
Extended
Random Walks,
Ideal Gas Law
(download slides and .py files to follow along!)

Tim Kraska

MIT Department Of Electrical Engineering and
Computer Science

6.100 LECTURE 16 1Fall 2025

6.1000 LECTURE 1 2

Inheriting from object

§ Every Python type inherits from object
◦ already provides __init__() , __str__() , __eq__()
◦ so we can create, print, compare
◦ but default behavior may not be what we want

◦ object.__str__() prints memory address
◦ object.__eq__() compares type and memory address

◦ so when we define them in our own classes, they override
access to object’s attributes

6.1000 LECTURE 15 3

Inheritance rules for attribute access

§ When looking up attribute on an instance object
◦ If the attribute name is in the instance, evaluate to the

object it references
◦ remember: this can evaluate to any object in memory, but

NOT a name/attribute
◦ If not in the instance, look in that instance’s class

◦ this is how method lookups work
◦ also works on any class attribute

◦ If not in the class object, look in that class’s parent
class

◦ Etc...

§ The above is applicable only for evaluating an attribute
◦ When setting an attribute for an instance, the attribute

is set directly inside the instance, even if the attribute
name exists in the class hierarchy

6.1000 LECTURE 15 4

print(cri
tter.age)

critter.s
ize = "ti

ny"

Using inheritance

§ Subclasses can override methods of their parent/superclass
◦ We already know how to override object’s __init__() and
__str__()

◦ Cat overrides Animal’s __str__()
◦ Cat also overrides Animal’s speak(), providing a working

implementation

§ Subclasses can reuse methods of their parent/superclass
◦ Cat relies on Animal’s __init__()
◦ Cat.confuse() relies on Animal’s get_age_diff()

§ Same applies to class and instance attributes
◦ subclass instances can rely on attributes initialized in superclass
__init__()

◦ but risky if superclass implementation changes, consider using
getters/setters

6.1000 LECTURE 15 5

Retaining and extending superclass functionality

§ Sometimes, want to preserve superclass method functionality
while extending it
◦ simply overriding it would require code duplication

§ Strategy: superclass methods still available through explicit
superclass.method() reference
◦ because not accessing as object’s method, requires passing

in the object (usually self) as first argument

§ Inside a subclass method’s body, can also use super() to
reinterpret self as an instance of the superclass
◦ Animal.__init__(self, age, name)
◦ super().__init__(age, name)
◦ differing opinions on which is better, but super() is

common

6.1000 LECTURE 15 6

Question

Fall 2025 6.100 LECTURE 16 7

What does demo_rabbit_equality return?
A) True
B) False
C) Error

Designing __eq__()

§ Rabbit example
◦ each Rabbit has two parents and a unique ID
◦ new Rabbits are created by +
◦ want siblings from the same parents to compare ==

§ Version 1
◦ compare == on parent tuples
◦ triggers == and hence __eq__() on elements, recursion!
◦ if self is a Rabbit and other is None, then invalid to access
other.parents

§ Version 2
◦ directly compare parent IDs
◦ avoids recursion, saves computation
◦ runs into same problem retrieving parent.id if parent is None

§ Version 3
◦ so close! need a valid “ID” for a None parent
◦ wrap that concept in a helper function
◦ good opportunity to use lambda

6.1000 LECTURE 15 8

Let’s revist our
drunk simulation
with classes

6.1000 LECTURE 15 9

Hand Simulation

6.100 LECTURE 13 10Fall 2025

One Possible First Step

6.100 LECTURE 13 11Fall 2025

Another Possible First Step

6.100 LECTURE 13 12Fall 2025

Yet Another Possible First Step

6.100 LECTURE 13 13Fall 2025

Last Possible First Step

6.100 LECTURE 13 14

After one step drunk is distance 1.0 away from start

Fall 2025

Location

Fall 2025 6.100 LECTURE 13 15

Field

Fall 2025 6.100 LECTURE 13 16

Drunks

Fall 2025 6.100 LECTURE 13 17

The Simulation

Fall 2025 6.100 LECTURE 13 18

Fields with Wormholes

6.100 LECTURE 5 19Fall 2023

A Subclass of Field, part 1

6.100 LECTURE 5 20Fall 2023

Inherit attributes
and methods of
Field class –
drunks,
move_drunk
Create coordinates
of start of a
wormhole
Create location of
end of a wormhole

Install wormhole in
dictionary, keyed by
start point

Note: we are assuming steps are of integer length,
since using actual x,y values as entry for wormhole

A Subclass of Field, part 2

6.100 LECTURE 5 21Fall 2023

After move drunk to new location, check to see
if have landed on a wormhole

If yes, then get end location of wormhole

Change location of drunk to now be at end of
wormhole

Basic move method;
Drunk now in new location

Spots Reached During One Walk

6.100 LECTURE 5 22Fall 2023

Spots Reached During A Different Walk

6.100 LECTURE 5 23Fall 2023

§ Have used a simple, two-dimensional world to explore
random walk of drunks

§ Can imagine how could simulate a field with multiple
drunks at the same time

§ Can imagine extending simulation so that if two
drunks collide trying to move to same location, their
movements would change (e.g., rebound backwards);
or if a drunk hits a border of the world, it bounces back

§ Now imagine replacing drunks with molecules in a gas

§ Brownian motion simulation

But the World is Not Just a Collection of Drunks

Fall 2023 6.100 LECTURE 5 24

Modeling a Gas

Spring 2025 6.100 LECTURE 16 25

Ideal Gas Law

pV = nRT

p – pressure
V – volume
n – number of molecules
R – a constant
T - temperature

We will model this in two dimensions
V corresponds to size of field
n corresponds number of drunks (particles)
T corresponds to walk length (velocity of particles)

Molecules inside
balloon

Hot-air balloon

§ Have included some basic code to explore this in 2D

§ Changes
◦ Field includes a limit on x and y dimensions (think rigid

container)
◦ move method checks:

◦ If would move beyond limit, don’t move
◦ If move would take particle too close to any other, don’t

move
◦ (simplification, since in reality particles bounce)

◦ Start all particles at random locations
◦ Measure final distance from each start, rather than

origin
◦ Record average final distance for all particles in a trial

Simple Trial

Spring 2025 6.100 LECTURE 16 26

§ Two implementations of Field (think of them as 2D
containers)
◦ One optimized for small number of particles
◦ One for larger number of particles

Complexity

Spring 2025 6.100 LECTURE 16 27

-x x

y

-y

§ Associate location with each particle
◦ Space linear in number of particles

§ At each step, for each particle, check for collision with
each other particle
◦ Time of each step quadratic in number of particles

Implementation 1

Spring 2025 6.100 LECTURE 16 28

§ For each 1x1 cell of field, keep track of location of any
particle in that cell

§ Space linear in size of field (x_len*y_len) + number of
drunks
◦ Initialization of field linear in size of field

§ At each step, for each particle, check if any of the cells
neighboring the destination contain a particle. If so, see
if particle in that cell is too close to the intended
destination
◦ Time of each step constant in number of particles

Implementation 2

Spring 2025 6.100 LECTURE 16 29

Common algorithmic technique: use a fast way to get in
neighborhood of a solution, then a slower algorithm to explore
neighborhood

Code

Spring 2025 6.100 LECTURE 16 30

Multi because it can
contain multiple
particles

Complexity

Spring 2025 6.100 LECTURE 16 31

Complexity: Implementation 2

2*x_lim*y_lim*number of trials + total number of steps

Independent
of number of
particles

Initialize field

Complexity: Implementation 1

number of particles2 * total number of steps

Independent
of size of
field

1024 particles, 10 trials, 1,000 steps per trial
10242*10*1000 = 10,485,760,000

x_lim, y_lim = 1024, 10 trials, 1,000 steps per trial
2*10242*10 = 20,971,520

Simulate walk

§ Questions to explore, e.g.,
◦ How does average over a set of trials of average final

distance for a set of particles change
◦ As the size of the container changes
◦ As the number of particles changes
◦ As the number of steps each particle takes changes

§ Run a set of trials for different choices of container size,
number of particles, number of steps

§ Are there interesting trends?

Some Simple Experiments

Spring 2025 6.100 LECTURE 16 32

Explore Impact of Different Parameter Values

Spring 2025 6.100 LECTURE 16 33

Vary Size of Field (container)

Spring 2025 6.100 LECTURE 16 34

particles = 1, size = 10, steps = 500
 Distance: Max = 23, Min = 2, Mean = 12
 Mean wall hits = 39
particles = 1, size = 20, steps = 500
 Distance: Max = 47, Min = 4, Mean = 22
 Mean wall hits = 20
particles = 1, size = 50, steps = 500
 Distance: Max = 110, Min = 2, Mean = 52
 Mean wall hits = 9
particles = 1, size = 100, steps = 500
 Distance: Max = 205, Min = 27, Mean = 106
 Mean wall hits = 4
particles = 1, size = 1,000, steps = 500
 Distance: Max = 598, Min = 65, Mean = 313
 Mean wall hits = 1
particles = 1, size = 10,000, steps = 500
 Distance: Max = 661, Min = 78, Mean = 354
 Mean wall hits = 0

As size grows, distance grows, up to a point

Distances highly variable

?

Upper bound on distance
(2*size2)0.5

Particle = Continuous_drunk

Diffusion is slow

random.seed(1)
num_particles = (1,)
sizes = (10, 20, 50, 100, 1000, 10000)
lengths = (500,)
num_trials = 50
drunk_test_multi(lengths, num_trials, Particle, num_particles, sizes, opt_space=True)

particles = 1, size = 10, steps = 500
 Distance: Max = 23, Min = 2, Mean = 12
 Mean wall hits = 39
particles = 1, size = 20, steps = 500
 Distance: Max = 47, Min = 4, Mean = 22
 Mean wall hits = 20
particles = 1, size = 50, steps = 500
 Distance: Max = 110, Min = 2, Mean = 52
 Mean wall hits = 9
particles = 1, size = 100, steps = 500
 Distance: Max = 205, Min = 27, Mean = 106
 Mean wall hits = 4
particles = 1, size = 1,000, steps = 500
 Distance: Max = 598, Min = 65, Mean = 313
 Mean wall hits = 1
particles = 1, size = 10,000, steps = 500
 Distance: Max = 661, Min = 78, Mean = 354
 Mean wall hits = 0

Vary Size of Field (container), cont.

Spring 2025 6.100 LECTURE 16 35

Wall hits corresponds to pressure

Ideal Gas Law
pV = nRT
p = nRT/V

As area (V) grows, pressure
decreases

random.seed(1)
num_particles = (1,)
sizes = (10, 20, 50, 100, 1000, 10000)
lengths = (500,)
num_trials = 50
drunk_test_multi(lengths, num_trials, Particle, num_particles, sizes, opt_space=True)

Vary Number of Steps

Spring 2025 6.100 LECTURE 16 36

Ideal Gas Law
pV = nRT
p = nRT/V

Number of steps corresponds to velocity which
increases with temperature
particles = 1, size = 50, steps = 32
 Distance: Max = 37, Min = 3, Mean = 20
 Mean wall hits = 1
particles = 1, size = 50, steps = 64
 Distance: Max = 67, Min = 6, Mean = 35
 Mean wall hits = 1
particles = 1, size = 50, steps = 128
 Distance: Max = 104, Min = 3, Mean = 49
 Mean wall hits = 3
particles = 1, size = 50, steps = 256
 Distance: Max = 110, Min = 5, Mean = 51
 Mean wall hits = 4
particles = 1, size = 50, steps = 512
 Distance: Max = 119, Min = 9, Mean = 52
 Mean wall hits = 9
particles = 1, size = 50, steps = 1,024
 Distance: Max = 112, Min = 7, Mean = 48
 Mean wall hits = 18

As temperature rises,
distances increase
pressures increase

Vary Number of Particles

Spring 2025 6.100 LECTURE 16 37

Vary Number of Particles

Spring 2025 6.100 LECTURE 16 38

particles = 50, size = 50, steps = 200
 Distance: Max = 136, Min = 2, Mean = 55
 Mean wall hits = 204
 Mean collisions = 138
particles = 100, size = 50, steps = 200
 Distance: Max = 135, Min = 0, Mean = 52
 Mean wall hits = 432
 Mean collisions = 575
particles = 200, size = 50, steps = 200
 Distance: Max = 129, Min = 0, Mean = 46
 Mean wall hits = 864
 Mean collisions = 2,357
particles = 300, size = 50, steps = 200
 Distance: Max = 129, Min = 0, Mean = 41
 Mean wall hits = 1,280
 Mean collisions = 5,208
particles = 400, size = 50, steps = 200
 Distance: Max = 123, Min = 0, Mean = 37
 Mean wall hits = 1,671
 Mean collisions = 9,209

All pretty much the same distances
Differences probably not
meaningful

But something regarding
distances seems to be
happening here.

Density of particles leads to
collisions, which reduces
distance particles travel

Vary Number of Particles, cont.

Spring 2025 6.100 LECTURE 16 39

particles = 50, size = 50, steps = 200
 Distance: Max = 136, Min = 2, Mean = 55
 Mean wall hits = 204
 Mean collisions = 138
particles = 100, size = 50, steps = 200
 Distance: Max = 135, Min = 0, Mean = 52
 Mean wall hits = 432
 Mean collisions = 575
particles = 200, size = 50, steps = 200
 Distance: Max = 129, Min = 0, Mean = 46
 Mean wall hits = 864
 Mean collisions = 2,357
particles = 300, size = 50, steps = 200
 Distance: Max = 129, Min = 0, Mean = 41
 Mean wall hits = 1,280
 Mean collisions = 5,208
particles = 400, size = 50, steps = 200
 Distance: Max = 123, Min = 0, Mean = 37
 Mean wall hits = 1,671
 Mean collisions = 9,209

Ideal Gas Law
pV = nRT
p = nRT/V

As predicted by ideal gas law!

As number of particles
increases, pressure
increases linearly.

§ Light takes ~8.3 minutes to reach the earth
from the surface of the sun (93 million miles)

§ How long does it take a “photon” to get from
center of sun to surface (radius = 432,865
miles)?
◦ 8.33/93,000,000 = TS/432,865
◦ TS = 8.33*865,370/93,000,000 = ~0.156

minutes?

A Factoid

Spring 2025 6.100 LECTURE 16 40

§ Light takes ~8.3 minutes to reach the earth
from the surface of the sun (93 million miles)

§ How long does it take a “photon” to get from
center of sun to surface (radius = 432,865
miles)?
◦ 8.33/93,000,000 = TS/432,865
◦ TS = 8.33*865,370/93,000,000 = ~0.156

minutes?

§ Wrong!

§ Probably between 10,000 and 170,000 YEARS

§ Because it’s a random walk, and interior of
sun is very dense

A Factoid

Spring 2025 6.100 LECTURE 16 41

§ Random walks allow us to model many physical and social
phenomena

§ We can build simulations that help us understand the
behavior of various kinds of random walks that would be
hard to analyze directly

§ Looked at classic drunkards walk

§ Looked at a simple particle simulation
◦ Showed effect of varying various paramters.

§ Point is not the simulations themselves, but how we built,
evaluated, and used them

Summary

6.100 LECTURE 16 42Spring 2025

§ Started by defining classes
◦ Good use of sub-classing

§ Built functions corresponding to:
◦ One trial, multiple trials, result reporting

§ Got simple version working first
◦ Did a sanity check!

§ Made series of incremental changes to simulation so that
we could investigate different questions
◦ Enhanced simulation a step at a time

§ By changing properties of objects, can explore range of
behaviors
§ Much more on simulation coming up

Summary, cont.

6.100 LECTURE 16 43Spring 2025

