Knapsack ana
Dynamic
Programming

6.1000 LECTURE 21
FALL 2025




Announcements

= Pset 5 checkoff due today
= Pset 6 due 12/1, Monday after Thanksgiving

= No office hours on 11/26, Wednesday before Thanksgiving

= No office hours on 12/10, last day of classes

= |nstructor office hours on 12/11, Thursday before finals

6.1000 LECTURE 21



Recall: Knapsack problems

" You have limited strength, so there is a maximum
weight knapsack that you can carry

" You want to take more stuff than you can carry

* How do you choose what to take vs. leave behind?
o Want to optimize “value” of things to take

= Two variants
> Continuous or fractional knapsack problem Straightforward

> 0/1 knapsack problem Much more interesting

22

Quanta are Quanta are
infinitesimal VErsus large relative to
relative to available space

available space

6.100B LECTURE 1 3


https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.pinterest.com%2Fpin%2F15270086217035741%2F&psig=AOvVaw3a-HIMHIZ0Ojn9vn91_XOM&ust=1616099369837000&source=images&cd=vfe&ved=0CAIQjRxqFwoTCMDTh72VuO8CFQAAAAAdAAAAABAK

Greedy solutions

= Repeatedly pick the best item among what’s available
> Once you pick, you have to commit, no backtracking

= Continuous knapsack
o Pick as much of the most value-dense item as possible

= 0/1 knapsack
o Must take an entire object or leave it behind

o Possible greedy metrics: by value, by weight, by density
> None are guaranteed to yield optimal solution

6.1000 LECTURE 21



Enumeration of item combinations

= Optimal solution
> Enumerate all possible item selections
o For each, check whether it satisfies the capacity constraint
> Among those that do, keep the one with the most value

= How to enumerate
o Approach 1: recursively generate
o generate all combinations for items[1: ]
o collect each combo both with and without item[0]
o Approach 2: read off binary digits
> letn be len(items)
o generate binary representations of 0 through 2™ — 1
o each is an n-character string of 0’s and 1’s
o each 1 selects the item at that index

6.1000 LECTURE 21



Runtime performance of enumeration

= 2™ combinations, grows exponentially in number of items
o 210~103 220~106 230~109
o Processor speeds ~107 Hz (cycles per second)
o ~103 cycles to process each combination

= Solution times become user-unfriendly around n~25

o Each increment in n will double the size of the solution
space to consider

o Not scalable

> Are we doomed to rely on
greedy solutions?

6.1000 LECTURE 21



Pruning branches in decision tree

= While generating the combinations, keep track of remaining
capacity as we go descend branches in the decision tree

= |f taking the next object would cause our selection to go over
capacity, do not consider that branch

= Testing result
o Can solve up to n~35 in less than a minute

o Better, but still not practical

= |n-class exercise

o Decision-tree implementation
makes list copies when slicing

o Rewrite so that it recurses on
index of next item to consider,
rather than on list of remaining
items

6.1000 LECTURE 21 7



Avoid re-solving overlapping subproblems

= Consider items 4, B, C, D, ... with weights 2,3,2,1, ... and
capacity 20

= After going down the branch +A4, +B, —C, need to solve a
subproblem for items D, E, ... with capacity 15

= After going down the branch —A4, +B, +C, need to solve the
exact same subproblem!

" /dea (dynamic programming)
o Remember the result the first time
o Recognize if we re-encounter, use saved result

6.1000 LECTURE 21 8



Dynamic programming

= Broadly applicable algorithm strategy
° Principles were invented by Richard Bellman in the 1950s
> Name was chosen for “marketing”
o “programming” in the sense of “creating a schedule/solution”
o “dynamic” because it sounds cool

o https://en.wikipedia.org/wiki/Dynamic programming#History o
f the name

= Correctness requirement: optimal substructure
o optimal solutions involve optimal solutions to subproblems

= Efficiency requirement: overlapping subproblems
o different subproblems rely on the same subproblems

> how efficient depends on amount of subproblem overlap

6.1000 LECTURE 21 9


https://en.wikipedia.org/wiki/Dynamic_programming#History_of_the_name

