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§ Pset 4 checkoff due Wed 9pm

§ Pset 5 due Friday

§ Midterm 2 next Wed 11/12

§ Review session this Friday 11/7 during 7--9 pm. 

Announcements
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§ Last week
◦ Ideal Gas Law
◦ Simulations with classes

§ Today
◦ Implementing graphs with classes
◦ Exceptions
◦ A*

Topics
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§ Set of nodes (vertices)

What is a Graph?
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§ Set of nodes (vertices)
◦ Might have associated names or properties

§ Set of edges (arcs) each connecting a pair of nodes
◦ Undirected (graph)

What is a Graph?
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§ Set of nodes (vertices)
◦ Might have properties associated with them

§ Set of edges (arcs) each connecting a pair of nodes
◦ Undirected (graph)
◦ Directed (digraph)

◦ Source (parent) and destination (child) nodes
◦ Unweighted or weighted

◦ Assume non-negative

What is a Graph?
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§ Set of nodes (vertices)
◦ Might have properties associated with them

§ Set of edges (arcs) each connecting a pair of nodes
◦ Undirected (graph)
◦ Directed (digraph)

◦ Source (parent) and destination (child) nodes
◦ Unweighted or weighted

◦ Assume non-negative

What is a Graph?
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§ Finding a route from one city to another

§ Routing data on communication networks

§ Warehouse logistics of storing and retrieving products

§ Finding a path for a molecule through a chemical 
labyrinth

Some Shortest Path Problems
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IMPLEMENTING GRAPHS
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§ Digraph is a directed graph
◦ Edges pass in one direction only 
◦ Need to represent collection of edges

§ Adjacency matrix
◦ Rows: source nodes
◦ Columns: destination nodes
◦ Cell[s, d] = 1 if there is an edge from s to d
                   = 0 otherwise
◦ Note that in digraph, matrix is not symmetric
◦ Uses O(|nodes|**2) memory

§ Assumes at most one arc between node pairs
◦ Easily generalized to multiple arcs with 

weights

Representations of Digraphs
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§ Digraph is a directed graph
◦ Edges pass in one direction only 
◦ Need to represent collection of edges

§ Adjacency matrix
◦ Rows: source nodes
◦ Columns: destination nodes
◦ Cell[s, d] = 1 if there is an edge from s to d
                   = 0 otherwise
◦ Note that in digraph, matrix is not symmetric
◦ Uses O(|nodes|**2) memory

§ Adjacency list
◦ Associate with each node a list of destination 

nodes that can be reached by one edge
◦ Uses O(|edges|) memory, therefore good for 

sparse graphs

Representations of Digraphs
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A: [D]
B: [A]
C: [B]
D: [A, D]
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Assume you want a data structure for the following 
requirements:
- Store general purpose directed and undirected graphs
- Model cities with their longitude and latitude for 
visualization and store main (undirected) connections 
between cities with their associated driving distance 
(km)

- Support different ways to calculate the distance 
between cities (Euclidian or great-circle distance)

What key classes and data structures would you use to 
implement the requirements?

Class Exercise
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Classes, part 1
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Classes, part 2
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§ Observation: undirected edge can be represented as pair 
of opposite directed edges

§ Insight: Undirected graph can reuse most functionality 
from class Digraph
§Only have to respecify add_edge() method

◦ Use inheritance, of course

Implementing undirected graphs
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Class Graph (undirected)
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class Graph(Digraph):
  """Represents an undirected graph with pairs 

       of directed edges"""

  def add_edge(self, node1, node2, weight=1):
    super().add_edge(node1, node2, weight)
    super().add_edge(node2, node1, weight)

super() interprets 
self in the context of 
the parent class(es)

class Digraph
__init__

add_node

add_edge

__str__

class Graph

add_edge

super().add_edge()

subclass

superclass



Classes, part 2
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Why does Simple graph inherit from SimpleDigraph 
and not the other way around?



Class Graph (undirected)
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class Graph(Digraph):
  """Represents an undirected graph with pairs 

       of directed edges"""

  def add_edge(self, node1, node2, weight=1):
    super().add_edge(node1, node2, weight)
    super().add_edge(node2, node1, weight) Add both directed edges 

using existing superclass 

method

super() interprets 
self in the context of 
the parent class(es)

class Digraph
__init__

add_node

add_edge

__str__

class Graph

add_edge

super().add_edge()

subclass

superclass

class Graph inherits
class Digraph's functionality

Graph’s 
add_edge 
overrides 
Digraph’s



§ Why make undirected Graph a subclass of Digraph, 
rather than vice versa?
◦ Might seem like Digraph has additional “feature”

§ Follow the Substitution Principle:
◦ “Subclass behavior should be consistent with superclass”

§ When Graph is subclass of Digraph:

Designing Class Hierarchy
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A

B C

Connectivity:
   A can reach B, C
   B can reach A, C
   C can reach A, B

Graph object

Connectivity:
   A can reach B, C
   B can reach A, C
   C can reach A, B

Graph object interpreted 
as Digraph object

A

B C



Classes, part 2

6.100 LECTURE 17 20Fall 2025

How would you prevent that somebody adds 
something else than a Node to our graph 

How would you allow to retrieve nodes using
strings

How would you prevent that edges can be 
added for nodes that don’t exist?



Classes, part 3
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EXCEPTIONS
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(1) Exception Types
(2) Try-Except
(3) Raise
(4) Exceptions and Program Flow



Types of Problems with Code

§ Syntax: program has no meaning, won’t run

§ Crashes: program has meaning but invalid at some point 
◦ converting string '1' to an integer is valid, but converting string 'abc' 

to integer is an invalid operation

§ Returns wrong answer: valid meaning throughout, not 
what you meant

◦ we saw a lot of those examples in the mutability lecture

§ Runs forever: (likely) ditto
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exceptions & assertions

debugging (Lecture 5)

today’s lecture!

debugging (Lecture 5)

fix syntax error (line number given)



Exception Types
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Exception Types
§ what happens when procedure execution hits an unexpected 
condition?

§ get an exception… to what was expected
• Dividing by zero    à ZeroDivisionError 
• trying to access beyond list limits  
 test = [1, 7, 4]
 test[4]    à IndexError
• operand does not have correct type 
 int([1,2,3])   à TypeError
• operand type ok, but value illegal

  int('abc')      à ValueError
(note that this is different from the list example, list can never be converted 
to int but some string can be converted to int, e.g., int('1'))
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Exception Types

◦ referencing a non-existing variable, local or global name not 
found 
 a     à NameError

◦ IO systems reports malfunction
 file not found   à IOError 
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Python Exception Hierarchy
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§ most built-in exceptions are errors, some are warnings
• https://docs.python.org/3/library/exceptions.html#exceptio

n-hierarchy

can define your own 
exceptions, based on 
Python's class system 
(discussed next week)

https://docs.python.org/3/library/exceptions.html
https://docs.python.org/3/library/exceptions.html
https://docs.python.org/3/library/exceptions.html
https://docs.python.org/3/library/exceptions.html
https://docs.python.org/3/library/exceptions.html


Try-Except
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How to handle Exceptions: Try-Except
§ Problem: Normally the program just stops/crashes when they 
encounter a problem like this. But that isn’t a good strategy.

§ Better: recognize when those things happen and have an 
alternate plan in place.

§ Solution: wrap code into try-except block.

§ Example: 
◦ In many programs, users provide some sort of input.
◦ If they provide invalid inputs (e.g., letters instead of 

numbers), we want to gracefully handle this instead of 
letting our program crash.

6.100 LECTURE 17 29



Try-Except
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•  when code in try fails, except block is executed.

Benefit: Code does 
not crash even with 
invalid input! Code 
execution continues.



Try-Except
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• depending on exception type you can execute different code.



Try-Except-Else-Finally:
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only runs if no except block was executed

always runs (can be used to e.g., close open connections (files, sockets))



Try-Except: Error Object

6.100 LECTURE 17 33

binds the variable 
name ‘error’ to the 
ValueError object



Try-Except: Example Jogging Speeds
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• Handling zero division



Try-Except: Example Jogging Speeds
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• Handling different lengths of distance and time lists

Last entry missing



Exceptions and 
Program Flow
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Exceptions Augment the Program Flow
§ program is a stack of nested function calls

§ exceptions unwind the stack to the nearest applicable exception 
handler
◦ if there is no matching except block on the lowest function call 

level where the exception occurs, the program looks on the 
next higher level on the stack for a matching except block

◦ if it can’t find one on the top of the stack, the exception is 
thrown back to the user on the console

§ example: TypeError with Tuple from Jogging Speed Example
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Exceptions Augment the Program Flow
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Example: Different Exceptions Jogging Speed Code
<global frame>
 …..
 …..
 try:
   collect_ratios(….)
 except AttributeError:
  …….

<collect_ratios>
 for i in …
 try: ….
 except ZeroDivisionError: 
 …..

• ZeroDivisonError from 
having speeds that are 0 is 
handled locally in 
collect_ratios()

• AttributeError from trying 
to append to a tuple is handled 
on the top of the stack because 
no matching exception is found 
on the lower levels of the call 
stack 



Raise
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Raising our own Exceptions
§ raising our own exception allows us to shadow the current 
exception with our own

§ can give more specific information to the user what went 
wrong because we know more about our function’s purpose

raise <exceptionName>(<arguments>)

raise ValueError("something is wrong")
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keyword

name of error 

you want to
 raise

optional, but typically a 

strin
g with a message
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Raising Exceptions: Jogging Speeds Example Continued
• raise exception for unrealistic jogging speeds
• Python would normally not create an exception for this



Assertions
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Assertions vs. Exceptions
§ similar but different:

◦ exception is for something outside of your responsibility
◦ signals to the user that your program isn't designed to handle their input
◦ are designed to handle errors, give user a useful message

◦ assertion is something your code design should guarantee
◦ assertions are a special type of Exception used as a debugging aid 
◦ the target is not the user of the program but the programmer
◦ they notify the programmer that an error occurred but do not handle it, 
◦ users should never see assertion errors: assertions are automatically 

removed once the program is exported and no longer runs in debugging 
mode
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Assertions
Example: Calculating Grades

§ assume we are given a class list for a subject: each entry 
is a list of two parts
•  a list of first and last name for a student
•  a list of grades on assignments

§ create a new class list, with names, grades, and an 
average
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test_grades = [[['peter', 'parker'], [10.0, 5.0, 85.0]], 
               [['bruce', 'wayne'], [10.0, 8.0, 74.0]]]

[[['peter', 'parker'], [10.0, 5.0, 85.0], 7.833333333333333],
 [['bruce', 'wayne'], [10.0, 8.0, 74.0], 8.466666666666667]]]



Assertions Syntax
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assert <condition>, <message>

if not <condition>:
    raise AssertionError(<message>)

Equivalent to:

raise AssertionError if list 
of grades is empty

program ends immediately 
if assertion is False



Where to Use Assertions?

§use assertions as debugging aid to
• goal is to spot bugs as soon as introduced and make clear 

where they happened
• check types of arguments or values (input to functions)
• check that invariants on data structures are met
• check constraints on return values (output of functions)
• check for violations of constraints on procedure (e.g., no 

duplicates in a list)

§ assert False is handy way to stop program
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TAKE HOME MESSAGE

§ a good programmer uses defensive programming to reduce 
the occurrence of bugs, and to make it easier to isolate and 
remove them

6.100 LECTURE 17 48

§ Exceptions signal invalid semantics
◦ Design your own exception handlers to recognize 

and react to bad user input
◦ Prevent program execution from continuing
◦ Unwinds call stack until reaches am exception handler

§ Assertions flag when internal properties of program state 
aren’t as expected
◦ Implemented in Python as a special case of exceptions
◦ Useful debugging aid, should not be handled



Back to Graphs
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Specialized Graphs



Building a Graph
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§ On the queue, tag each discovered states with its 
projected frontier so far
◦ Remember that we’re actually storing paths on the 

queue, so we can return one that reaches a goal

§ True BFS frontier lies at state/path with smallest cost
◦ Pick such a state/path to expand/extend
◦ Guaranteed that that is a shortest path
◦ So never put that state back on the queue

§ When extending a path to a neighbor already on the 
queue, update the state’s path and cost if the cost is 
lower

Recap: Dijkstra’s algorithm

52

Not LIFO or 

FIFO, but a 

priority queue

Effectively in 

the visited set
NOT considered 

visited
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Only terminate when priority queue is empty or if 
the true frontier contains the target

Take the node with the smallest cost (true frontier)

Expand the queue, except if the new path was 
already part of the true frontier (i.e., we know the 

shortest path already to that node)

If the next node wasn’t part of the true frontier yet, 
we add it to the queue or update the path with its 

new cost 
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Dijkstra’s algorithm with Classes (essentially the same)



A* search
(pronounced eigh/ay/ae/(h)ey-star)
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§ Dijkstra’s is based on BFS principles
◦ When expanding to neighbors, it has no idea whether it’s 

getting closer or farther from goal
◦ It only knows it’s going away from the start as slowly as 

possible, to guarantee optimality

§ Idea: augment cost for each state on the queue with 
an additional estimate of cost-to-go
◦ Biases search towards expanding states that you think lie 

on an optimal path

Reducing wasteful exploration
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The A* Search
§Difficulty: we want to still be able to generate the path with 
minimum cost

§A* is an algorithm that:
◦ Uses heuristic to guide search
◦ While ensuring that it will compute a path with minimum 

cost

A* computes the function f(n) = g(n) + h(n)

“actual cost”

“estimated cost”



A*

§f(n) = g(n) + h(n)
◦ g(n) = “cost from the starting node to reach n”
◦ h(n) = “estimate of the cost of the cheapest path from n to 

the goal node”

10
15

20

20
15

5

18
25

33

n
g(n)

h(n)



Properties of A*

§A* generates an optimal solution if h(n) is an admissible 
heuristic and the search space is a tree:
◦ h(n) is admissible if it never overestimates the cost to reach 

the destination node

• A* generates an optimal solution if h(n) is a consistent 
heuristic and the search space is a graph:
– h(n) is consistent if for every node n and for every 

successor node n’ of n:
          h(n) ≤ c(n,n’) + h(n’) n

n’

d

h(n)

c(n,n’) h(n’)

• If h(n) is consistent then h(n) is admissible
•Frequently when h(n) is admissible, it is also consistent



Admissible Heuristics

§A heuristic is admissible if it is too optimistic, estimating the 
cost to be smaller than it actually is.

§Example:
In the road map domain, 

    h(n) = “Euclidean distance to destination” 

is admissible as normally cities are not connected by roads that make 
straight lines


