
Classes
Special Methods
& Inheritance
6.1000 LECTURE 15

FALL 2025

16.1000 LECTURE 15



Announcements

▪ Pset 4 due Wed 10/29

▪ Pset 5 released Wed 10/29, due next Fri 11/7

▪ Midterm 2 the following Wed 11/12

▪ Note about https://pythontutor.com/
◦ doesn’t display classes and instance objects exactly the 

same as we do

◦ but same concepts are shown

▪ Read the slides! Experiment with the code!

6.1000 LECTURE 15 2

https://pythontutor.com/


Last time

▪ Student class
◦ a class is an object of type type
◦ defines functions that operate on Student objects

◦ __init__()
◦ calculate_total()
◦ print_record()

◦ convention of self as first formal parameter name
◦ function names are stored as class attributes

▪ Student objects/instances
◦ contains attributes initialized by __init__()
◦ access Student functions/operations as method calls

◦ tony.operation(...) gets translated to 
Student.operation(tony, ...)

◦ in function call frame, self gets bound to the tony object

6.1000 LECTURE 15 3



Class attributes

▪ Attributes stored in classes can point to any type of object, 
not just functions

▪ Common use case: manage unique IDs for instances
◦ maintain a class “counter” or “set”

◦ when initializing a new instance (in __init__()), set an 
instance id attribute based on state of class attribute

◦ update class attribute for next instance initialization

6.1000 LECTURE 15 4



Single underscore convention

▪ Python has no real mechanism to protect data/attributes 
from access
◦ given reference to an object, can see that object’s attributes

▪ Common pitfall: aliasing of mutable attributes through 
__init__()
◦ good practice to consider making copies
◦ all the usual considerations of aliasing apply

▪ Common convention: indicate attributes not intended for 
public access with single leading underscore
◦ define an interface of operations instead
◦ access their info via getter/setter methods

▪ Be able to work with objects without relying on direct 
attribute access

6.1000 LECTURE 15 5



Double-underscore methods

▪ __str__() is a “double underscore” or “dunder” method

▪ When call str(obj), automatically maps to 
obj.__str__() if it exists

▪ When call print(obj) or evaluate f"{obj}", also 
automatically retrieves result of str(obj)

▪ Customize the string representation of your classes and how 
they print
◦ useful for debugging

◦ recommend implementing __str__() right after 
__init__()

6.1000 LECTURE 15 6



Other double-underscore methods

▪ We have already seen __init__()

◦ implicitly called when constructing a new instance via Student()

▪ Fraction example

◦ Enable float(fraction) float with __float__()

◦ Enable * operator with __mul__()

◦ Enable / operator with __truediv__()

◦ can we reuse __mul__()?

◦ Enable == operator with __eq__()

◦ how to recognize Fraction(-1, 4) == Fraction(3, -12)?

▪ Listings of special names
◦ https://docs.python.org/3/reference/datamodel.html#special-method-names

◦ https://docs.python.org/3/reference/datamodel.html#basic-customization

◦ https://docs.python.org/3/reference/datamodel.html#emulating-numeric-types

6.1000 LECTURE 15 7

https://docs.python.org/3/reference/datamodel.html#special-method-names
https://docs.python.org/3/reference/datamodel.html#basic-customization
https://docs.python.org/3/reference/datamodel.html#emulating-numeric-types


6.1000 LECTURE 1 8



Inheriting from object

▪ Every Python type inherits from object
◦ already provides __init__() , __str__() , __eq__()

◦ so we can create, print, compare

◦ but default behavior may not be what we want

◦ object.__str__() prints memory address

◦ object.__eq__() compares type and memory address

◦ so when we define them in our own classes, they override 
access to object’s attributes

6.1000 LECTURE 15 9



Inheritance rules for attribute access

▪ When looking up attribute on an instance object
◦ If the attribute name is in the instance, evaluate to the 

object it references
◦ remember: this can evaluate to any object in memory, but 

NOT a name/attribute

◦ If not in the instance, look in that instance’s class
◦ this is how method lookups work

◦ also works on any class attribute

◦ If not in the class object, look in that class’s parent 
class

◦ Etc...

▪ The above is applicable only for evaluating an attribute
◦ When setting an attribute for an instance, the attribute 

is set directly inside the instance, even if the attribute 
name exists in the class hierarchy

6.1000 LECTURE 15 10



Using inheritance

▪ Subclasses can override methods of their parent/superclass
◦ We already know how to override object’s __init__() and 
__str__()

◦ Cat overrides Animal’s __str__()
◦ Cat also overrides Animal’s speak(), providing a working 

implementation

▪ Subclasses can reuse methods of their parent/superclass
◦ Cat relies on Animal’s __init__()
◦ Cat.confuse() relies on Animal’s get_age_diff()

▪ Same applies to class and instance attributes
◦ subclass instances can rely on attributes initialized in superclass 
__init__()

◦ but risky if superclass implementation changes, consider using 
getters/setters

6.1000 LECTURE 15 11



Retaining and extending superclass functionality

▪ Sometimes, want to preserve superclass method functionality 
while extending it
◦ simply overriding it would require code duplication

▪ Strategy: superclass methods still available through explicit 
superclass.method() reference
◦ because not accessing as object’s method, requires passing 

in the object (usually self) as first argument

▪ Inside a subclass method’s body, can also use super() to 
reinterpret self as an instance of the superclass
◦ Animal.__init__(self, age, name)

◦ super().__init__(age, name)

◦ differing opinions on which is better, but super() is 
common

6.1000 LECTURE 15 12



Designing __eq__()

▪ Rabbit example
◦ each Rabbit has two parents and a unique ID
◦ new Rabbits are created by +
◦ want siblings from the same parents to compare ==

▪ Version 1
◦ compare == on parent tuples
◦ triggers == and hence __eq__() on elements, recursion!
◦ if self is a Rabbit and other is None, then invalid to access 
other.parents

▪ Version 2
◦ directly compare parent IDs
◦ avoids recursion, saves computation
◦ runs into same problem retrieving parent.id if parent is None

▪ Version 3
◦ so close! need a valid “ID” for a None parent
◦ wrap that concept in a helper function
◦ good opportunity to use lambda

6.1000 LECTURE 15 13


