐, 𝟏,… and 
capacity 𝟐𝟎

▪ After going down the branch +𝑨,+𝑩,−𝑪, need to solve a 
subproblem for items 𝑫,𝑬,… with capacity 𝟏𝟓

▪ After going down the branch −𝑨,+𝑩,+𝑪, need to solve the 
exact same subproblem!

▪ Idea (dynamic programming)
◦ Remember the result the first time

◦ Recognize if we re-encounter, use saved result

6.1000 LECTURE 21 8



Dynamic programming

▪ Broadly applicable algorithm strategy
◦ Principles were invented by Richard Bellman in the 1950s 

◦ Name was chosen for “marketing”

◦ “programming” in the sense of “creating a schedule/solution”

◦ “dynamic” because it sounds cool

◦ https://en.wikipedia.org/wiki/Dynamic_programming#History_o
f_the_name

▪ Correctness requirement: optimal substructure
◦ optimal solutions involve optimal solutions to subproblems

▪ Efficiency requirement: overlapping subproblems
◦ different subproblems rely on the same subproblems

◦ how efficient depends on amount of subproblem overlap

6.1000 LECTURE 21 9

https://en.wikipedia.org/wiki/Dynamic_programming#History_of_the_name

