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Inheriting from object

§ Every Python type inherits from object
◦ already provides __init__() , __str__() , __eq__()
◦ so we can create, print, compare
◦ but default behavior may not be what we want

◦ object.__str__() prints memory address
◦ object.__eq__() compares type and memory address

◦ so when we define them in our own classes, they override 
access to object’s attributes
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Inheritance rules for attribute access

§ When looking up attribute on an instance object
◦ If the attribute name is in the instance, evaluate to the 

object it references
◦ remember: this can evaluate to any object in memory, but 

NOT a name/attribute
◦ If not in the instance, look in that instance’s class

◦ this is how method lookups work
◦ also works on any class attribute

◦ If not in the class object, look in that class’s parent 
class

◦ Etc...

§ The above is applicable only for evaluating an attribute
◦ When setting an attribute for an instance, the attribute 

is set directly inside the instance, even if the attribute 
name exists in the class hierarchy
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print(cri
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ize = "ti

ny"



Using inheritance

§ Subclasses can override methods of their parent/superclass
◦ We already know how to override object’s __init__() and 
__str__()

◦ Cat overrides Animal’s __str__()
◦ Cat also overrides Animal’s speak(), providing a working 

implementation

§ Subclasses can reuse methods of their parent/superclass
◦ Cat relies on Animal’s __init__()
◦ Cat.confuse() relies on Animal’s get_age_diff()

§ Same applies to class and instance attributes
◦ subclass instances can rely on attributes initialized in superclass 
__init__()

◦ but risky if superclass implementation changes, consider using 
getters/setters
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Retaining and extending superclass functionality

§ Sometimes, want to preserve superclass method functionality 
while extending it
◦ simply overriding it would require code duplication

§ Strategy: superclass methods still available through explicit 
superclass.method() reference
◦ because not accessing as object’s method, requires passing 

in the object (usually self) as first argument

§ Inside a subclass method’s body, can also use super() to 
reinterpret self as an instance of the superclass
◦ Animal.__init__(self, age, name)
◦ super().__init__(age, name)
◦ differing opinions on which is better, but super() is 

common
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Question
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What does demo_rabbit_equality return?
A) True
B) False
C) Error



Designing __eq__()

§ Rabbit example
◦ each Rabbit has two parents and a unique ID
◦ new Rabbits are created by +
◦ want siblings from the same parents to compare ==

§ Version 1
◦ compare == on parent tuples
◦ triggers == and hence __eq__() on elements, recursion!
◦ if self is a Rabbit and other is None, then invalid to access 
other.parents

§ Version 2
◦ directly compare parent IDs
◦ avoids recursion, saves computation
◦ runs into same problem retrieving parent.id if parent is None

§ Version 3
◦ so close! need a valid “ID” for a None parent
◦ wrap that concept in a helper function
◦ good opportunity to use lambda
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Let’s revist our 
drunk simulation 
with classes
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Hand Simulation
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One Possible First Step
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Another Possible First Step
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Yet Another Possible First Step
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Last Possible First Step
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After one step drunk is distance 1.0 away from start
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Location
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Field
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Drunks
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The Simulation
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Fields with Wormholes
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A Subclass of Field, part 1
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Inherit attributes 
and methods of 
Field class – 
drunks, 
move_drunk
Create coordinates 
of start of a 
wormhole
Create location of 
end of a wormhole

Install wormhole in 
dictionary, keyed by 
start point

Note: we are assuming steps are of integer length, 
since using actual x,y values as entry for wormhole



A Subclass of Field, part 2
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After move drunk to new location, check to see 
if have landed on a wormhole

If yes, then get end location of wormhole

Change location of drunk to now be at end of 
wormhole

Basic move method;
Drunk now in new location



Spots Reached During One Walk
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Spots Reached During A Different Walk
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§ Have used a simple, two-dimensional world to explore 
random walk of drunks

§ Can imagine how could simulate a field with multiple 
drunks at the same time

§ Can imagine extending simulation so that if two 
drunks collide trying to move to same location, their 
movements would change (e.g., rebound backwards); 
or if a drunk hits a border of the world, it bounces back

§ Now imagine replacing drunks with molecules in a gas

§ Brownian motion simulation

But the World is Not Just a Collection of Drunks
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Modeling a Gas
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Ideal Gas Law

pV = nRT

p – pressure
V – volume
n – number of molecules
R – a constant
T - temperature

We will model this in two dimensions
V corresponds to size of field
n corresponds number of drunks (particles)
T corresponds to walk length (velocity of particles)

Molecules inside 
balloon

Hot-air balloon



§ Have included some basic code to explore this in 2D

§ Changes
◦ Field includes a limit on x and y dimensions (think rigid 

container)
◦ move method checks:

◦ If would move beyond limit, don’t move 
◦ If move would take particle too close to any other, don’t 

move
◦ (simplification, since in reality particles bounce)

◦ Start all particles at random locations
◦ Measure final distance from each start, rather than 

origin
◦ Record average final distance for all particles in a trial

Simple Trial
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§ Two implementations of Field (think of them as 2D 
containers)
◦ One optimized for small number of particles
◦ One for larger number of particles

Complexity
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§ Associate location with each particle
◦ Space linear in number of particles

§ At each step, for each particle, check for collision with 
each other particle
◦ Time of each step quadratic in number of particles

Implementation 1
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§ For each 1x1 cell of field, keep track of location of any 
particle in that cell 

§ Space linear in size of field (x_len*y_len) + number of 
drunks
◦ Initialization of field linear in size of field

§ At each step, for each particle, check if any of the cells 
neighboring the destination contain a particle. If so, see 
if particle in that cell is too close to the intended 
destination
◦ Time of each step constant in number of particles

Implementation 2
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Common algorithmic technique: use a fast way to get in 
neighborhood of a solution, then a slower algorithm to explore 
neighborhood



Code
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Multi because it can 
contain multiple 
particles



Complexity
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Complexity: Implementation 2

2*x_lim*y_lim*number of trials  + total number of steps

Independent 
of number of 
particles

Initialize field

Complexity: Implementation 1

number of particles2 * total number of steps

Independent 
of size of 
field

1024 particles, 10 trials, 1,000 steps per trial
10242*10*1000 = 10,485,760,000

x_lim, y_lim = 1024, 10 trials, 1,000 steps per trial
2*10242*10 = 20,971,520

Simulate walk



§ Questions to explore, e.g., 
◦ How does average over a set of trials of average final 

distance for a set of particles change
◦ As the size of the container changes
◦ As the number of particles changes
◦ As the number of steps each particle takes changes

§ Run a set of trials for different choices of container size, 
number of particles, number of steps

§ Are there interesting trends?

Some Simple Experiments
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Explore Impact of Different Parameter Values

Spring 2025 6.100 LECTURE 16 33



Vary Size of Field (container)
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particles = 1, size = 10, steps = 500
 Distance: Max = 23, Min = 2, Mean = 12
 Mean wall hits = 39
particles = 1, size = 20, steps = 500
 Distance: Max = 47, Min = 4, Mean = 22
 Mean wall hits = 20
particles = 1, size = 50, steps = 500
 Distance: Max = 110, Min = 2, Mean = 52
 Mean wall hits = 9
particles = 1, size = 100, steps = 500
 Distance: Max = 205, Min = 27, Mean = 106
 Mean wall hits = 4
particles = 1, size = 1,000, steps = 500
 Distance: Max = 598, Min = 65, Mean = 313
 Mean wall hits = 1
particles = 1, size = 10,000, steps = 500
 Distance: Max = 661, Min = 78, Mean = 354
 Mean wall hits = 0

As size grows, distance grows, up to a point

Distances highly variable

?

Upper bound on distance
(2*size2)0.5

Particle = Continuous_drunk

Diffusion is slow

random.seed(1)
num_particles = (1,)
sizes = (10, 20, 50, 100, 1000, 10000)
lengths = (500,)
num_trials = 50
drunk_test_multi(lengths, num_trials, Particle, num_particles, sizes, opt_space=True)



particles = 1, size = 10, steps = 500
 Distance: Max = 23, Min = 2, Mean = 12
 Mean wall hits = 39
particles = 1, size = 20, steps = 500
 Distance: Max = 47, Min = 4, Mean = 22
 Mean wall hits = 20
particles = 1, size = 50, steps = 500
 Distance: Max = 110, Min = 2, Mean = 52
 Mean wall hits = 9
particles = 1, size = 100, steps = 500
 Distance: Max = 205, Min = 27, Mean = 106
 Mean wall hits = 4
particles = 1, size = 1,000, steps = 500
 Distance: Max = 598, Min = 65, Mean = 313
 Mean wall hits = 1
particles = 1, size = 10,000, steps = 500
 Distance: Max = 661, Min = 78, Mean = 354
 Mean wall hits = 0

Vary Size of Field (container), cont.
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Wall hits corresponds to pressure

Ideal Gas Law
pV = nRT
p = nRT/V

As area (V) grows, pressure 
decreases

random.seed(1)
num_particles = (1,)
sizes = (10, 20, 50, 100, 1000, 10000)
lengths = (500,)
num_trials = 50
drunk_test_multi(lengths, num_trials, Particle, num_particles, sizes, opt_space=True)



Vary Number of Steps
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Ideal Gas Law
pV = nRT
p = nRT/V

Number of steps corresponds to velocity which 
increases with temperature
particles = 1, size = 50, steps = 32
 Distance: Max = 37, Min = 3, Mean = 20
 Mean wall hits = 1
particles = 1, size = 50, steps = 64
 Distance: Max = 67, Min = 6, Mean = 35
 Mean wall hits = 1
particles = 1, size = 50, steps = 128
 Distance: Max = 104, Min = 3, Mean = 49
 Mean wall hits = 3
particles = 1, size = 50, steps = 256
 Distance: Max = 110, Min = 5, Mean = 51
 Mean wall hits = 4
particles = 1, size = 50, steps = 512
 Distance: Max = 119, Min = 9, Mean = 52
 Mean wall hits = 9
particles = 1, size = 50, steps = 1,024
 Distance: Max = 112, Min = 7, Mean = 48
 Mean wall hits = 18

As temperature rises, 
distances increase
pressures increase



Vary Number of Particles

Spring 2025 6.100 LECTURE 16 37



Vary Number of Particles
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particles = 50, size = 50, steps = 200
 Distance: Max = 136, Min = 2, Mean = 55
 Mean wall hits = 204
 Mean collisions = 138
particles = 100, size = 50, steps = 200
 Distance: Max = 135, Min = 0, Mean = 52
 Mean wall hits = 432
 Mean collisions = 575
particles = 200, size = 50, steps = 200
 Distance: Max = 129, Min = 0, Mean = 46
 Mean wall hits = 864
 Mean collisions = 2,357
particles = 300, size = 50, steps = 200
 Distance: Max = 129, Min = 0, Mean = 41
 Mean wall hits = 1,280
 Mean collisions = 5,208
particles = 400, size = 50, steps = 200
 Distance: Max = 123, Min = 0, Mean = 37
 Mean wall hits = 1,671
 Mean collisions = 9,209

All pretty much the same distances
Differences probably not 
meaningful

But something  regarding 
distances seems to be 
happening here.

Density of particles leads to 
collisions, which reduces 
distance particles travel



Vary Number of Particles, cont.
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particles = 50, size = 50, steps = 200
 Distance: Max = 136, Min = 2, Mean = 55
 Mean wall hits = 204
 Mean collisions = 138
particles = 100, size = 50, steps = 200
 Distance: Max = 135, Min = 0, Mean = 52
 Mean wall hits = 432
 Mean collisions = 575
particles = 200, size = 50, steps = 200
 Distance: Max = 129, Min = 0, Mean = 46
 Mean wall hits = 864
 Mean collisions = 2,357
particles = 300, size = 50, steps = 200
 Distance: Max = 129, Min = 0, Mean = 41
 Mean wall hits = 1,280
 Mean collisions = 5,208
particles = 400, size = 50, steps = 200
 Distance: Max = 123, Min = 0, Mean = 37
 Mean wall hits = 1,671
 Mean collisions = 9,209

Ideal Gas Law
pV = nRT
p = nRT/V

As predicted by ideal gas law!

As number of particles 
increases, pressure 
increases linearly.



§ Light takes ~8.3 minutes to reach the earth 
from the surface of the sun (93 million miles)

§ How long does it take a “photon” to get from 
center of sun to surface  (radius = 432,865 
miles)?
◦ 8.33/93,000,000 = TS/432,865
◦ TS = 8.33*865,370/93,000,000 = ~0.156 

minutes?

A Factoid

Spring 2025 6.100 LECTURE 16 40



§ Light takes ~8.3 minutes to reach the earth 
from the surface of the sun (93 million miles)

§ How long does it take a “photon” to get from 
center of sun to surface  (radius = 432,865 
miles)?
◦ 8.33/93,000,000 = TS/432,865
◦ TS = 8.33*865,370/93,000,000 = ~0.156 

minutes?

§ Wrong!

§ Probably between 10,000 and 170,000 YEARS 

§ Because it’s a random walk, and interior of 
sun is very dense

A Factoid

Spring 2025 6.100 LECTURE 16 41



§ Random walks allow us to model many physical and social 
phenomena

§ We can build simulations that help us understand the 
behavior of various kinds of random walks that would be 
hard to analyze directly

§ Looked at classic drunkards walk 

§ Looked at a simple particle simulation
◦ Showed effect of varying various paramters.

§ Point is not the simulations themselves, but how we built, 
evaluated, and used them

Summary
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§ Started by defining classes
◦ Good use of sub-classing

§ Built functions corresponding to:
◦ One trial, multiple trials, result reporting

§ Got simple version working first
◦ Did a sanity check!

§ Made series of incremental changes to simulation so that 
we could investigate different questions
◦ Enhanced simulation a step at a time

§ By changing properties of objects, can explore range of 
behaviors
§ Much more on simulation coming up

Summary, cont.
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