
Implementing
graphs with classes,
Exceptions
(download slides and .py files to follow along)

Tim Kraska

MIT Department Of Electrical Engineering and
Computer Science

6.100 LECTURE 17 1Fall 2025

§ Pset 4 checkoff due Wed 9pm

§ Pset 5 due Friday

§ Midterm 2 next Wed 11/12

§ Review session this Friday 11/7 during 7--9 pm.

Announcements

6.100 LECTURE 17 2Fall 2025

§ Last week
◦ Ideal Gas Law
◦ Simulations with classes

§ Today
◦ Implementing graphs with classes
◦ Exceptions
◦ A*

Topics

6.100 LECTURE 17 3Fall 2025

§ Set of nodes (vertices)

What is a Graph?

6.100 LECTURE 17 4

E
B

C

DA

Fall 2025

§ Set of nodes (vertices)
◦ Might have associated names or properties

§ Set of edges (arcs) each connecting a pair of nodes
◦ Undirected (graph)

What is a Graph?

6.100 LECTURE 17 5

E
B

C

DA

Fall 2025

§ Set of nodes (vertices)
◦ Might have properties associated with them

§ Set of edges (arcs) each connecting a pair of nodes
◦ Undirected (graph)
◦ Directed (digraph)

◦ Source (parent) and destination (child) nodes
◦ Unweighted or weighted

◦ Assume non-negative

What is a Graph?

6.100 LECTURE 17
6

10

12
3

Fall 2025

5
10

Graph:
• might not be completely

connected
• could have loops, both

single length and longer
6

E
B

C

DA

§ Set of nodes (vertices)
◦ Might have properties associated with them

§ Set of edges (arcs) each connecting a pair of nodes
◦ Undirected (graph)
◦ Directed (digraph)

◦ Source (parent) and destination (child) nodes
◦ Unweighted or weighted

◦ Assume non-negative

What is a Graph?

6.100 LECTURE 17
7

10

12
3

Fall 2025

5
10

Graph:
• might not be completely

connected
• could have loops, both

single length and longer
6

E
B

C

DA

Path: B à A à C à D

§ Finding a route from one city to another

§ Routing data on communication networks

§ Warehouse logistics of storing and retrieving products

§ Finding a path for a molecule through a chemical
labyrinth

Some Shortest Path Problems

6.100 LECTURE 17 8Fall 2025

IMPLEMENTING GRAPHS

6.100 LECTURE 17 9Fall 2025

§ Digraph is a directed graph
◦ Edges pass in one direction only
◦ Need to represent collection of edges

§ Adjacency matrix
◦ Rows: source nodes
◦ Columns: destination nodes
◦ Cell[s, d] = 1 if there is an edge from s to d
 = 0 otherwise
◦ Note that in digraph, matrix is not symmetric
◦ Uses O(|nodes|**2) memory

§ Assumes at most one arc between node pairs
◦ Easily generalized to multiple arcs with

weights

Representations of Digraphs

6.100 LECTURE 17 10Fall 2025

A B C D

A 1

B 1

C 1

D 1 1

d

s

A B

CD

§ Digraph is a directed graph
◦ Edges pass in one direction only
◦ Need to represent collection of edges

§ Adjacency matrix
◦ Rows: source nodes
◦ Columns: destination nodes
◦ Cell[s, d] = 1 if there is an edge from s to d
 = 0 otherwise
◦ Note that in digraph, matrix is not symmetric
◦ Uses O(|nodes|**2) memory

§ Adjacency list
◦ Associate with each node a list of destination

nodes that can be reached by one edge
◦ Uses O(|edges|) memory, therefore good for

sparse graphs

Representations of Digraphs

6.100 LECTURE 17 11Fall 2025

A: [D]
B: [A]
C: [B]
D: [A, D]

A B

CD

Assume you want a data structure for the following
requirements:
- Store general purpose directed and undirected graphs
- Model cities with their longitude and latitude for
visualization and store main (undirected) connections
between cities with their associated driving distance
(km)

- Support different ways to calculate the distance
between cities (Euclidian or great-circle distance)

What key classes and data structures would you use to
implement the requirements?

Class Exercise

Fall 2025 6.100 LECTURE 17 12

Classes, part 1

6.100 LECTURE 17 13Fall 2025

Classes, part 2

6.100 LECTURE 17 14Fall 2025

§ Observation: undirected edge can be represented as pair
of opposite directed edges

§ Insight: Undirected graph can reuse most functionality
from class Digraph
§Only have to respecify add_edge() method

◦ Use inheritance, of course

Implementing undirected graphs

Fall 2025 6.100 LECTURE 17 15

A

B C

A

B C

Class Graph (undirected)

Fall 2025 6.100 LECTURE 17 16

class Graph(Digraph):
 """Represents an undirected graph with pairs

 of directed edges"""

 def add_edge(self, node1, node2, weight=1):
 super().add_edge(node1, node2, weight)
 super().add_edge(node2, node1, weight)

super() interprets
self in the context of
the parent class(es)

class Digraph
__init__

add_node

add_edge

__str__

class Graph

add_edge

super().add_edge()

subclass

superclass

Classes, part 2

6.100 LECTURE 17 17Fall 2025

Why does Simple graph inherit from SimpleDigraph
and not the other way around?

Class Graph (undirected)

Fall 2025 6.100 LECTURE 17 18

class Graph(Digraph):
 """Represents an undirected graph with pairs

 of directed edges"""

 def add_edge(self, node1, node2, weight=1):
 super().add_edge(node1, node2, weight)
 super().add_edge(node2, node1, weight) Add both directed edges

using existing superclass

method

super() interprets
self in the context of
the parent class(es)

class Digraph
__init__

add_node

add_edge

__str__

class Graph

add_edge

super().add_edge()

subclass

superclass

class Graph inherits
class Digraph's functionality

Graph’s
add_edge
overrides
Digraph’s

§ Why make undirected Graph a subclass of Digraph,
rather than vice versa?
◦ Might seem like Digraph has additional “feature”

§ Follow the Substitution Principle:
◦ “Subclass behavior should be consistent with superclass”

§ When Graph is subclass of Digraph:

Designing Class Hierarchy

Fall 2025 6.100 LECTURE 17 19

A

B C

Connectivity:
 A can reach B, C
 B can reach A, C
 C can reach A, B

Graph object

Connectivity:
 A can reach B, C
 B can reach A, C
 C can reach A, B

Graph object interpreted
as Digraph object

A

B C

Classes, part 2

6.100 LECTURE 17 20Fall 2025

How would you prevent that somebody adds
something else than a Node to our graph

How would you allow to retrieve nodes using
strings

How would you prevent that edges can be
added for nodes that don’t exist?

Classes, part 3

6.100 LECTURE 17 21Fall 2025

EXCEPTIONS

6.100 LECTURE 17 22

(1) Exception Types
(2) Try-Except
(3) Raise
(4) Exceptions and Program Flow

Types of Problems with Code

§ Syntax: program has no meaning, won’t run

§ Crashes: program has meaning but invalid at some point
◦ converting string '1' to an integer is valid, but converting string 'abc'

to integer is an invalid operation

§ Returns wrong answer: valid meaning throughout, not
what you meant

◦ we saw a lot of those examples in the mutability lecture

§ Runs forever: (likely) ditto

6.100 LECTURE 17 23

exceptions & assertions

debugging (Lecture 5)

today’s lecture!

debugging (Lecture 5)

fix syntax error (line number given)

Exception Types

246.100 LECTURE 17

Exception Types
§ what happens when procedure execution hits an unexpected
condition?

§ get an exception… to what was expected
• Dividing by zero à ZeroDivisionError
• trying to access beyond list limits
 test = [1, 7, 4]
 test[4] à IndexError
• operand does not have correct type
 int([1,2,3]) à TypeError
• operand type ok, but value illegal

 int('abc') à ValueError
(note that this is different from the list example, list can never be converted
to int but some string can be converted to int, e.g., int('1'))

6.100 LECTURE 17 25

Exception Types

◦ referencing a non-existing variable, local or global name not
found
 a à NameError

◦ IO systems reports malfunction
 file not found à IOError

6.100 LECTURE 17 26

Python Exception Hierarchy

6.100 LECTURE 17 27

§ most built-in exceptions are errors, some are warnings
• https://docs.python.org/3/library/exceptions.html#exceptio

n-hierarchy

can define your own
exceptions, based on
Python's class system
(discussed next week)

https://docs.python.org/3/library/exceptions.html
https://docs.python.org/3/library/exceptions.html
https://docs.python.org/3/library/exceptions.html
https://docs.python.org/3/library/exceptions.html
https://docs.python.org/3/library/exceptions.html

Try-Except

286.100 LECTURE 17

How to handle Exceptions: Try-Except
§ Problem: Normally the program just stops/crashes when they
encounter a problem like this. But that isn’t a good strategy.

§ Better: recognize when those things happen and have an
alternate plan in place.

§ Solution: wrap code into try-except block.

§ Example:
◦ In many programs, users provide some sort of input.
◦ If they provide invalid inputs (e.g., letters instead of

numbers), we want to gracefully handle this instead of
letting our program crash.

6.100 LECTURE 17 29

Try-Except

6.100 LECTURE 17 30

• when code in try fails, except block is executed.

Benefit: Code does
not crash even with
invalid input! Code
execution continues.

Try-Except

6.100 LECTURE 17 31

• depending on exception type you can execute different code.

Try-Except-Else-Finally:

6.100 LECTURE 17 32

only runs if no except block was executed

always runs (can be used to e.g., close open connections (files, sockets))

Try-Except: Error Object

6.100 LECTURE 17 33

binds the variable
name ‘error’ to the
ValueError object

Try-Except: Example Jogging Speeds

6.100 LECTURE 17 34

• Handling zero division

Try-Except: Example Jogging Speeds

6.100 LECTURE 17 35

• Handling different lengths of distance and time lists

Last entry missing

Exceptions and
Program Flow

366.100 LECTURE 17

6.100 LECTURE 17 37

Exceptions Augment the Program Flow
§ program is a stack of nested function calls

§ exceptions unwind the stack to the nearest applicable exception
handler
◦ if there is no matching except block on the lowest function call

level where the exception occurs, the program looks on the
next higher level on the stack for a matching except block

◦ if it can’t find one on the top of the stack, the exception is
thrown back to the user on the console

§ example: TypeError with Tuple from Jogging Speed Example

6.100 LECTURE 17 38

Exceptions Augment the Program Flow

6.100 LECTURE 17 39

Example: Different Exceptions Jogging Speed Code
<global frame>
 …..
 …..
 try:
 collect_ratios(….)
 except AttributeError:
 …….

<collect_ratios>
 for i in …
 try: ….
 except ZeroDivisionError:
 …..

• ZeroDivisonError from
having speeds that are 0 is
handled locally in
collect_ratios()

• AttributeError from trying
to append to a tuple is handled
on the top of the stack because
no matching exception is found
on the lower levels of the call
stack

Raise

406.100 LECTURE 17

Raising our own Exceptions
§ raising our own exception allows us to shadow the current
exception with our own

§ can give more specific information to the user what went
wrong because we know more about our function’s purpose

raise <exceptionName>(<arguments>)

raise ValueError("something is wrong")

6.100 LECTURE 17 41

keyword

name of error

you want to
 raise

optional, but typically a

strin
g with a message

6.100 LECTURE 17 42

Raising Exceptions: Jogging Speeds Example Continued
• raise exception for unrealistic jogging speeds
• Python would normally not create an exception for this

Assertions

6.100 LECTURE 17 43

Assertions vs. Exceptions
§ similar but different:

◦ exception is for something outside of your responsibility
◦ signals to the user that your program isn't designed to handle their input
◦ are designed to handle errors, give user a useful message

◦ assertion is something your code design should guarantee
◦ assertions are a special type of Exception used as a debugging aid
◦ the target is not the user of the program but the programmer
◦ they notify the programmer that an error occurred but do not handle it,
◦ users should never see assertion errors: assertions are automatically

removed once the program is exported and no longer runs in debugging
mode

446.100 LECTURE 17

Assertions
Example: Calculating Grades

§ assume we are given a class list for a subject: each entry
is a list of two parts
• a list of first and last name for a student
• a list of grades on assignments

§ create a new class list, with names, grades, and an
average

6.100 LECTURE 17 45

test_grades = [[['peter', 'parker'], [10.0, 5.0, 85.0]],
 [['bruce', 'wayne'], [10.0, 8.0, 74.0]]]

[[['peter', 'parker'], [10.0, 5.0, 85.0], 7.833333333333333],
 [['bruce', 'wayne'], [10.0, 8.0, 74.0], 8.466666666666667]]]

Assertions Syntax

466.100 LECTURE 17

assert <condition>, <message>

if not <condition>:
 raise AssertionError(<message>)

Equivalent to:

raise AssertionError if list
of grades is empty

program ends immediately
if assertion is False

Where to Use Assertions?

§use assertions as debugging aid to
• goal is to spot bugs as soon as introduced and make clear

where they happened
• check types of arguments or values (input to functions)
• check that invariants on data structures are met
• check constraints on return values (output of functions)
• check for violations of constraints on procedure (e.g., no

duplicates in a list)

§ assert False is handy way to stop program

476.100 LECTURE 17

TAKE HOME MESSAGE

§ a good programmer uses defensive programming to reduce
the occurrence of bugs, and to make it easier to isolate and
remove them

6.100 LECTURE 17 48

§ Exceptions signal invalid semantics
◦ Design your own exception handlers to recognize

and react to bad user input
◦ Prevent program execution from continuing
◦ Unwinds call stack until reaches am exception handler

§ Assertions flag when internal properties of program state
aren’t as expected
◦ Implemented in Python as a special case of exceptions
◦ Useful debugging aid, should not be handled

Back to Graphs

6.100 LECTURE 17 49Fall 2025

6.100 LECTURE 17 50Fall 2025

Specialized Graphs

Building a Graph

Fall 2025 6.100 LECTURE 17 51

§ On the queue, tag each discovered states with its
projected frontier so far
◦ Remember that we’re actually storing paths on the

queue, so we can return one that reaches a goal

§ True BFS frontier lies at state/path with smallest cost
◦ Pick such a state/path to expand/extend
◦ Guaranteed that that is a shortest path
◦ So never put that state back on the queue

§ When extending a path to a neighbor already on the
queue, update the state’s path and cost if the cost is
lower

Recap: Dijkstra’s algorithm

52

Not LIFO or

FIFO, but a

priority queue

Effectively in

the visited set
NOT considered

visited

Fall 2025 6.100 LECTURE 17 53

Only terminate when priority queue is empty or if
the true frontier contains the target

Take the node with the smallest cost (true frontier)

Expand the queue, except if the new path was
already part of the true frontier (i.e., we know the

shortest path already to that node)

If the next node wasn’t part of the true frontier yet,
we add it to the queue or update the path with its

new cost

Fall 2025 6.100 LECTURE 17 54

Dijkstra’s algorithm with Classes (essentially the same)

A* search
(pronounced eigh/ay/ae/(h)ey-star)

55

§ Dijkstra’s is based on BFS principles
◦ When expanding to neighbors, it has no idea whether it’s

getting closer or farther from goal
◦ It only knows it’s going away from the start as slowly as

possible, to guarantee optimality

§ Idea: augment cost for each state on the queue with
an additional estimate of cost-to-go
◦ Biases search towards expanding states that you think lie

on an optimal path

Reducing wasteful exploration

56

The A* Search
§Difficulty: we want to still be able to generate the path with
minimum cost

§A* is an algorithm that:
◦ Uses heuristic to guide search
◦ While ensuring that it will compute a path with minimum

cost

A* computes the function f(n) = g(n) + h(n)

“actual cost”

“estimated cost”

A*

§f(n) = g(n) + h(n)
◦ g(n) = “cost from the starting node to reach n”
◦ h(n) = “estimate of the cost of the cheapest path from n to

the goal node”

10
15

20

20
15

5

18
25

33

n
g(n)

h(n)

Properties of A*

§A* generates an optimal solution if h(n) is an admissible
heuristic and the search space is a tree:
◦ h(n) is admissible if it never overestimates the cost to reach

the destination node

• A* generates an optimal solution if h(n) is a consistent
heuristic and the search space is a graph:
– h(n) is consistent if for every node n and for every

successor node n’ of n:
 h(n) ≤ c(n,n’) + h(n’) n

n’

d

h(n)

c(n,n’) h(n’)

• If h(n) is consistent then h(n) is admissible
•Frequently when h(n) is admissible, it is also consistent

Admissible Heuristics

§A heuristic is admissible if it is too optimistic, estimating the
cost to be smaller than it actually is.

§Example:
In the road map domain,

 h(n) = “Euclidean distance to destination”

is admissible as normally cities are not connected by roads that make
straight lines

