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Announcements

▪ Pset 4 due Wed 10/29

▪ Pset 5 released Wed 10/29, due next Fri 11/7

▪ Midterm 2 the following Wed 11/12

▪ Note about https://pythontutor.com/
◦ doesn’t display classes and instance objects exactly the 

same as we do

◦ but same concepts are shown

▪ Read the slides! Experiment with the code!
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Last time

▪ Student class
◦ a class is an object of type type
◦ defines functions that operate on Student objects

◦ __init__()
◦ calculate_total()
◦ print_record()

◦ convention of self as first formal parameter name
◦ function names are stored as class attributes

▪ Student objects/instances
◦ contains attributes initialized by __init__()
◦ access Student functions/operations as method calls

◦ tony.operation(...) gets translated to 
Student.operation(tony, ...)

◦ in function call frame, self gets bound to the tony object
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Class attributes

▪ Attributes stored in classes can point to any type of object, 
not just functions

▪ Common use case: manage unique IDs for instances
◦ maintain a class “counter” or “set”

◦ when initializing a new instance (in __init__()), set an 
instance id attribute based on state of class attribute

◦ update class attribute for next instance initialization
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Single underscore convention

▪ Python has no real mechanism to protect data/attributes 
from access
◦ given reference to an object, can see that object’s attributes

▪ Common pitfall: aliasing of mutable attributes through 
__init__()
◦ good practice to consider making copies
◦ all the usual considerations of aliasing apply

▪ Common convention: indicate attributes not intended for 
public access with single leading underscore
◦ define an interface of operations instead
◦ access their info via getter/setter methods

▪ Be able to work with objects without relying on direct 
attribute access

6.1000 LECTURE 15 5



Double-underscore methods

▪ __str__() is a “double underscore” or “dunder” method

▪ When call str(obj), automatically maps to 
obj.__str__() if it exists

▪ When call print(obj) or evaluate f"{obj}", also 
automatically retrieves result of str(obj)

▪ Customize the string representation of your classes and how 
they print
◦ useful for debugging

◦ recommend implementing __str__() right after 
__init__()

6.1000 LECTURE 15 6



Other double-underscore methods

▪ We have already seen __init__()

◦ implicitly called when constructing a new instance via Student()

▪ Fraction example

◦ Enable float(fraction) float with __float__()

◦ Enable * operator with __mul__()

◦ Enable / operator with __truediv__()

◦ can we reuse __mul__()?

◦ Enable == operator with __eq__()

◦ how to recognize Fraction(-1, 4) == Fraction(3, -12)?

▪ Listings of special names
◦ https://docs.python.org/3/reference/datamodel.html#special-method-names

◦ https://docs.python.org/3/reference/datamodel.html#basic-customization

◦ https://docs.python.org/3/reference/datamodel.html#emulating-numeric-types

6.1000 LECTURE 15 7

https://docs.python.org/3/reference/datamodel.html#special-method-names
https://docs.python.org/3/reference/datamodel.html#basic-customization
https://docs.python.org/3/reference/datamodel.html#emulating-numeric-types


6.1000 LECTURE 1 8



Inheriting from object

▪ Every Python type inherits from object
◦ already provides __init__() , __str__() , __eq__()

◦ so we can create, print, compare

◦ but default behavior may not be what we want

◦ object.__str__() prints memory address

◦ object.__eq__() compares type and memory address

◦ so when we define them in our own classes, they override 
access to object’s attributes
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Inheritance rules for attribute access

▪ When looking up attribute on an instance object
◦ If the attribute name is in the instance, evaluate to the 

object it references
◦ remember: this can evaluate to any object in memory, but 

NOT a name/attribute

◦ If not in the instance, look in that instance’s class
◦ this is how method lookups work

◦ also works on any class attribute

◦ If not in the class object, look in that class’s parent 
class

◦ Etc...

▪ The above is applicable only for evaluating an attribute
◦ When setting an attribute for an instance, the attribute 

is set directly inside the instance, even if the attribute 
name exists in the class hierarchy
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Using inheritance

▪ Subclasses can override methods of their parent/superclass
◦ We already know how to override object’s __init__() and 
__str__()

◦ Cat overrides Animal’s __str__()
◦ Cat also overrides Animal’s speak(), providing a working 

implementation

▪ Subclasses can reuse methods of their parent/superclass
◦ Cat relies on Animal’s __init__()
◦ Cat.confuse() relies on Animal’s get_age_diff()

▪ Same applies to class and instance attributes
◦ subclass instances can rely on attributes initialized in superclass 
__init__()

◦ but risky if superclass implementation changes, consider using 
getters/setters
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Retaining and extending superclass functionality

▪ Sometimes, want to preserve superclass method functionality 
while extending it
◦ simply overriding it would require code duplication

▪ Strategy: superclass methods still available through explicit 
superclass.method() reference
◦ because not accessing as object’s method, requires passing 

in the object (usually self) as first argument

▪ Inside a subclass method’s body, can also use super() to 
reinterpret self as an instance of the superclass
◦ Animal.__init__(self, age, name)

◦ super().__init__(age, name)

◦ differing opinions on which is better, but super() is 
common
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Designing __eq__()

▪ Rabbit example
◦ each Rabbit has two parents and a unique ID
◦ new Rabbits are created by +
◦ want siblings from the same parents to compare ==

▪ Version 1
◦ compare == on parent tuples
◦ triggers == and hence __eq__() on elements, recursion!
◦ if self is a Rabbit and other is None, then invalid to access 
other.parents

▪ Version 2
◦ directly compare parent IDs
◦ avoids recursion, saves computation
◦ runs into same problem retrieving parent.id if parent is None

▪ Version 3
◦ so close! need a valid “ID” for a None parent
◦ wrap that concept in a helper function
◦ good opportunity to use lambda
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