

Rules

* Reverse Jeopardy: The answers are the answers
* You have to answer as a group

* And go top to down per category

» Correct answers give candy points, wrong answers subtract candy
points. And yes, you might owe me candy at the end ;)

* Every question has a certain number of seconds (indicated at the
lower bar). After X seconds a bell indicates that the time is over

* Groups willing to answer the question must raise their hand
« Among groups with hands raised the moderator picks a group.

e At the discretion of the moderator, the answer is deemed correct or
wrong. If correct, the group can choose the next question. If wrong,
candy is subtracted and another group can answer

Classes, Methods, &
Exceptions

Yellow boxes
were covered
in class

A*
(is out of scope for
the mid-term)

5 Candy

8 Candy

10 Candy

12 Candy

More on Graphs

2 Candy

You are designing a simple system to model a Library with Books and Members.
You want:
e Each Library to keep track of its books and members.
* A Member to be able to borrow a Book.

* The Book itself should not know which library it belongs to (to keep it reusable).

Which of the following designs follows good object oriented design principles?

Option A
class Book:
def __init_ (self, title):
self.title = title
self.library = None

class Member:
def __init_ (self, name):
self.name = name
self.borrowed_books

class Library:
def __init__ (self):
self.books = []
self.members = []

def add_book(self, book):
book. library = self
self.books.append(book)

Option B
class Book:
def __init__ (self, title):
self.title = title

class Member:
def __init_ (self, name):
self.name = name
self.borrowed_books = []

class Library:
def __init_ (self):
self.books = []
self.members = []

add_book(self, book):
self.books.append(book)

register_member(self, member):
self.members.append(member)

lend_book(self, member, book):

if book in self.books and member in self.

self.books. remove(book)
member.borrowed_books.append(book

Option C
class LibraryItem:
def __init__ (self, title):
self.title = title
self.borrowed_by = None

class Book(LibraryItem):
def __init_ (self, title, pages):
super().__init__(title)
self.pages = pages

class Member(Book):

def __init__ (self, title, pages, member_id):

super().__init__(title, pages)
self.member_id = member_id

3 Candy

Option A Option B
class A: class A:

def _init_ (self): def __init_ (self):
Global frame A class self.value = 'A’ self.value = 'A"'

function
__init__(self)

Frames Objects

__init__

P def method1(self, msg): def methodl(self, msg):
ncuon

methodl| nethod1(self, msg) print(msg) print(msg)

B class [extends A]

method1 _init__ m“ﬁﬁl (sel) class B(A): class B(A)f '
IF ——— def __init__(self): def __init__(self):
sel function - T -
methodl(self, msg) super().__init__() SUper().__lnlf_T()
method1 | default arguments: self.value = 'B' self.value = 'B
msg | None

msg | "Hello from main"

__class___

def methodl(self, msg=None): def methodl(self, msg=None):

C class [extends B] super().method1("Hello from B") for i in range(3):
super().method1("Hello from B")

methodl

self o function
__init__

msg | "Hello from C" __init__(self)

—= rfr‘ljen:trl\(:.)ndl(self msg) class C(B):
i 0 method1 defaultarguments.: def _init_(self): class C(B):
super().__init__() def __init__ (self):
self.value = 'C' super().__init__()
self.value = 'C'
def methodl(self, msg=None): self.cost = 100

super().method1("Hello from C")
value | "C" def methodl(self, msg=None):

super().method1("Hello from C")

msg | None

C instance

cost | 100

obj = C()
obj.method1("Hello from main")
obj = C()

obj.method1("Hello from main")

What code belongs to the frame on the right?
At what point in the execution was the snapshot of the
frame taken?

def process_data():
try:
number = read_and_parse("missing.txt")
print("Processed number:", number + 10)
return number
except DataError as e:
print("Outer except (DataError):", e)

def prepare_filename(filename):
try:
new_filename = filename.strip().lower()
return new_filename
except AttributeError:
raise AttributeError("Invalid filename format")
else:

print("Filename prepared")

read_and_parse(filename):
file = None
try:
file = open(prepare_filename(filename), "r")
text = file.read()
if not text.strip():
raise DataError("File is empty")
number = int(text.strip())
return number
except ValueError:

except Exception as e:
print("Some error happened")
finally:
print("Cleanup complete.")

app():

try:
result = process_datal()
print("App result:", result)

except Exception as e:
print("App error")

else:

print("Inner except: Invalid number format.") print("All went fine!")

raise DataError("Parsing failed")
finally:
print("Inner finally: Closing file.")
if file:
file.close()

app()

What is the print output of calling app() assuming
the file missing.txt does not exist?

Inner finally: Closing file.
Some error happened
Cleanup complete.

App result: None

All went fine!

Filename prepared
Inner finally: Closing file.
Some error happened
Cleanup complete.

App result: None

All went fine!

Some error happened
Cleanup complete.
App result: None

All went fine!

Inner except: Invalid number format
Some error happened

Cleanup complete.

App result: None

All went fine!

class Node:
def __init__ (self, name, value, children=None):
self.name = name
self.value = value
self.children = children if children else []

total_value(self, max_depth):
total = self.value
if max_depth > 0:

for child in self.children:

total += child.total_value(max_depth -1)

else:

print("Max depth reached - skipping anything below")
return total

al = Node("Al1", 2)

a2 = Node("A2", 3)

a = Node("A", 5, [al, a2])

b Node("B", 10)

root = Node("root", 1, [a, bl)

print(root.total_value(2))

When the program prints “Max depth reached — skipping anything below” for the first
time, what Python frames exists and what objects (you don’t need to show all the
linkage between them)

Frames Objects

Global frame Node class

function
__init__(self, name, value, children)
al default arguments:

a2 children | None
a total value function
b L total_value(self, max_depth)

root

Node

Node instance

children

total_value
name | "
self
value
max_depth
total

child

total_value
self
max_depth 1
total |5
child

total_value

self /

max_depth 0
total 2

Node instance

children L]
name | "B"

value | 10

empty list

Node instance

average_per_subject(records):
subject_totals = {}
subject_counts = {}

for record in records:
_, grades, subjects = record
for subject, grade in zip(subjects, grades):
subject_totals[subject] = subject_totals.get(subject, @) + grade
subject_counts[subject] = subject_counts.get(subject, @) + 1

return {
subject: subject_totals[subject] / subject_counts[subject]
for subject in subject_totals

average_performance(records):
total_sum = 0
total_count = @

for record in records:
_, grades, subjects = record
if len(subjects) >0:
total_sum += sum(grades) / len(grades)
total_count += 1

return total_sum / total_count if total_count else 0.0

grades = [
[['peter', 'parker'], [10.0, 5.0, 8.5], ['math', 'science', 'english'l],
[['bruce', 'wayne'], [10.0, 8.0, 7.4], ['math', 'science', 'english'l]],
[['pan', 'peter'], []1, ['math', 'science', 'english']]

]
print("\nAverage per subject:")
for subject, avg in average_per_subject(grades).items():

print(f" {subject}: {avg:.2f}")

print(f"\nOverall total average: {average_performance(grades):.2f}")

Your program assumes that a student
has a grade for every class. However,
currently the developer doesn’t use
your method correctly and invokes it
for classes, which don’t have a grade
yet.

How would you modify your code to
make it safer?

def average_per_subject(records):
subject_totals = {}
subject_counts = {}
for record in records:
_, grades, subjects = record
assert len(grades) == len(subjects), "They should be the same length"
assert len(grades) > @, "They shoudl be at least one subject with a grade"
for subject, grade in zip(subjects, grades):
subject_totals[subject] = subject_totals.get(subject, @) + grade
subject_counts[subject] = subject_counts.get(subject, @) + 1

return {
subject: subject_totals[subject] / subject_counts|[subject]
for subject in subject_totals

def average_performance(records):
total_sum = 0
total_count = 0@
for record in records:
_, grades, subjects = record
assert len(grades) == len(subjects), "They should be the same length"
assert len(grades) > @, "They shoudl be at least one subject with a grade
if len(subjects) >0:
total_sum += sum(grades) / len(grades)
total_count += 1

return total_sum / total_count if total_count else 0.0

grades = [
[['peter', 'parker'], [10.0, 5.0, 8.5], ['math', 'science', 'english'l],
[['bruce', 'wayne']l, [10.0, 8.0, 7.4], ['math', 'science', 'english']],
[['pan', 'peter'], [], ['math', 'science', 'english']]

print('"\nAverage per subject:")
for subject, avg in average_per_subject(grades).items():
print(f" {subject}: {avg:.2f}")

print(f"\nOverall total average: {average_performance(grades):.2f}")

. . def dijkstra_heap(graph, start, goal, visualize = False, pause=0.5):
COﬂSlder the fO”OWIng start_node = graph.get_node(start)

directed’ WEIghted graph: goal_node = graph.get_node(goal)

queue = [(@, [start_node])]
" heapg.heapify(queue)
Edge WEIght visited = set()

A 9 B 2 while queue:

cost, path = heapq.heappop(queue)
A->C current_node = path[-1]
B->C

if current_node in visited:
continue

4
1

B 9 D 7 visited.add(current_node)
3

C->D

if current_node == goal_node:
return cost, path

You run Diijtra’s algorithm neighbor, weight in graph.outgoing_edges_of(current_node).items():
starting from node A with if neighbor in visited:
goal D. After visiting nodes A, e ot o5t weight
B, and C, what are the current new_path = path + [neighbor]

] heapq.heappush(queue, (new_cost, new_path))
shortest path in our queue?

return None

Options:
A' [(6I [lAll 'B'I 'C'I 'Dl])l (9I ['A'I 'Bll 'D'])]
B' [(4I ['A'I |C'])I (6I [lAll 'B'I IC'I 'Dl])l (9I ['A'I lBlI 'D'])]
C. [(4, ['A%,'C]), (9, ['A', 'B', 'D'])]
D. [(4, ['A,'C]), (6, ['A", 'B', 'C", 'D'])]

Consider the map above with the goal to find the shortest path between A and B
(Euclidian distance). Which nodes would the Dijkstra algorithm visit before
finding the shortest path?

(A) All nodes as the connection C to A will be processed last.
(B) After two nodes (C, and then B)
(C) After it processed the second frontier [(C, D, F), then (B, E, G)] so 6 nodes

(D) It is a random algorithm: we don’t know

Reducing wasteful exploration

= Dijkstra’s is based on BFS principles

> When expanding to neighbors, it has no idea whether it’s
getting closer or farther from goal

° |t only knows it’s going away from the start as slowly as
possible, to guarantee optimality

= |dea: augment cost for each state on the queue with
an additional estimate of cost-to-go

° Biases search towards expanding states that you think lie
on an optimal path

A*

=f(n) = g(n) + h(n)
o g(n) = “cost from the starting node to reach n”

> h(n) = “estimate of the cost of the cheapest path from n to
the goal node”

h(n)

def dijkstra_heap(graph, start, goal, visualize False, pause=0.5):
start_node = graph.get_node(start)
goal_node = graph.get_node(goal)
queue = [(@, [start_nodel)]
heapq.heapify(queue)
visited = set()

while queue:
cost, path = heapq.heappop(queue)
current_node = path[-1]

if current_node in visited:
continue
visited.add(current_node)

if current_node == goal_node:
return cost, path

for neighbor, weight in graph.outgoing_edges_of(current_node).items():
if neighbor in visited:
continue
new_cost = cost + weight
new_path = path + [neighbor]
heapq.heappush(queue, (new_cost, new_path))

return None

Modify the code to A* with h(n) being Euclidian distance to the goal

def dijkstra_heap(graph, start, goal, visual

start_node = graph.get_node(start)
goal_node = graph.get_node(goal)
queue = [(@, [start_nodel)]

heapq. heapify(queue)

visited = set()

while queue:
cost, path = heapq.heappop(queue)
current_node = path[-1]

if current_node in visited:
continue
visited.add(current_node)

if current_node == goal_node:
return cost, path

for neighbor, weight in graph.outgoing_edges_of(current_node).items():

if neighbor in visited:
continue

new_cost = cost + weight

new_path = path + [neighbor]

e = False, pause=0.5):

heapg.heappush(queue, (new_cost, new_path))

return None

def astar_heap(graph, start, goal, visualize=False, pause=0.5):
start_node = graph.get_node(start)
goal_node = graph.get_node(goal)

g_score 0

h_score = graph.distance(start_node, goal_node)
f_score = g_score + h_score

queue = [(f_score, g_score, [start_nodel)]
heapq.heapify(queue)

visited = set()

while queue:
f_score, g_score, path = heapq.heappop(queue)
current_node = path[-1]

if current_node in visited:
continue
visited.add(current_node)

if current_node == goal_node:
return g_score, path

for neighbor, edge_weight in graph.outgoing_edges_of(current_node).items():
if neighbor in visited:
continue

new_g_score = g_score + edge_weight

new_h_score = graph.distance(neighbor, goal_node) # Heuristic estimate
new_f_score = new_g_score + new_h_score

new_path = path + [neighbor]

heapg.heappush(queue, (new_f_score, new_g_score, new_path))

return None

def astar_heap(graph, start, goal, visualize=False, pause=0.5):
start_node = graph.get_node(start)
goal_node = graph.get_node(goal)

g_score = 0

h_score = graph.distance(start_node, goal_node)
f_score = g_score + h_score

queue = [(f_score, g_score, [start_node])]
heapq.heapify(queue)

visited = set()

while queue:
f_score, g_score, path = heapq.heappop(queue)
current_node = path[-1]

if current_node in visited:
continue
visited.add(current_node)

if current_node == goal_node:
return g_score, path

neighbor, edge_weight in graph.outgoing_edges_of(current_node).items():
if neighbor in visited:
continue
new_g_score = g_score + edge_weight
new_h_score = graph.distance(neighbor, goal_node) # Heuristic estimate
new_f_score new_g_score + new_h_score
new_path = path + [neighbor]
heapqg.heappush(queue, (new_f_score, new_g_score, new_path))

return None

12 Candy

What are the requirements to the heuristic / cost estimate
to guarantee that A* finds the optimal soluton?

Properties of A*

"A* generates an optimal solution if h(n) is an admissible
heuristic and the search space is a tree:

> h(n) is admissible if it never overestimates the cost to reach
the destination node

* A generates an optimal solution if h(n) 1s a consistent
heuristic and the search space 1s a graph:

— h(n) 1s consistent if for every node n and for every
successor node n’ of n:

h(n) <c(n,n’) + h(n’) n

cnn’) N r—_ h(n’)

e |f h(n) is consistent then h(n) is admissible
eFrequently when h(n) is admissible, it is also consistent

Admissible Heuristics

"A heuristic is admissible if it is too optimistic, estimating the
cost to be smaller than it actually is.

"Example:

In the road map domain,

h(n) = “Euclidean distance to destination”

is admissible as normally cities are not connected by roads that make
straight lines

12 Candy

Which of the following statements about the A* search algorithm is true?

A. A* always expands the fewest possible nodes among all optimal algorithms,
regardless of the heuristic.

If the heuristic function h(n)is admissible but not consistent, A* may still find the
optimal path but could re-expand nodes.

A* guarantees optimality only if the heuristic function overestimates the true cost to
the goal.

def graph_algorithm(graph, start):
start_node = graph.get_node(start)

Distance and predecessor tables

distances = {node: float('inf') for node in graph.get_all_nodes()}
distances[start_node] = 0

predecessors = {node: None for node in graph.get_all_nodes()}

queue = [(@, start_node)]
heapq.heapify(queue)
visited = set()

while queue:
cost, current_node = heapg.heappop(queue)
if current_node in visited:
continue
visited.add(current_node)

for neighbor, weight in graph.outgoing_edges_of(current_node).items():

new_cost = cost + weight

if new_cost < distances[neighbor]:
distances [neighbor] = new_cost
predecessors [neighbor] = current_node
heapq.heappush(queue, (new_cost, neighbor))

return distances, predecessors

What does this
algorithm do?

What does the
function return?

How does it
compare to the
Dijkstra algorithm
from class?

def dijkstra_heap_all(graph, start):
start_node = graph.get_node(start)

Distance and predecessor tables

distances = {node: float('inf') for node in graph.get_all_nodes()}
distances[start_node] = 0

predecessors = {node: None for node in graph.get_all_nodes()}

queue = [(@, start_node)]
heapq.heapify(queue)
visited = set()

while queue:
cost, current_node = heapg.heappop(queue)
if current_node in visited:
continue
visited.add(current_node)

for neighbor, weight in graph.outgoing_edges_of(current_node).items():

new_cost = cost + weight

if new_cost < distances[neighbor]:
distances[neighbor] = new_cost
predecessors [neighbor] = current_node
heapq.heappush(queue, (new_cost, neighbor))

return distances, predecessors

To calculate the shortest
path between every pair
of nodes we could just
invoke this function in a
loop with every node as a
source?

Would this be efficient?

How would you improve
the algorithm?

def floyd_warshall(graph):

Floyd Warshall

Compute shortest paths between all pairs of nodes using the FloydHWarshall algorithm. Just an examp|e’ out of

Returns:

distances[(u, v)] shortest distance from u to v Scope OtherW|Se.
next_node[(u, v)] = next node on the shortest path from u to v

nodes = list(graph.get_all_nodes())

distances = {}

next_node = {} Good for dense networks

Initialize distances with edge weights and @ for self-loops
for u in nodes:
for v in nodes:
if u == v:

For directed graphs

distances((u, v)] = 0 (doesn’t take advantage

else:

distances[(u, v)] = float('inf") Of undirectEd graphS)

next_node[(u, v)] = None

Fill in direct edge weights
for u in nodes: . .
for v, weight in graph.outgoing_edges_of(u).items(): can deal Wlth negatlve

distances[(u, v)] = weight

next_node[(u, v)] = v WEightS

Main triple loop
for k in nodes:
for 1 in nodes:
for j in nodes:
if distances[(i, k)] + distances[(k, j)] < distances[(i, j)I:
distances[(i, j)] = distances[(i, k)] + distances[(k, j)]
next_node[(i, j)] = next_nodel[(i, k)]

return distances, next_node

6 Candy

United Airlines wants to identify which
routes between any two major airports
require the greatest number of stops,
indicating that those city pairs are not well
served by existing connections?

How would you calculate it?

All-pairs Shortest Path

= Compute shortest paths between all n? pairs of nodes *
(e.g., using Dijkstra or Floyd Warshall) ‘

o n is the number of nodes
> Why is this useful?

= Consider the longest shortest path between any pair
of nodes

o Called the diameter of a graph A)\&/’_fd\

" In communication networks, this is the longest path

B)

any message has to travel, affects latency R ol o2

14
568323

5+6+8'§ +5+8+3=40

"In the Facebook social graph, the diameter (in friend
hops) is about 13, but the average shortest path length
is around 4-5 (“six degrees of separation”).

Spring 2024 6.100B LECTURE 4

12 Candy

* Imagine a city with lots of roads, but no bicycle lanes

* Assume that there is a non-negative cost associated with adding a
lane to each road

* § Objective function: Minimize the cost of adding bicycle lanes

Design an algorithm to find the minimum number of bike-lanes so
that it is possible to get between any pair of addresses using only
bicycle lanes

Minimum Spanning Tree

Minimum Spanning Tree: Find a subset of edges of a
connected graph that connects all nodes with the
minimum total edge weight

Prim Algorithm

def prim(graph, start):
start_node = graph.get_node(start)

{node: None for node in graph.get_all_nodes()}

predecessors =
total_cost = 0

queue = [(@, None, start_node)]
heapq.heapify(queue)
visited = set()

while queue:
cost, from_node, current_node = heapqg.heappop(queue)
if current_node in visited:
continue
visited.add(current_node)
total_cost += cost

if from_node is not None:
predecessors[current_node] = from_node

going edges of(current node).items():
heapq.heappush(queue, (weight, current_node, neighbor))

return total_cost, predecessors

Very similar to Dijkstra

4 Candy

Create an example where Dijkstra
creates a different spanning tree
than Prlm S algorlthm

Prim’s vs Dijkstra

Prim’s Algorithm — Minimum Spanning Tree Dijkstra’s Algorithm — Shortest Paths from A

A A

