Extended

Random Walks
|deal Gas Law

(download slides and .py files to follow along!)

Tim Kraska

MIT Department Of Electrical Engineering and
Computer Science

Fall 2025 6.100 LECTURE 16

Inheritance
(from Monday)

Inheriting from object

= Every Python type inherits from object
o already provides __init (), str__ (), eq_ ()
° SO we can create, print, compare
o but default behavior may not be what we want

- object. str__ () prints memory address
- object. eq__ () compares type and memory address

> so when we define them in our own classes, they override
access to object’s attributes

6.1000 LECTURE 15

Inheritance rules for attribute access

: e)
= When looking up attribute on an instance object

o |f the attribute name is in the instance, evaluate to the
object it references

o remember: this can evaluate to any object in memory, but
NOT a name/attribute

> If not in the instance, look in that instance’s class
° this is how method lookups work
> also works on any class attribute

° If not in the class object, look in that class’s parent
class

o Etc...

= The above is applicable only for evaluating an attribute
> When setting an attribute for an instance, the attribute

is set directly inside the instance, even if the attribute
name exists in the class hierarchy — _ wginy”
[critter.sizé —

6.1000 LECTURE 15 4

Using inheritance

= Subclasses can override methods of their parent/superclass

> We already know how to override object’'s __init_ () and

_str__ ()
> Cat overrides Animal’s _str__ ()

o Cat also overrides Animal’s speak(), providing a working
implementation

= Subclasses can reuse methods of their parent/superclass
o Cat relieson Animal’s __init_ ()

o Cat.confuse() relies on Animal’s get_age diff()

= Same applies to class and instance attributes
o subclass instances can rely on attributes initialized in superclass
init ()

o but risky if superclass implementation changes, consider using
getters/setters

6.1000 LECTURE 15

Retaining and extending superclass functionality

" Sometimes, want to preserve superclass method functionality
while extending it

o simply overriding it would require code duplication

= Strategy: superclass methods still available through explicit
superclass.method() reference

> because not accessing as object’s method, requires passing
in the object (usually self) as first argument

" Inside a subclass method’s body, can also use super() to
reinterpret self as an instance of the superclass

cAnimal. init_(self, age, name)

csuper(). init_ (age, name)

o differing opinions on which is better, but super() is
common

6.1000 LECTURE 15 6

Question

class Rabbit(Animal): def demo_rabbit_equality():
rl = Rabbit(age=3)
next_tag = 1 r2 = Rabbit(age=4)
r3 = Rabbit(age=5)
def __init_ (self, age, parentl=None, parent2=None): rd = rl + r2
super().__init__ (age) rs=r3+r4
self.parents = (parentl, parent2) re =r4 +r3
self.id = Rabbit.next_tag print(f"{(r5 == r6) = }")

def

Rabbit.next_tag += 1

demo_rabbit_equality()

_ str__(self):

return f"<Rabbit {self.id:>03}>"

_repr__ = __str__

def

def

__add__(self, other):

"""Make a new Rabbit offspring of self and other."""
return Rabbit(@, self, other)

__eq__(self, other):

return (
self.parents == other.parents
or self.parents == other.parents[::-1]

What does demo_rabbit_equality return?
A) True
B) False
C) Error

Fall 2025

6.100 LECTURE 16

Designing __eq__ ()

Rabbit example
o each Rabbit has two parents and a unique ID

> new Rabbits are created by +
> want siblings from the same parents to compare ==

Version 1
o compare == on parent tuples
o triggers == and hence __eq__ () on elements, recursion!

o if self is a Rabbit and other is None, then invalid to access
other.parents

Version 2
o directly compare parent IDs

o avoids recursion, saves computation
° runs into same problem retrieving parent. id if parent is None

Version 3
> so close! need a valid “ID” for a None parent
o wrap that concept in a helper function

o good opportunity to use 1lambda

6.1000 LECTURE 15

L et’s revist our
drunk simulation
with classes

Hand Simulation

One Possible First Step

Another Possible First Step

Yet Another Possible First Step

Last Possible First Step

=

After one step drunk is distance 1.0 away from start

| | | | | | | | | |

Location

class Location:

def make_location(x, y): def __init_ (self, x, y):
return (x, y) "% and y are numbers"""
self.x = x
def move(loc, dx, dy): self.y = y
x, y = loc
return (x + dx, y + dy) def move(self, delta_x, delta_y):

""deltaX and deltaY are numbers"""

def get_x(loc): return Location(self.x + delta_x, self.y + delta_y)

return loc[0]

def get_x(self):

def get_y(loc): return self.x

return loc[1]

def dist(loc_a, loc_b): def get_y(self):

return hypot(loc_a[@] - loc_b[@], loc_al1] - loc_b[1]) return self.y
def loc_str(loc): def dist_from(self, other):
return '<' + str(get_x(loc)) + ', ' + str(get_y(loc)) + '>' x_dist = self.x - other.get_x()

y_dist = self.y - other.get_y()
return (x_distx*2 + y_distx*2)*%0.5

def __str_ (self):
return '<' + str(self.x) + ', ' + str(self.y) + '>'

6.100 LECTURE 13 15

Field

class Field:

def __init_ (self):
self.drunk_locs = {}

def add_drunk(self, drunk, loc):
if drunk in self.drunk_locs:
raise ValueError('Duplicate drunk"')

def make_field(): else:

return {} self.drunk_locs[drunk] = loc
def add_drunk(field, drunk_id, loc): def get_loc(self, drunk):

if drunk_id in field: if drunk not in self.drunk_locs:

raise ValueError("Duplicate drunk")
field[drunk_id] = loc

raise ValueError('Drunk not in field')
return self.drunk_locs [drunk]
def gitalzﬁijislgétdiﬁntzzgéz def move_drunk(se}f, drunk) :

raise ValueError("Drunk not in field") if drunk not in self.drunk_locs:

return field[drunk_id] raise ValueError('Drunk not in field')
x_dist, y_dist = drunk.take_step()
use move() method of Location to set new location
self.drunk_locs[drunk] = self.drunk_locs[drunk].move(x_dist, y_dist)

def move_drunk_n_steps(self, drunk, steps):
if drunk not in self.drunk_locs:
raise ValueError('Drunk not in field')
start = self.get_loc(drunk)
for _ in range(steps):
self.move_drunk(drunk)
return start.dist_from(self.get_loc(drunk))

6.100 LECTURE 13 16

Drunks

def usual_step():

return random.choice([(0, 1), (o, -1), (1, @), (-1, 0)])

def masochist_step():

return random.choice([(0.0, 1.1), (0.0,

def liberal_step():

-0.9), (1.0, 0.0), (-1.0, 0.0)])

return random.choice([(0.0, 1.0), (0.0, -1.0), (0.9, 0.0), (-1.1, 0.0)])

def conservative_step():

return random.choice([(0.0, 1.0), (0.0, -1.0), (1.1, 0.0), (-0.9, 0.0)])

def liberal_masochist_step():

Flip between liberal and masochist tendencies

if random.choice([True, False]):
return liberal_step()

else:
return masochist_step()

def corner_step():
return random.choice([(0.71, 0.71),

def continuous_step():

(0.71, -0.71), (-0.71, 0.71), (-0.71, -0.71)])

return (random.uniform(-1,1), random.uniform(-1,1))

class LiberalDrunk(Drunk):

def take_step(self):
step_choices = [(0.0, 1.0), (0.0, -1.0),
(0.9, 0.0), (-1.1, 0.0)]
return random.choice(step_choices)

class ConservativeDrunk(Drunk):
def take_step(self):
step_choices = [(0.0, 1.0), (0.0, -1.0),

(1.1, 0.0), (-0.9, 0.0)]
return random.choice(step_choices)

6.100 LECTURE 13

class Drunk:

def __init__(self, name=None):
"""Assumes name is a str"""
self.name = name

def __str__(self):
if self is not None:
return self.name
return 'Anonymous’

class UsualDrunk(Drunk):

def take_step(self):
step_choices = [(0, 1), (0, -1),
(1, o), (-1, 0)]
return random.choice(step_choices)

class MasochistDrunk(Drunk):

def take_step(self):
step_choices = [(0.0, 1.1), (0.0, -0.9),
(1.0, @0.0), (-1.0, 0.0)]
return random.choice(step_choices)

class LiberalMasochistDrunk(MasochistDrunk):

def take_step(self):
if random.choice([True, False]):
step_choices = [(0.0, 1.0), (0.0, -1.0),
(0.9, 0.9), (-1.1, 0.0)]
return random.choice(step_choices)
else:
return MasochistDrunk.take_step(self)

class CornerDrunk(Drunk):
def take_step(self):
step_choices = [(0.71, 0.71), (0.71, -0.71),

(-0.71, 0.71), (-0.71, -0.71)]
return random.choice(step_choices)

17

The Simulation

def

def

sim_walks(num_steps, num_trials, d_class):
"""Assumes num_steps an int >= @, num_trials an int > 0,
d_class a subclass of Drunk
Simulates num_trials walks of num_steps steps each.
Returns a list of the final distances for each trial"""
Homer = d_class('Homer")
origin = Location(@, @)
distances = []
for _ in range(num_trials):
f = Field()
f.add_drunk(Homer, origin)

distances.append(round(f.move_drunk_n_steps(Homer, num_steps), 1))

return distances

drunk_test(walk_lengths, num_trials, d_class):
"""Assumes walk_lengths a sequence of ints >= @
num_trials an int > @, d_class a subclass of Drunk

For each number of steps in walk_lengths, runs
sim_walks with num_trials walks and prints results"""

for num_steps in walk_lengths:
distances = sim_walks(num_steps, num_trials, d_class)
print(d_class.__name__, 'random walk of', num_steps, 'steps')
print(' Mean =', round(sum(distances)/len(distances), 4))
print(' Max =', max(distances), 'Min =', min(distances))

6.100 LECTURE 13

18

6.100 LECTURE 5

)
@
o
-
=
| .
=
i
=
=
%)
O
R
L

Fall 2023

A Subclass of Field, part 1

Inherit attributes class 0dd_field{Field]:

and methods of def __init_ (self, num_holes = 1000,

Field class — X_.I'_a.D.Q.eLJIOO, y_range = 100):
drunks, FlEld-_lnlt_(S@lf)

move_drunk self.wormholes = {}

Create coordinates for w 1in range(num_r)oles):

of start of a X = random.rand}nt(-x_range, X_range)
wormhole y = random.randint(-y_range, y_range)

new_x = random.randint(-x_range, x_range)
new_y = random.randint(-y_range, y_range)

= i)
self.wormholes[(x, y)]

Create location of
end of a wormhole

Install wormhole in new_loc]

dictionary, keyed by
start point

Note: we are assuming steps are of integer length,
since using actual x,y values as entry for wormhole

Fall 2023 6.100 LECTURE 5 20

A Subclass of Field, part 2

def move_drunk(self, drunk):
| Field.move_drunk(self, drunk)|
X = self.drunks[drunk]l.get_x{) gasic move method:
Yy self.drunks [drunk].get_y() Drunknow in new location
| if (x, y) in self.wormholes:
[self.drunks[drunk] =[self.wormholes[(x, y)]

After move drunk to new location, check to see
if have landed on a wormhole

If yes, then get end location of wormhole

Change location of drunk to now be at end of
wormbhole

Fall 2023 6.100 LECTURE 5 21

Spots Reached During One Walk

Fall 2023

Spots Visited on Walk (1000 steps)

20! 3

Steps North/South of Origin

+ Feld
1 A odd field

5 .

an

75 -50 -25 0 25 50 75
Steps East/West of Origin

6.100 LECTURE 5

22

Spots Reached During A Different Walk

Spots Visited on Walk (1000 steps)
Feld
: OddField “

FaN
o
|

N
o
|

0 -

—-20 -

—-40 -

—60 -
A

~80 - -*
~100 - * h

| | | [l I | |
-75 =50 =25 0 25 50 75 100

Steps East/West of Oriain

QLTPD INVILTyouuLL vl wviiylnl

Fall 2023 6.100 LECTURE 5 23

But the World is Not Just a Collection of Drunks

s @ o

= Have used a simple, two-dimensional world to explore
random walk of drunks

= Can imagine how could simulate a field with multiple
drunks at the same time

= Can imagine extending simulation so that if two
drunks collide trying to move to same location, their
movements would change (e.g., rebound backwards);
or if a drunk hits a border of the world, it bounces back

= Now imagine replacing drunks with molecules in a gas

= Brownian motion simulation

Fall 2023 6.100 LECTURE 5 24

Modeling a Gas

S = Ideal Gas Law
(-]
@ l Nl
°* _~ @
y
e e \ @ pV - nRT
[
- ® :—0
""/ p — pressure
V —volume
Hot-air balloon Molecules inside
balloon n — number of molecules

R —a constant
T - temperature

We will model this in two dimensions
V corresponds to size of field
n corresponds number of drunks (particles)
T corresponds to walk length (velocity of particles)

Spring 2025 6.100 LECTURE 16 25

Simple Trial

= Have included some basic code to explore this in 2D

" Changes

o Field includes a limit on x and y dimensions (think rigid
container)

> move method checks:
o |If would move beyond limit, don’t move

° If move would take particle too close to any other, don’t
move

o (simplification, since in reality particles bounce)
o Start all particles at random locations
o Measure final distance from each start, rather than
origin
o Record average final distance for all particles in a trial

Spring 2025 6.100 LECTURE 16 26

Complexity

= Two implementations of Field (think of them as 2D
containers)

> One optimized for small number of particles

> One for larger number of particles
Vo —

Spring 2025 6.100 LECTURE 16

Implementation 1

= Associate location with each particle
o Space linear in number of particles

= At each step, for each particle, check for collision with
each other particle

> Time of each step quadratic in number of particles

Spring 2025 6.100 LECTURE 16

Implementation 2

= For each 1x1 cell of field, keep track of location of any
particle in that cell

= Space linear in size of field (x_len*y _len) + number of
drunks

o |nitialization of field linear in size of field

= At each step, for each particle, check if any of the cells

neighboring the destination contain a particle. If so, see

if particle in that cell is too close to the intended

destination

> Time of each step constant in number of particles

Common algorithmic technique: use a fast way to get in
neighborhood of a solution, then a slower algorithm to explore
neighborhood

Spring 2025 6.100 LECTURE 16

Code

class Field_multi(object):

" Optimized for large fields with small number of particles"""
def __init__ (self, x_lim, y_1lim):

self.drunks = {} Multi because it can
self:x 1im = x lim contain multiple
self.y_lim = y_lim particles

self.wall_hits, self.collisions = 0, 0

class Field_multi_opt_particles(Field_multi):
"t Optimized for large number of particles"'"
def __init__(self, x_lim, y_1lim):
super().__init__(x_lim, y_1lim)
Used so that collisions can be detected in constant time
self.drunks_by_loc = {(x, y): []
for x in range(-(x_lim + 1), x_lim + 2)
for y in range(-(y_lim + 1), y_lim + 2)}

Spring 2025 6.100 LECTURE 16 30

Complexity

. . Independent
Complexity: Implementation 1 of size of
o % field
number of particles® * total number of steps
1024 particles, 10 trials, 1,000 steps per trial
10242*10*1000 = 10,485,760,000
Independent
. : of number of
Complexity: Implementation 2 ,
particles
2*x_lim*y_lim*number of trials + total number of steps

Initialize field Simulate walk

Xx_lim, y_lim =1024, 10 trials, 1,000 steps per trial
2*1024%*10 = 20,971,520

Spring 2025 6.100 LECTURE 16 31

Some Simple Experiments

= Questions to explore, e.g.,

> How does average over a set of trials of average final
distance for a set of particles change

o As the size of the container changes
o As the number of particles changes
o As the number of steps each particle takes changes

= Run a set of trials for different choices of container size,
number of particles, number of steps

" Are there interesting trends?

Spring 2025 6.100 LECTURE 16 32

Explore Impact of Different Parameter Values

def drunk_test_multi(walk_lengths, num_trials, d_class, num_particles,
boundaries, opt_space = False, verbose = False):
"""Assumes walk_lengths a sequence of ints >= 0
num_trials an int > @, d_class a subclass of Drunk
For each number of steps in walk_lengths, runs
sim_walks with num_trials walks and prints results"""
for 1 in walk_lengths:
for num in num_particles:
for d in boundaries:
random.seed(1)
print(f'particles = {num}, size = {d:,}, steps = {1:,}")
mean_dists, max_dists, min_dists, wall_hits, cols =\
sim_walks_multi(l, num_trials, d_class, num, d,
verbose = verbose,
opt_space = opt_space)
max_d = round(max(max_dists)) -
min_d = round(min(min_dists))
mean_d = sum(mean_dists)/len(mean_dists)
mean_wh = sum(wall_hits)/len(wall_hits)
mean_col = sum(cols)/len(cols)
print(f' Distance: Max = {max_d}, Min = {min_d},"',
f'Mean = {mean_d:.2f}")
print(f' Mean wall hits = {round(mean_wh):,}")
if mean_col != 0:
print(f' Mean collisions = {round(mean_col):,}"')

Spring 2025 6.100 LECTURE 16 33

Vary Size of Field (container)

random.seed(1)

num_particles = (1,) . .

sizes = (10, 20, 50, 100, 1000, 10000) Particle = Continuous_drunk
lengths = (500,)

num_trials = 50

drunk_test_multi(lengths, num_trials, Particle, num_particles, sizes, opt_space=True)

particles = 1, size = 10, steps = 500 Upper bound on distance
Distance: M:f\x =23, Min=2,[Mean =12 (2*size2)°-5

Mean wall hits = 39

particles = 1, size = 20, steps = 500
Distance: Max =47, Min = 4,|Mean = 22
Mean wall hits = 20

particles = 1, size = 50, steps = 500
Distance: Max =110, Min =2 Mean =52
Mean wall hits =9

particles = 1, size = 100, steps = 500 Distances highly variable
Distance: Max = 205, Min = 27, Mean = 106
Mean wall hits = 4

particles = 1, size = 1,000, steps = 500 As size grows, distance grows, up to a point
Distance: Max = 598, Min = 65,[Mean = 313
Mean wall hits =1 — 2

particles = 1, size = 10,000, steps = 500
Distance: Max = 661, Min = 78,[Mean = 354

Diffusion is slow

Mean wall hits =0 —

Spring 2025 6.100 LECTURE 16 34

Vary Size of Field (container), cont.

random.seed(1)

num_particles = (1,)

sizes = (10, 20, 50, 100, 1000, 10000)
lengths = (500,)

num_trials = 50

drunk_test_multi(lengths, num_trials, Particle, num_particles, sizes, opt_space=True)

particles = 1, size = 10, steps = 500
Distance: Max = 23, Min =2, Mean =12
Mean|wall hits = 39
particles = 1, size = 20, steps = 500
Distance: Max =47, Min =4, Mean = 22
Mean wall hits = 20
particles = 1, size = 50, steps = 500
Distance: Max =110, Min = 2, Mean =52
Mean wall hits =9
particles = 1, size = 100, steps = 500
Distance: Max = 205, Min =27, Mean = 106
Mean wall hits = 4
particles = 1, size = 1,000, steps = 500
Distance: Max = 598, Min = 65, Mean = 313
Mean|wall hits = 1
particles = 1, size = 10,000, steps = 500
Distance: Max = 661, Min =78, Mean = 354

Mean|wall hits =0

Spring 2025

Ideal Gas Law
pV = nRT
p = nRT/V

Wall hits corresponds to pressure

As area (V) grows, pressure
decreases

6.100 LECTURE 16 35

Vary Number of Steps

Number of steps corresponds to velocity which
increases with temperature

particles = 1, size = 50, steps = 32
Distance: Max = 37, Min = 3, Mean = 20
Mean wall hits = 1

particles = 1, size = 50, steps = 64
Distance: Max = 67, Min = 6, Mean = 35
Mean wall hits = 1

particles = 1, size = 50, steps = 128
Distance: Max = 104, Min = 3, Mean =49
Mean wall hits = 3

particles = 1, size = 50, steps = 256
Distance: Max = 110, Min =5, Mean =51
Mean wall hits = 4

particles = 1, size = 50, steps =512
Distance: Max =119, Min =9, Mean =52
Mean wall hits =9

particles = 1, size = 50, steps = 1,024
Distance: Max =112, Min =7, Mean =48
Mean wall hits = 18

Spring 2025 6.100 LECTURE 16

Ideal Gas Law

pV = nRT
p = nRT/V

As temperature rises,
distances increase
pressures increase

36

Vary Number of Particles

random.seed(1)

sizes = (50,)

lengths = (400,)

num_trials = 50

num_particles = [50, 100, 200, 300, 400]
wall_hits, collisions = [], []

for n in num_particles:
mean_d, mean_wh, mean_col = drunk_test_multi(

lengths, num_trials, Particle, (n,),

sizes, [opt_space=False,| verbose=False)
wall_hits.append(mean_wh)
collisions.append(mean_col)

6.100 LECTURE 16 37

Spring 2025

Vary Number of Particles

particles = 50, size = 50, steps = 200
Distance: Max = 136, Min = 2, Mean =55
Mean wall hits = 204

Mean collisions =138

particles = 100, size = 50, steps = 200
Distance: Max = 135, Min =0, Mean =52
Mean wall hits =432

Mean collisions = 575

particles = 200, size = 50, steps = 200
Distance: Max = 129, Min =0, Mean =46
Mean wall hits = 864

Mean collisions = 2,357

particles = 300, size = 50, steps = 200
Distance: Max = 129, Min =0, Mean =41
Mean wall hits = 1,280

Mean collisions = 5,208

particles = 400, size = 50, steps = 200
Distance: Max =123, Min =0, Mean = 37
Mean wall hits = 1,671

Mean collisions = 9,209

—

= All pretty much the same distances

Differences probably not
meaningful

But something regarding
distances seems to be
happening here.

Density of particles leads to
collisions, which reduces
distance particles travel

Spring 2025 6.100 LECTURE 16 38

Vary Number of Particles, cont.

particles = 50, size = 50, steps = 200
Distance: Max = 136, Min = 2, Mean =55

Mean wall hits = 204

Mean collisions = 138
particles = 100, size = 50, steps = 200
Distance: Max = 135, Min =0, Mean =52

Mean wall hits =432

Mean collisions = 575
particles = 200, size = 50, steps = 200
Distance: Max = 129, Min =0, Mean =46

Mean wall hits = 864

Mean collisions = 2,357
particles = 300, size = 50, steps = 200
Distance: Max = 129, Min =0, Mean =41

Mean wall hits = 1,280

Mean collisions = 5,208
particles = 400, size = 50, steps = 200
Distance: Max =123, Min =0, Mean = 37

Mean wall hits = 1,671

Mean collisions = 9,209

Number of Wall Hits

Spring 2025 6.100 LECTURE 16

Pressure vs. Number of Particles

1600

1400

1200

1000 —

800 —

600 —

400

200

==g= Data points
wm | inear model

As number of parti
increases, pressure
increases linearly.

cles

T T T T T T T
50 100 150 200 250 300 350 400
Number of Particles

As predicted by ideal gas la

Ideal Gas Law
pV = nRT
p = nRT/V

39

w!

A Factoid

" Light takes ~8.3 minutes to reach the earth
from the surface of the sun (93 million miles)

Light escapes the sun's core through a series of

random steps as it is absorbed and emitted by

" How long does it take a “photon” to get from s s Coes o vose
center of sun to surface (radius = 432,865
miles)?
> 8.33/93,000,000 = TS/432,865
o TS = 8.33*%865,370/93,000,000 = ~0.156
minutes?

The interior of the sun consists of three major
zones, each with its own unique properties
(Courtesy: Berkeley - SSL)

Spring 2025 6.100 LECTURE 16 40

A Factoid

" Light takes ~8.3 minutes to reach the earth
from the surface of the sun (93 million miles)

Light escapes the sun's core through a series

g
random steps as it is absorbed and emitted by
R

oY)

toms along the way (Courtesy -

" How long does it take a “photon” to get from
center of sun to surface (radius = 432,865
miles)?

° 8.33/93,000,000 = TS/432,865
> TS = 8.33*865,370/93,000,000 = ~0.156
minutes?

Ohio State U.)

= Wrong!
" Probably between 10,000 and 170,000 YEARS

= Because it’'s a random walk, and interior of
sun is very dense

Spring 2025 6.100 LECTURE 16 41

Summary

= Random walks allow us to model many physical and social
phenomena

= We can build simulations that help us understand the
behavior of various kinds of random walks that would be
hard to analyze directly

= Looked at classic drunkards walk

" Looked at a simple particle simulation
> Showed effect of varying various paramters.

= Point is not the simulations themselves, but how we built,
evaluated, and used them

Spring 2025 6.100 LECTURE 16 42

Summary, cont.

= Started by defining classes
> Good use of sub-classing

= Built functions corresponding to:
o One trial, multiple trials, result reporting

= Got simple version working first
> Did a sanity check!

" Made series of incremental changes to simulation so that
we could investigate different questions

o Enhanced simulation a step at a time

= By changing properties of objects, can explore range of
behaviors

* Much more on simulation coming up

Spring 2025 6.100 LECTURE 16 43

