Optimization problems, Knapsack

6.1000 LECTURE 20

FALL 2025

Announcements

- Midterm 2 results
 - Regrades open until tomorrow 6 pm
 - Drop date is Wednesday 11/19
 - Grading clarifications
 - Exam scores are not curved
 - Final letter grade is not solely based on total score
- Pset 6 released today
- Pset 7 released next Monday

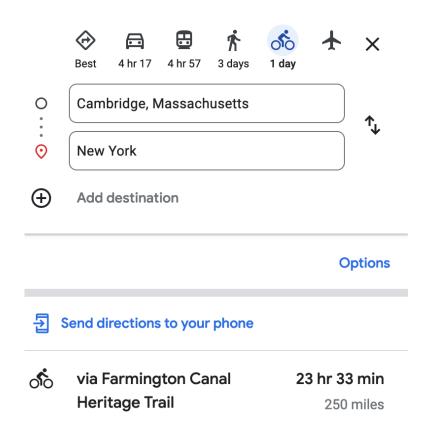
6.1000 LECTURE 20

2

Remainder of term

- No new Python
- This week
 - Generalizing shortest paths to other optimization problems
- Next two weeks
 - Building models from data, making statistical conclusions

6.1000 LECTURE 20

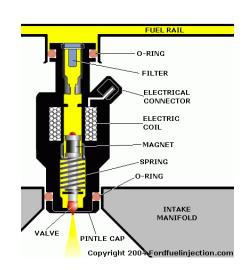

Review Midterm 2 Question 3

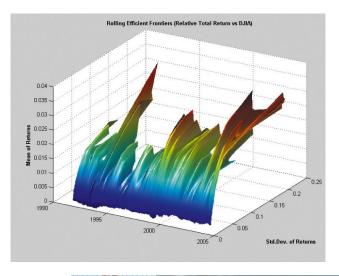
Three big ideas

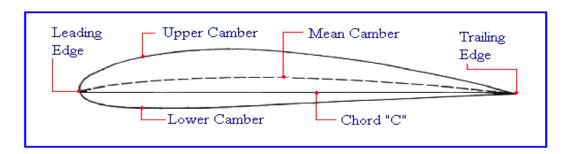
- Using class attribute count to set instance attribute id
- 2. Manage attributes within class, even with inheritance
 - Syntax of inheritance and super()
- 3. Writing dunder method __mul__()
 - First arg: Virus object
 - Second arg: Cell/LungCell object

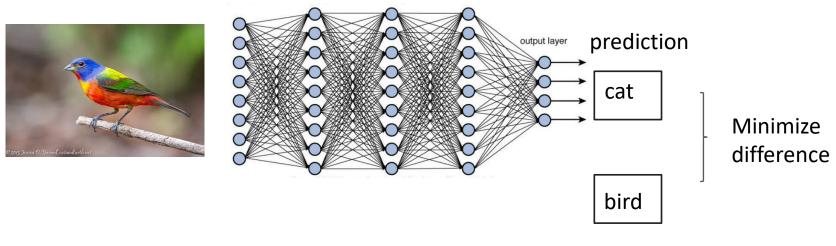
Optimization problems

- An objective function that is to be maximized or minimized
 - E.g., minimize money spent traveling from Cambridge to NYC
- But perhaps merely optimizing objective functions is not enough
- A set of constraints (possibly empty) that must be honored
 - E.g., expected transit time <5 hours




Optimization problems


 Anytime you are trying to maximize or minimize something, you are solving an optimization problem



Deep learning / generative Al

- Trained by minimizing a loss function
 - E.g. minimize difference between prediction and ground truth training data

Ground truth label

Graph optimization problems

- Shortest paths
 - Task: find a path
 - Objective: minimize path weight
 - Constraints: valid path, start, destination
 - Applications: routing, scheduling
- Minimum spanning tree
 - Task: find a tree subgraph
 - Objective: minimize weight of tree edges
 - Constraints: selected edges form a tree, reach every node
 - Applications: road network coverage, power delivery
- Maximum flow / minimum cut
 - Task: "transport" a quantity of product across a network

6.1000 LECTURE 20

Other common optimization problems

Knapsack

- Task: fill a bag with subset of available items
- Objective: maximize total value
- Constraints: stay under bag's weight limit
- Applications: packing delivery trucks, managing power allocation, election flipping

Bin packing

- Task: minimize number of containers needed to ship items
- Edit distance
 - Task: change one sequence of letters into another sequence
 - Objective: minimize total cost of edit actions
 - Constraints: available actions (insert, delete, substitute)
 - Applications: tracking DNA mutations, file compression and error correction

6.1000 LECTURE 20 10

Knapsack Problems

- You have limited strength, so there is a maximum weight knapsack that you can carry
- You want to take more stuff than you can carry
- How do you choose what to take vs. leave behind?
 - Want to optimize "value" of things to take
- Two variants
 - Continuous or fractional knapsack problem

0/1 knapsack problem

versus

Also known as a rucksack, haversack, backpack

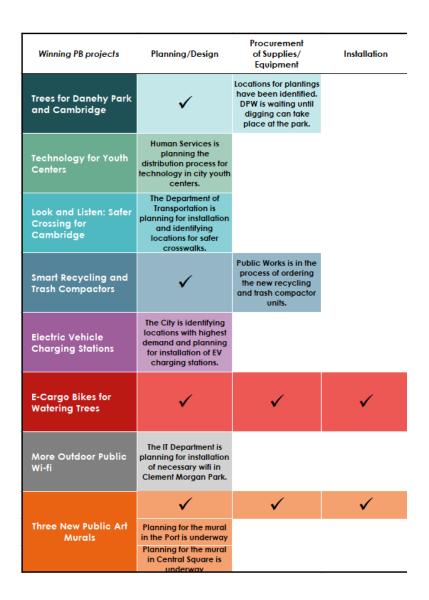
Quanta are infinitesimal relative to available space

Quanta are large relative to available space

Much more interesting

Straightforward

A Fun 0/1 Knapsack Problem


Pos	Player	Points	Salary
QB	Patrick Mahomes @ JAX (9)	22.7	\$ 7200
RB	Leonard Fournette vs KC (31)	19.7	\$ 6100
RB	Dalvin Cook vs ATL (28)	18.8	\$ 6000
WR	Curtis Samuel vs LAR (22)	12.2	\$ 4200
WR	Tyler Lockett vs CIN (10)	15.6	\$ 6000
WR	Marvin Jones @ ARI (13)	13.8	\$ 4800
TE	Zach Ertz vs WAS (4)	16.9	\$ 6100
Flex	Kerryon Johnson @ ARI (27)	18.1	\$ 5800
DEF	Baltimore Ravens @ MIA (24)	10.4	\$ 3800
Total		148.2	\$50000

Objective function: Maximize total "score" for roster Constraints:

Total cost ≤ \$50k 1 QB, 2 RB, 3 WR, 1 TE, 1 Flex, 1 Team Defense

Example: Participatory Budgeting

- Cambridge has had 9 annual cycles of participatory budgeting
 - https://pb.cambridgema.gov/ pbcycles
- Set aside about \$1 million
- Release proposed list of projects, each with a cost
- Collect votes from residents, score each project on collective benefit

YOUR TURN

- Is it a knapsack problem?
 - Picking stocks for a portfolio
 - Ranking your professors
 - Deciding which subjects to take freshmen year
 - Finding the shortest path between two places
 - Debugging a Python program
 - Managing work/life balance

