Implementing == © &
graphs with classes,
Exceptions

(download slides and .py files to follow along)

Tim Kraska

MIT Department Of Electrical Engineering and
Computer Science

Fall 2025 6.100 LECTURE 17

Announcements

= Pset 4 checkoff due Wed 9pm
" Pset 5 due Friday

= Midterm 2 next Wed 11/12

= Review session this Friday 11/7 during 7--9 pm.

Fall 2025 6.100 LECTURE 17 2

Topics

= [ast week
o |deal Gas Law

o Simulations with classes

= Today
° Implementing graphs with classes
o Exceptions
o A*

Fall 2025 6.100 LECTURE 17 3

What is a Graph?

= Set of nodes (vertices)

Fall 2025

6.100 LECTURE 17

THISIS GIT. T TRACKS COLLABORATIVE. LIORK
ON PROJECTS THROUGH A BEAUTIFUL
DISTRIBUTED GRAPH THEORY TREE. MODEL.

CoOL. HOU DO WE-VEE IT?

NO IDEA. JUST MEMORIZE. THESE. SHELL
COMMANDS AND TYPE THEM To SYNC DR
IF YOU GET ERRORS, SAVE YOUR WORK
ELSEWHERE, DELETE THE. PROJECT,
AND DOWUNLOAD A FRESH COPY.

%@W

What is a Graph?

= Set of nodes (vertices)
> Might have associated names or properties

= Set of edges (arcs) each connecting a pair of nodes

o Undirected (graph)

Fall 2025 6.100 LECTURE 17

THISIS GIT. T TRACKS COLLABORATIVE. LIORK
ON PROJECTS THROUGH A BEAUTIFUL
DISTRIBUTED GRAPH THEORY TREE. MODEL.

CoOL. HOU DO WE-VEE IT?

NO IDEA. JUST MEMORIZE. THESE. SHELL
COMMANDS AND TYPE. THEI To SYNC DR
IFYOU GET ERRORS, SAVE. YOUR LJORK
ELSEWHERE, DELETE THE. PROTECT,
AND DOWNLOAD A FRESH COPY.

%@W

What is a Graph? o T
= Set of nodes (vertices) \
> Might have properties associated with them jﬁf@?%

= Set of edges (arcs) each connecting a pair of nodes
o Undirected (graph)
o Directed (digraph)
o Source (parent) and destination (child) nodes

> Unweighted or weighted Graph:

> Assume non-negative * might not be completely
connected

e could have loops, both
single length and longer

Fall 2025 6.100 LECTURE 17

THISIS GIT. T TRACKS COLLABORATIVE. LIORK
ON PROTECTS THROUGH A BEAUTIFUL
DISTRIBUTED GRAPH THEORY TREE. MODEL.

What is a Graph? s

COMMANDS AND TYPE THEM To SYNC DR
IF YOU GET ERRORS, SAVE YOUR WORK
ELSEWHERE, DELETE THE. PROTECT,
AND DOWNLOAD A FRESH COPY.

= Set of nodes (vertices)
> Might have properties associated with them jﬁﬁ@%%
= Set of edges (arcs) each connecting a pair of nodes
o Undirected (graph)
o Directed (digraph)

o Source (parent) and destination (child) nodes

> Unweighted or weighted Graph:

> Assume non-negative * might not be completely
connected

e could have loops, both
single length and longer

Path:B>A->C—>D

Fall 2025 6.100 LECTURE 17

THEY SAY THE SHORTEST DISTANCE
BETWEEN TWO POINTS IS A STRAIGHT LINE.

Some Shortest Path Problems

THEY HAVE NEVER DRIVEN IN
~ SEATTLE. WE HAVE TO USE A TESSERACT.

" Finding a route from one city to another
= Routing data on communication networks
= Warehouse logistics of storing and retrieving products

= Finding a path for a molecule through a chemical

. ‘\\;‘\\\ 7\
labyrinth MY PR Y

=\
. ¥ g G .-:A B\
0k A CemE T

I i i l LA
IH 2 ,' l.
) — _\."g : i L = ; : b 4
S e T o il |
! i " T
= B 0 7

~
AT

Fall 2025 6.100 LECTURE 17

IMPLEMENTING GRAPHS

MATH GossiP

Howe you heard the nawe” | | Mice. called John and Evie
M (Texvi losk hey call soshe called
hasekF),

Representations of Digraphs 5337?

= Digraph is a directed graph (A—(8) e | [T
o Edges pass in one direction only I z@@ %ﬁ
> Need to represent collection of edges © - mjlg
= Adjacency matrix d
o Rows: source nodes -uﬂﬂ
o Columns: destination nodes A 1
° Cellls, d] =1 if thereisan edge fromstod _ B 1
= 0 otherwise C 1
D 1 1

o Note that in digraph, matrix is not symmetric
o Uses O(|nodes | **2) memory

= Assumes at most one arc between node pairs

o Easily generalized to multiple arcs with
weights

Fall 2025 6.100 LECTURE 17 10

MATH GossiP

: : Sl &___—J
Representations of Digraphs S A
" Digraph is a directed graph (A—(B) S T | [T
o Edges pass in one direction only I I %E
> Need to represent collection of edge¢p)~ (¢ @f |\ R
® Adjacency matrix
o Rows: source nodes
o Columns: destination nodes
o Cell[s, d] =1 if there is an edge fromstod
= 0 otherwise A: [D]
° Note that in digraph, matrix is not symmetric B: [A
o Uses O(|nodes|**2) memory C: .'B.'
= Adjacency list D: [A, D]
o Associate with each node a list of destination

nodes that can be reached by one edge

o Uses O(] edﬁes |) memory, therefore good for
sparse graphs

Fall 2025 6.100 LECTURE 17 11

Class Exercise

Assume you want a data structure for the following
requirements:

- Store general purpose directed and undirected graphs

- Model cities with their longitude and latitude for
visualization and store main (undirected) connections

between cities with their associated driving distance
(km)

- Support different ways to calculate the distance
between cities (Euclidian or great-circle distance)

What key classes and data structures would you use to
implement the requirements?

Fall 2025 6.100 LECTURE 17 12

Classes, part 1

class Node:
"""Represents a generic graph node with only a name (string)."""

def __init__(self, name):
self.name = name

def _ str__(self):
return self.name

def __eq__(self, other):
return self.name == str(other)

def __hash__(self):

Nodes are uniquely identified by their name
return hash(self.name)

class MapNode(Node):
"""Extends Node with (x, y) coordinate information."""

def __init_ (self, name, coords):
super().__init__(name)
if not (isinstance(coords, tuple) and len(coords) == 2):
raise ValueError("coords must be a tuple (x, y)")
self.coords = coords # e.g., (-71.0589, 42.3601)

def __str__(self):
X, y = self.coords
return f"{self.name} [{x:.4f}, {y:.4f}]"

Fall 2025 6.100 LECTURE 17 13

Classes, part 2

class SimpleDigraph:
"""Represents a weighted directed graph using Nodes as keys."""

class SimpleGraph(SimpleDigraph):
def add_edge(self, nodel, node2, weight=1):
super().add_edge(nodel, node2, weight)
def __init__(self, nodes=()): super().add_edge(node2, nodel, weight)
self._edges = {} # dict: Node -> dict(Node -> weight)
for node in nodes:
self.add_node(node)

def add_node(self, node):
self._edges[node] = {}

def get_node(self, id):
if id in self._edges:
return id

def add_edge(self, src, dest, weight=1):
"""Add a directed edge between two Node objects (or names)."""
src = self.get_node(src)
dest = self.get_node(dest)
self._edges[src] [dest] = weight

def get_all_nodes(self):
return list(self._edges.keys())

def outgoing_edges_of(self, node):
return self._edges[node].copy()

def children_of(self, node):
return list(self._edges[node].keys())

Fall 2025 6.100 LECTURE 17 14

Implementing undirected graphs

= Observation: undirected edge can be represented as pair

of opposite directed edges

Jag g

" Insight: Undirected graph can reuse most functionality
from class Digraph

=*Only have to respecify add_edge () method
o Use inheritance, of course

Fall 2025 6.100 LECTURE 17 15

Class Graph (undirected)

class Graph(Digraph):

of directed edges

Represents an undirected graph with pairs

def add_edge(self, nodel, node2, weight=1):
super().add _edge(nodel, node2, weight)
super().add _edge(node2, nodel, weight)

superclass

super () interprets class Digraph
se/fin the context of __init__
the parent class(es)

add_node

add_edge

__str__

&

~—

subclass

)
class Graph

add_edge
super() .add_edge()

Fall 2025 6.100 LECTURE 17

16

Classes, part 2

class SimpleDigraph:
"""Represents a weighted directed graph using Nodes as keys."""

class SimpleGraph(SimpleDigraph):
def add_edge(self, nodel, node2, weight=1):
super().add_edge(nodel, node2, weight)
def __init_ (self, nodes=()): super().add_edge(node2, nodel, weight)
self._edges = {} # dict: Node —> dict(Node -> weight)

for node in nodes:
self.add_node(node)

def add_node(self, node):
self._edges[node] = {}

a 3?;?32‘::1}’_;3;5 Why does Simple graph inherit from SimpleDigraph

return id and not the other way around?

def add_edge(self, src, dest, weight=1):
"""Add a directed edge between two Node objects (or names)."""
src = self.get_node(src)
dest = self.get_node(dest)
self._edges[src] [dest] = weight

def get_all_nodes(self):
return list(self._edges.keys())

def outgoing_edges_of(self, node):
return self._edges[node].copy()

def children_of(self, node):
return list(self._edges[node].keys())

Fall 2025 6.100 LECTURE 17 17

Class Graph (undirected)

class Graph inherits

class Gpaphk Digraph)l class Digraph's functionality
"""Represents an undirected graph with pairs

Graph’s of directed edges""" ed
add_edge 666% S
overrides , O (0
Digraph’s def |add edgek self, nodel, node2, we1ght=1): 0@6\.‘:%9\396
super().add_edgeinodel, node2, welght]i P&\d\o e{\g&\
[super ()] add_edge(node2, nodel, weight) " a0 o
\\«\e&\\o
superclass
super () interprets class Digraph €
se/fin the context of __init__ subclass
the parent class(es) S class G;'aph

add_edge add_edge

\ super() .add_edge()

__str__

Fall 2025 6.100 LECTURE 17 18

Designing Class Hierarchy

= Why make undirected Graph a subclass of Digraph,
rather than vice versa?

> Might seem like Digraph has additional “feature”

= Follow the Substitution Principle:
o “Subclass behavior should be consistent with superclass”

= When Graph is subclass of Digraph:

Graph object interpreted
as Digraph object Graph object

6=

Fall 2025 6.100 LECTURE 17

Connectivity: Connectivity:
A can reach B, C A can reach B, C
B canreach A, C B can reach A, C
Ccanreach A, B Ccanreach A, B

Classes, part 2

class SimpleDigraph:

class SimpleGraph(SimpleDigraph):
"""Represents a weighted directed graph using Nodes as keys."""

def add_edge(self, nodel, node2, weight=1):
super().add_edge(nodel, node2, weight)

def __init__ (self, nodes=()): super().add_edge(node2, nodel, weight)
self._edges = {} # dict: Node —> dict(Node -> weight)

for node in nodes:
self.add_node(node)

def add_node(self, node):

self._edges [node] = {} How would you prevent that somebody adds

def get_node(self, id): " something else than a Node to our graph
if id in self._edges:
return id

How would you allow to retrieve nodes using

def add_edge(self, src, dest, weight=1): strings
"""Add a directed edge between two Node objects (or names)."""
src = self.get_node(src)
dest = self.get_node(dest)
self._edges[src] [dest] = weight

def get_all_nodes(self):
return list(self._edges.keys())

How would you prevent that edges can be
added for nodes that don’t exist?

def outgoing_edges_of(self, node):
return self._edges[node].copy()

def children_of(self, node):
return list(self._edges[node].keys())

Fall 2025 6.100 LECTURE 17 20

Classes, part 3

def

def

def

Fall 2025

add_node(self, node):
"""Add a Node object to the graph."""
if not isinstance(node, Node):

raise TypeError("add_node expects a Node instance")
if node in self._edges:

raise ValueError(f"Duplicate node: {node.name}")
self._edges[node] = {}

get_node(self, id):
"""Internal helper: resolve a node name or return node directly."""
if isinstance(id, str) or isinstance(id, Node):

for n in self._edges:

if n.name == id:
return n

raise ValueError(f"Unknown node name: '{id}'")

raise TypeError(f"Expected Node or str, got {type(id).__name__}")

add_edge(self, src, dest, weight=1):

"""Add a directed edge between two Node objects (or names)."""
src = self.get_node(src)

dest = self.get_node(dest)

self._edges[src] [dest] = weight

6.100 LECTURE 17

21

EXCEPTIONS

(1) Exception Types

(2) Try-Except

(3) Raise

(4) Exceptions and Program Flow

6.100 LECTURE 17

Types of Problems with Code

= Syntax: program has no meaning, won’t run

fix syntax error (line number given)

today’s lecture!

(= Crashes: program has meaning but invalid at some point

o converting string '1"' to an integer is valid, but converting string 'abc’
to integer is an invalid operation

_ exceptions & assertions

\

/

= Returns wrong answer: valid meaning throughout, not
what you meant
o we saw a lot of those examples in the mutability lecture

debugging (Lecture 5)

= Runs forever: (likely) ditto
debugging (Lecture 5)

6.100 LECTURE 17

23

Exception Types

Exception Types

= what happens when procedure execution hits an unexpected
condition?

= get an exception... to what was expected
* Dividing by zero - ZeroDivisionError

* trying to access beyond list limits
test = [1, 7, 4]

test[4] - IndexError
* operand does not have correct type

int([1,2,3]) - TypeError
* operand type ok, but value illegal

int ('abc') - ValueError

(note that this is different from the list example, 1ist can never be converted
to int but some string can be converted to int, e.g., int('1"))

6.100 LECTURE 17 25

Exception Types

o referencing a non-existing variable, local or global name not
found

a -2 NameError
° |0 systems reports malfunction
file not found - IOError

6.100 LECTURE 17 26

Python Exception Hierarchy

" most built-in exceptions are errors, some are warnings

 https://docs.python.org/3/library/exceptions.html#texceptio
n-hierarchy

BaseException

—— BaseExceptionGroup

—— GeneratorExit
KeyboardInterrupt

—— SystemExit

— Exception

—— ArithmeticError

—— FloatingPointError
—— OverflowError

—— ZeroDivisionError

— AssertionError can define your own
—— AttributeError

BufferError exceptions, based on

EOFError _ Python's class system
ExceptionGroup [BaseExceptionGroup]

ImportError (discussed next week)

L— ModuleNotFoundError
—— LookupError
—— IndexError
— KeyError
MemoryError
NameError

L— UnboundLocalError
OSError

I D1 I'\I‘II'; nﬂTn:""f\" —r——— —— F—— 27

https://docs.python.org/3/library/exceptions.html
https://docs.python.org/3/library/exceptions.html
https://docs.python.org/3/library/exceptions.html
https://docs.python.org/3/library/exceptions.html
https://docs.python.org/3/library/exceptions.html

Try-Except

How to handle Exceptions: Try-Except

= Problem: Normally the program just stops/crashes when they
encounter a problem like this. But that isn’t a good strategy.

= Better: recognize when those things happen and have an
alternate plan in place.

= Solution: wrap code into try-except block.

" Example:
° |n many programs, users provide some sort of input.

o If they provide invalid inputs (e.g., letters instead of
numbers), we want to gracefully handle this instead of
letting our program crash.

6.100 LECTURE 17 29

Try-Except

* when code in try fails, except block is executed.

try:
a = int(input("Tell me one number: "))
b = int(input("Tell me another number: "))

print("a + b =", a + b) :
. . o Benefit: Code does
print(*a / b =", a / b) not crash even with
except: invalid input! Code
print("Bug in user input.")|execution continues.

print("Continue execution from here.")

Tell me one number: a
Bug in user input.
Continue execution from here.

6.100 LECTURE 17 30

Try-Except

* depending on exception type you can execute different code.

try:
a = int(input("Tell me one number: "))
b = int(input("Tell me another number: "))
print("a + b =", a + b)
print("a / b =", a / b)
except| ValueError:
print("Could not convert to a number.")
except| ZeroDivisionError:
print("Can't divide bﬁ zero")

except |[KeyboardInterrupt:
Press Ctrl-C to generate a KeyboardInterrupt exception
print("User Interrupted Program")

except:
print("Something went very wrong.")

6.100 LECTURE 17 31

Try-Except-Else-Finally:

try:
a = int(input("Tell me one number: "))
b = int(input("Tell me another number: "))
print("a + b =", a + b)
print("a / b =", a / b)
except ValueError:
print("Could not convert to a number.")
except ZeroDivisionError:
print("Can't divide by zero")
except:
print("Something went very wrong.")

else:| only runs if no except block was executed

print("Everything Worked Out Fine!")

fina lly:| always runs (can be used to e.g., close open connections (files, sockets))

print("This is executed independent of success or failure.")

6.100 LECTURE 17 32

Try-Except: Error Object
try:
a = int(input("Tell me one number: "))
b = int(input("Tell me another number: "))

print(*a + b =", a + b) binds the variable
print("a / b =", a / b) name ‘error’ to the

except ValueError as error: ValueE biect
print("Returned Error:",| error) aluetrror objec

print("Could not convert to a number.")
except ZeroDivisionErro

print("Returned Error:",| error)

print("Can't divide by zero™)

print("Continue execution from here.")

Tell me one number: 5

Tell me another number: 0
a+b=2>5

Returned Error: division by zero
Can't divide by zero

Continue execution from here.

33

Try-Except: Example Jogging Speeds

* Handling zero division

def collect_ratios_2(numers, denoms, collection):
for i in range(len(numers)):

try:
ratio = numers[i] / denoms[i]
collection.append(ratio)

except|ZeroDivisionError:
print("Handling zero division")
collection.append(float('nan')) # nan = not a number

distances = [2, 5, 4]

times = [16,]| 0,| 40]

speed_history = [6.5, 5.7]
collect_ratios_2(distances, times, speed_history)
print(f"{speed_history = }")

6.100 LECTURE 17 34

Try-Except: Example Jogging Speeds

* Handling different lengths of distance and time lists

def collect_ratios_3(numers, denoms, collection):
for i in range(len(numers)):
try:
ratio = numers[i] / denoms[i]
collection.append(ratio)
except ZeroDivisionError:
print("Handling zero division")
collection.append(float('nan'))
except| IndexError:

print("Handling index out of range")

distances = [2, 5, 4]

times = [16, 0] Last entry missing

speed_history = [6.5, 5.7]
collect_ratios_3(distances, times, speed_history)
print(f"{speed_history = }")

6.100 LECTURE 17

35

Exceptions and
Program Flow

Exceptions Augment the Program Flow

= program is a stack of nested function calls

= exceptions unwind the stack to the nearest applicable exception
handler

o if there is no matching except block on the lowest function call
level where the exception occurs, the program looks on the
next higher level on the stack for a matching except block

o if it can’t find one on the top of the stack, the exception is
thrown back to the user on the console

= example: TypeError with Tuple from Jogging Speed Example

distances = [2, 5, 4]
times = [16, 7, 10]
speed_history = (6.5, 5.7)

6.100 LECTURE 17 37

Exceptions Augment the Program Flow

def collect_ratios_4(distances, times, speed_history):
Receive jogging distances in miles, times in minutes.
Calculate and append mph average speeds to speed history list.
#convert minutes into times per hour
times_hr = []
for t in times:
times_hr.append(t / 60)

#compute miles per hour and append to speed history list
for i in range(len(distances)):
try:
ratio = distances[i] / times_hr[i]
speed_history.append(ratio)
except ZeroDivisionError:
print("Handling zero division")
speed_history.append(float('nan'))

distances = [2, 5, 4]
times = [16, 7, 10]
speed_history = (6.5, 5.7)
- try:
collect_ratios_4(distances, times, speed_history)
except AttributeError as error:
print("Returned Error:", error)
print(f"{speed_history = }")

Example: Different Exceptions Jogging Speed Code

e ZeroDivisonError from <global frame>

having speeds that are O is

handled locally in try:

. I i05(....
collect_ratios() collect_ratios(...) .

except AttributeError:

e AttributeError from trying
to append to a tuple is handled
on the top of the stack because
no matching exception is found <collect_ratios>
on the lower levels of the call foriin ..

try:
stack except ZeroDivisionError:

6.100 LECTURE 17 39

6.100 LECTURE 17

40

Raising our own Exceptions

" raising our own exception allows us to shadow the current
exception with our own

= can give more specific information to the user what went
wrong because we know more about our function’s purpose

ralse <exceptionName> (<arguments>)

N

raise“ValueError("something 1s wrong"

A ©' e 2
K 3((\ (\“ \,"\\ 5’6%
\! \)N’b \ oV ((\ eS
N (\6 ‘ X
9 W

s“\(\%

6.100 LECTURE 17 41

Raising Exceptions: Jogging Speeds Example Continued

* raise exception for unrealistic jogging speeds
* Python would normally not create an exception for this

#compute miles per hour and append to speed history list
for i in range(len(distances)):
ratio = distances[i] / times_hrl[il

if ratio > 30: raise ValueError(f"Jogging Speed is unrealistically
high with {ratio} miles per hour.")

speed_history.append(ratio)

distances = [10, 5, 4]
times = [16, 0]
speed_history = [6.5, 5.7]
try:
collect_ratios_b5(distances, times, speed_history)
except ValueError as error:
print("Returned Error:", error)
print(f"{speed_history = }")

6.100 LECTURE 17 42

Assertions

Assertions vs. Exceptions

= similar but different:

o exception is for something outside of your responsibility
o signals to the user that your program isn't designed to handle their input
o are designed to handle errors, give user a useful message

o assertion is something your code design should guarantee
o assertions are a special type of Exception used as a debugging aid
o the target is not the user of the program but the programmer
° they notify the programmer that an error occurred but do not handle it,

o users should never see assertion errors: assertions are automatically
removed once the program is exported and no longer runs in debugging
mode

6.100 LECTURE 17 44

Assertions
Example: Calculating Grades

" assume we are given a class list for a subject: each entry
is a list of two parts

 a list of first and last name for a student
* a list of grades on assignments

test grades = [[['peter', 'parker'], [10.0, 5.0, 85.0]1],
[['bruce', 'wayne'], [10.0, 8.0, 74.0]1]1]

" create a new class list, with names, grades, and an
average

[[['peter', 'parker'], [10.0, 5.0, 85.0], 7.833333333333333],
[['bruce', 'wayne'], [10.0, 8.0, 74.0], 8.46606066066066067]]]

6.100 LECTURE 17 45

Assertions Syntax

assert <condition>, <message>
Equivalent to:
if not <condition>:
raise AssertionError (<message>)

def avg(grades, name):
assert len(grades) !'= 0, f"no grades data for {name}"
return sum(grades) / len(grades)

raise AssertionError if list program ends immediately
of grades is empty if assertion is False

6.100 LECTURE 17 46

Where to Use Assertions?

=use assertions as debugging aid to

* goal is to spot bugs as soon as introduced and make clear
where they happened

* check types of arguments or values (input to functions)
* check that invariants on data structures are met
* check constraints on return values (output of functions)

* check for violations of constraints on procedure (e.g., no
duplicates in a list)

" assert False is handy way to stop program

6.100 LECTURE 17 47

TAKE HOME MESSAGE

" 3 good programmer uses defensive programming to reduce
the occurrence of bugs, and to make it easier to isolate and
remove them

= Exceptions signal invalid semantics

o Design your own exception handlers to recognize
and react to bad user input

° Prevent program execution from continuing
o Unwinds call stack until reaches am exception handler

= Assertions flag when internal properties of program state
aren’t as expected

o Implemented in Python as a special case of exceptions

o Useful debugging aid, should not be handled

6.100 LECTURE 17 48

Back to Graphs

class Digraph:
"""Represents a weighted directed graph using Nodes as keys."""

def

def

def

def

def

def

def

__init__ (self, nodes=()):
self._edges = {} # dict: Node —> dict(Node —> weight)
for node in nodes:

self.add_node(node)

add_node(self, node):
"""Add a Node object to the graph."""
if not isinstance(node, Node):

raise TypeError("add_node expects a Node instance")
if node in self._edges:

raise ValueError(f"Duplicate node: {node.name}")
self._edges[node] = {}

get_node(self, id):
"""Internal helper: resolve a node name or return node directly."""
if isinstance(id, str) or isinstance(id, Node):

for n in self._edges:

if n.name == id:
return n

raise ValueError(f"Unknown node name: '{id}'")

raise TypeError(f"Expected Node or str, got {type(id).__name__}")

add_edge(self, src, dest, weight=1):

"""Add a directed edge between two Node objects (or names)."""
src = self.get_node(src)

dest = self.get_node(dest)

self._edges[src] [dest] = weight

get_all_nodes(self):
return list(self._edges.keys())

outgoing_edges_of(self, node):
return self._edges[node].copy()

children_of(self, node):
return list(self._edges[node].keys())

Fall 2025 6.100 LECTURE 17

class Graph(Digraph):
def add_edge(self, nodel, node2, weight=1):
super().add_edge(nodel, node2, weight)
super().add_edge(node2, nodel, weight)

49

class MapGraph(Graph):
"""Graph that stores MapNode instances and offers geographic utilities."""

S pec i a I ized G ra p h S EARTH_RADIUS_M = 6_371_000 # mean Earth radius in meters

def __init_ (self, nodes=(), max_speed_kmh=100):
super().__init__(nodes)
self.max_speed_kmh = max_speed_kmh

def add_node(self, node):
if not isinstance(node, MapNode):
raise TypeError("MapGraph expects MapNode instances")
super().add_node(node)

def _resolve_mapnode(self, node):
resolved = self.get_node(node)
if not isinstance(resolved, MapNode):
raise TypeError("MapGraph operations require MapNode instances but got: " + str(type(resolved)))
return resolved

def _coords(self, node):
return self._resolve_mapnode(node).coords

def haversine_distance(self, nodel, node2):
"""Return the great-circle distance between two nodes in meters.
lonl, latl = self._coords(nodel)
lon2, lat2 = self._coords(node2)
phil, phi2 = radians(latl), radians(lat2)
dphi = radians(lat2 - latl)
dlambda = radians(lon2 - lonl)
a = sin(dphi / 2)%%2 + cos(phil) % cos(phi2) % sin(dlambda / 2)%%2
c = 2 x atan2(sqrt(a), sqrt(1 - a))
return MapGraph.EARTH_RADIUS_M * c

def distance(self, nodel, node2):
"""Return the Euclidean distance between two nodes in coordinate space.
x1, yl = self._coords(nodel)
x2, y2 = self._coords(node2)
return sqrt((x1 - x2) *x 2 + (yl - y2) *x 2)

def dist_great_circle(self, nodel, node2):
"""Return the great-circle distance between nodes in kilometers."""
return self.haversine_distance(nodel, node2) / 1000

def add_edge(self, nodel, node2, weight=None):
Add an undirected edge whose weight equals the great-circle distance
between the two endpoints (in kilometers).
nodel_resolved = self._resolve_mapnode(nodel)
node2_resolved = self._resolve_mapnode(node2)

Fall 2025 actual_weight = self.distance(nodel_resolved, node2_resolved)
_ Super().add_edge(nOdel_reS°1ved' nOdeZ_reS°1ved' aCtual_weight)

Building a Graph

def build_city_nodes_graph():
city_coords = {

"Boston": (-71.0589, 42.3601),
"Providence": (-71.4128, 41.8240),
"New York": (-74.0060, 40.7128),
"Chicago": (-87.6298, 41.8781),
"Denver": (-104.9903, 39.7392),
"Pittsburgh": (-79.9959, 40.4406),
"Salt Lake City": (-111.8910, 40.7608),
"San Francisco": (-122.4194, 37.7749),
"Houston": (-95.3698, 29.7604),
"Bozeman": (-111.0429, 45.6770),
"Seattle": (-122.3321, 47.6062),
"Minneapolis": (-93.2650, 44.9778),
"Los Angeles": (-118.2437, 34.0522),
"Atlanta": (-84.3880, 33.7490),
"Miami": (-80.1918, 25.7617),
"Philadelphia": (-75.1652, 39.9526),
"Phoenix": (-112.0740, 33.4484),
"San Diego": (-117.1611, 32.7157),
"Dallas": (-96.7970, 32.7767),
"Portland": (-122.6587, 45.5122),
"Las Vegas": (-115.1398, 36.1699),
"Austin": (-97.7431, 30.2672),
"Nashville": (-86.7816, 36.1627),
"Indianapolis": (-86.1581, 39.7684),
"Charlotte": (-80.8431, 35.2271),
"Cleveland": (-81.6944, 41.4993)

Create MapNode objects for each city

nodes = {name: MapNode(name, coords) for name, coords in city_coords

Create the graph with these nodes (no edges yet)
g = MapGraph(nodes.values())

Fall 2025

6.100 LECTURE 17

.add_edge('Boston', 'Cleveland')
.add_edge('Boston', 'Providence')
.add_edge('Boston', 'New York')

.add_edge('Cleveland', 'Minneapolis')
.add_edge('Cleveland', 'Chicago')
.add_edge('Cleveland', 'Pittsburgh')

.add_edge('Providence', 'Boston')
.add_edge('Providence', 'New York')

.add_edge('New York', 'Cleveland')
.add_edge('New York', 'Pittsburgh')
.add_edge('New York', 'Philadelphia')

.add_edge('Philadelphia', 'Indianapolis')
.add_edge('Philadelphia', 'Charlotte')

.add_edge('Pittsburgh', 'Indianapolis')
.add_edge('Chicago', 'Minneapolis')
.add_edge('Chicago', 'Denver')
.add_edge('Chicago', 'Indianapolis')
.add_edge('Charlotte', 'Indianapolis')
.add_edge('Charlotte', 'Nashville')
.add_edge('Charlotte', 'Atlanta')

.add_edge('Indianapolis', 'Denver')
.add_edge('Indianapolis', 'Nashville')

.add_edge('Minneapolis', 'Bozeman')
.add_edge('Atlanta', 'Dallas’')
.add_edge('Atlanta', 'Miami')

.add_edge('Atlanta’', 'Houston')

.add_edge('Miami', 'Houston')

51

Recap: Dijkstra’s algorithm

= On the queue, tag each discovered states with its
projected frontier so far

o Remember that we’re actually storing paths on the
gueue, so we can return one that reaches a goal

= True BFS frontier lies at state/path with smallest cost
o Pick such a state/path to expand/extend

o Guaranteed that that is a shortest path
> So never put that state back on the queue

= When extenging a path to a neighbor already on the
gueue, update the state’s path cost if the cost is
lower

def dijkstra(graph, start, goal):
store best cost and path for discovered nodes that are
on present or future frontier
queue = [(0, [start])]
separately, store nodes that are on past frontiers
finished = set()

Only terminate when priority queue is empty or if
the true frontier contains the target

while len(queue) > 0: O —

print(f"Current queue: {queue}")

get a path off the true frontier
cost, path = remove_min(queue)
current_node = path[-1]
finished.add(current_node)
print(f" Finished {current_

Take the node with the smallest cost (true frontier)

de!r} with cost {cost}. Finished queue : {finished}")
optimality guaranteed fgr current node, return if goal
if current_node == goal:

return (cost, path)

update paths to neighbors on priority queue Expand the queue except if the new path Was
Vi

for edge in neighbors(graph, current_node):)]
(next_node, weight) = edge / already part of the true frontier (i.e., we know the
if next_node not in finished:

shortest path aIread¥ to that node)
print(f"Processing {current_node!r}-—>{next_node!r} with weight {weight}"

new_cost = cost + weight
new_path = path + [next_node]

update_node(queue, next_node, new_cost, new_path)
T

print() -~ | If the next node wasn’t part of the true frontier yet,
we add it to the queue or update the path with its
new cost

return None

Dijkstra’s algorithm with Classes (essentially the same)

def dijkstra_heap(graph, start, goal, visualize = False, pause=0.5):
start_node = graph.get_node(start)
goal_node = graph.get_node(goal)

Initialize heap (priority queue) with (cost, path)
queue = [(0@, [start_node])]

heapq.heapify(queue) # ensures it's a valid heap
visited = set()

while queue:
Pop the smallest-cost path
cost, path = heapq.heappop(queue)
current_node = path[-1]

Skip if already processed
if current_node in visited:
continue
visited.add(current_node)
print(f"{4 Finished {current_node!s} with cost {cost}. Finished set: {{"
f'{', '.join(str(node) for node in visited)}}}")

Stop when we reach the goal
if current_node == goal_node:
return cost, path

Expand neighbors
for neighbor, weight in graph.outgoing_edges_of(current_node).items():
if neighbor in visited:
continue
new_cost = cost + weight
new_path = path + [neighbor]
heapq.heappush(queue, (new_cost, new_path))
print(f" < Added path {current_node!s} - {neighbor!s} (total cost {new_cost})")

Optional: pretty-print queue contents for debugging
pretty queue = [(c, [str(n) for n in p]) for ¢, p in queue]
print(f"Current queue: {pretty_gqueue}\n")

If no path found
return None

Fall 2025 6.100 LECTURE 17

A* search
(pronounced eigh/ay/ae/(h)ey-star)

Reducing wasteful exploration

= Dijkstra’s is based on BFS principles

> When expanding to neighbors, it has no idea whether it’s
getting closer or farther from goal

° |t only knows it’s going away from the start as slowly as
possible, to guarantee optimality

= |dea: augment cost for each state on the queue with
an additional estimate of cost-to-go

° Biases search towards expanding states that you think lie
on an optimal path

The A* Search

=Difficulty: we want to still be able to generate the path with
minimum cost

"A* is an algorithm that:
o Uses heuristic to guide search

> While ensuring that it will compute a path with minimum
cost

/ “estimated cost”

A* computes the function f(n) = g(n) + h(n)

~

“actual cost”

A*

=f(n) = g(n) + h(n)
o g(n) = “cost from the starting node to reach n”

> h(n) = “estimate of the cost of the cheapest path from n to
the goal node”

h(n)

Properties of A*

"A* generates an optimal solution if h(n) is an admissible
heuristic and the search space is a tree:

> h(n) is admissible if it never overestimates the cost to reach
the destination node

* A generates an optimal solution if h(n) 1s a consistent
heuristic and the search space 1s a graph:

— h(n) 1s consistent if for every node n and for every
successor node n’ of n:

h(n) <c(n,n’) + h(n’) n

cnn’) N r—_ h(n’)

e |f h(n) is consistent then h(n) is admissible
eFrequently when h(n) is admissible, it is also consistent

Admissible Heuristics

"A heuristic is admissible if it is too optimistic, estimating the
cost to be smaller than it actually is.

"Example:

In the road map domain,

h(n) = “Euclidean distance to destination”

is admissible as normally cities are not connected by roads that make
straight lines

