Classes

Special Methods
& Inheritance

6.1000 LECTURE 15
FALL 2025

Announcements

= Pset 4 due Wed 10/29
= Pset 5 released Wed 10/29, due next Fri 11/7
= Midterm 2 the following Wed 11/12

= Note about https://pythontutor.com/

o doesn’t display classes and instance objects exactly the
same as we do

° but same concepts are shown

= Read the slides! Experiment with the code!

6.1000 LECTURE 15

https://pythontutor.com/

Last time

= Student class

° a class is an object of type type

o defines functions that operate on Student objects
o _init__ ()
c calculate_total()
o print_record()

o convention of self as first formal parameter name

o function names are stored as class attributes

= Student objects/instances
o contains attributes initialized by __init__ ()
o access Student functions/operations as method calls

o tony.operation(...) gets translated to
Student.operation(tony, ...)

° in function call frame, self gets bound to the tony object

6.1000 LECTURE 15

Class attributes

= Attributes stored in classes can point to any type of object,
not just functions

= Common use case: manage uniqgue IDs for instances
> maintain a class “counter” or “set”

o when initializing a new instance (in __init__ ()), setan
instance 1d attribute based on state of class attribute

o update class attribute for next instance initialization

6.1000 LECTURE 15

Single underscore convention

= Python has no real mechanism to protect data/attributes
from access

o given reference to an object, can see that object’s attributes

= Common pitfall: aliasing of mutable attributes through
__init_ ()
o good practice to consider making copies
o all the usual considerations of aliasing apply

= Common convention: indicate attributes not intended for
public access with single leading underscore

o define an interface of operations instead
o access their info via getter/setter methods

= Be able to work with objects without relying on direct
attribute access

6.1000 LECTURE 15 5

Double-underscore methods

= str_ () isa“double underscore” or “dunder” method

= When call str(obj), automatically maps to
obj. str__ () ifitexists

= When call print(obj) or evaluate f"{ob7j}", also
automatically retrieves result of str(obj)

= Customize the string representation of your classes and how
they print

o useful for debugging

o recommend implementing __str__ () right after
init ()

6.1000 LECTURE 15 6

Other double-underscore methods

= We have already seen __init__ ()
o implicitly called when constructing a new instance via Student ()

" Fraction example
o Enable float(fraction) float with __float ()

o Enable * operator with __mul__ ()

> Enable / operator with __truediv__ ()
o canwereuse __mul ()?

> Enable == operator with _eq__ ()
> how to recognize Fraction(-1, 4) == Fraction(3, -12)>?

= Listings of special names
o https://docs.python.org/3/reference/datamodel.html#special-method-names

o https://docs.python.org/3/reference/datamodel.html#basic-customization

o https://docs.python.org/3/reference/datamodel.html#temulating-numeric-types

6.1000 LECTURE 15 7

https://docs.python.org/3/reference/datamodel.html#special-method-names
https://docs.python.org/3/reference/datamodel.html#basic-customization
https://docs.python.org/3/reference/datamodel.html#emulating-numeric-types

Inheritance
(at last!)

Inheriting from object

= Every Python type inherits from object
o already provides __init (), str_ (), eq_ ()
° SO wWe can create, print, compare
o but default behavior may not be what we want
cobject. str__ () prints memory address
- object. eq__ () compares type and memory address

> so when we define them in our own classes, they override
access to object’s attributes

6.1000 LECTURE 15

Inheritance rules for attribute access

—. e)
. . . . ‘nt crltter°ag
= When looking up attribute on an instance object print(

o |f the attribute name is in the instance, evaluate to the
object it references

o remember: this can evaluate to any object in memory, but
NOT a nhame/attribute

o |If not in the instance, look in that instance’s class
° this is how method lookups work
> also works on any class attribute

° If not in the class object, look in that class’s parent
class

o Etc...

= The above is applicable only for evaluating an attribute
> When setting an attribute for an instance, the attribute

is set directly inside the instance, even if the attribute
name exists in the class hierarchy — _ vginy"
critter.siz® —

6.1000 LECTURE 15 10

Using inheritance

= Subclasses can override methods of their parent/superclass
> We already know how to override object’s __init_ () and

__str__ ()
o Cat overrides Animal’'s __str__ ()

o Cat also overrides Animal’s speak (), providing a working
implementation

= Subclasses can reuse methods of their parent/superclass
o Catrelieson Animal’s __init_ ()

o Cat.confuse() relies on Animal’s get_age_diff()

= Same applies to class and instance attributes
o subclass instances can rely on attributes initialized in superclass
__init_ ()
o but risky if superclass implementation changes, consider using
getters/setters

6.1000 LECTURE 15

11

Retaining and extending superclass functionality

= Sometimes, want to preserve superclass method functionality
while extending it

o simply overriding it would require code duplication

= Strategy: superclass methods still available through explicit
superclass .method() reference

o because not accessing as object’s method, requires passing
in the object (usually self) as first argument

= Inside a subclass method’s body, can also use super() to
reinterpret self as an instance of the superclass

c Animal. init_ (self, age, name)

csuper()._ init__(age, name)

o differing opinions on which is better, but super () is
common

6.1000 LECTURE 15 12

Designing _eq__ ()

Rabbit example
o each Rabbit has two parents and a unique 1D

°c new Rabbits are created by +
o want siblings from the same parents to compare ==

Version 1
° compare == on parent tuples

o triggers == and hence __eq__ () on elements, recursion!

o if self is a Rabbit and other is None, then invalid to access
other.parents

Version 2
o directly compare parent IDs

° avoids recursion, saves computation
° runs into same problem retrieving parent. id if parent is None

Version 3
° so close! need a valid “ID” for a None parent

o wrap that concept in a helper function
o good opportunity to use 1lambda

6.1000 LECTURE 15

13

