Knapsack and Dynamic Programming

6.1000 LECTURE 21

FALL 2025

Announcements

- Pset 5 checkoff due today
- Pset 6 due 12/1, Monday after Thanksgiving

- No office hours on 11/26, Wednesday before Thanksgiving
- No office hours on 12/10, last day of classes
- Instructor office hours on 12/11, Thursday before finals

6.1000 LECTURE 21 2

Recall: Knapsack problems

- You have limited strength, so there is a maximum weight knapsack that you can carry
- You want to take more stuff than you can carry
- How do you choose what to take vs. leave behind?
 - Want to optimize "value" of things to take
- Two variants
 - Continuous or fractional knapsack problem

Straightforward

○ 0/1 knapsack problem

Much more interesting

Quanta are infinitesimal relative to available space

versus

Quanta are large relative to available space

6.100B LECTURE 1

Greedy solutions

- Repeatedly pick the best item among what's available
 - Once you pick, you have to commit, no backtracking
- Continuous knapsack
 - Pick as much of the most value-dense item as possible
- 0/1 knapsack
 - Must take an entire object or leave it behind
 - Possible greedy metrics: by value, by weight, by density
 - None are guaranteed to yield optimal solution

6.1000 LECTURE 21

Enumeration of item combinations

- Optimal solution
 - Enumerate all possible item selections
 - For each, check whether it satisfies the capacity constraint
 - Among those that do, keep the one with the most value
- How to enumerate
 - Approach 1: recursively generate
 - generate all combinations for items[1:]
 - collect each combo both with and without item[0]
 - Approach 2: read off binary digits
 - \circ let n be len(items)
 - \circ generate binary representations of ${f 0}$ through ${f 2}^n-{f 1}$
 - \circ each is an n-character string of 0's and 1's
 - each 1 selects the item at that index

Runtime performance of enumeration

- \blacksquare 2ⁿ combinations, grows exponentially in number of items
 - $^{\circ} 2^{10} \sim 10^3, 2^{20} \sim 10^6, 2^{30} \sim 10^9$
 - \circ Processor speeds $\sim 10^9$ Hz (cycles per second)
 - $\sim 10^3$ cycles to process each combination
- Solution times become user-unfriendly around $n{\sim}25$
 - \circ Each increment in $m{n}$ will **double** the size of the solution space to consider
 - Not scalable
 - Are we doomed to rely on greedy solutions?

6.1000 LECTURE 21 6

Pruning branches in decision tree

- While generating the combinations, keep track of remaining capacity as we go descend branches in the decision tree
- If taking the next object would cause our selection to go over capacity, do not consider that branch
- Testing result
 - \circ Can solve up to $n{\sim}35$ in less than a minute
 - Better, but still not practical
- In-class exercise
 - Decision-tree implementation makes list copies when slicing
 - Rewrite so that it recurses on index of next item to consider, rather than on list of remaining items

Avoid re-solving overlapping subproblems

- Consider items A, B, C, D, ... with weights 2, 3, 2, 1, ... and capacity 20
- After going down the branch +A, +B, -C, need to solve a subproblem for items D, E, ... with capacity 15
- After going down the branch -A, +B, +C, need to solve the exact same subproblem!
- Idea (dynamic programming)
 - Remember the result the first time
 - Recognize if we re-encounter, use saved result

6.1000 LECTURE 21

Dynamic programming

- Broadly applicable algorithm strategy
 - Principles were invented by Richard Bellman in the 1950s
 - Name was chosen for "marketing"
 - "programming" in the sense of "creating a schedule/solution"
 - "dynamic" because it sounds cool
 - https://en.wikipedia.org/wiki/Dynamic programming#History of the name
- Correctness requirement: optimal substructure
 - optimal solutions involve optimal solutions to subproblems
- Efficiency requirement: overlapping subproblems
 - different subproblems rely on the same subproblems
 - how efficient depends on amount of subproblem overlap

6.1000 LECTURE 21