
Classes
Attributes & Methods
6.1000 LECTURE 14

FALL 2025

16.1000 LECTURE 14



Announcements

▪ Pset 3 checkoff due Fri, 10/24

▪ Pset 4 due next Wed, 10/29

▪ Midterm 2 in three weeks, 11/12
◦ review environment diagrams!

6.1000 LECTURE 14 2



Review function call semantics

1. Identify function object

2. Evaluate arguments in order

3. Set up frame/environment for function

4. Assign parameter names in frame

5. Run body with respect to that frame until return
▪ If reference any variables not in frame, look instead in the global frame

6. Evaluate original function call as returned object

▪ Check yourself using https://pythontutor.com/!
◦ Beware of defaults: we don’t “inline primitives” in our 

drawings
◦ Some Python features may not be available

6.1000 LECTURE 14 3

https://pythontutor.com/


Representing structured data

▪ General strategies
◦ nested lists

◦ parallel lists

◦ nested dicts

◦ parallel dicts

▪ Downsides
◦ structure needs to be thoroughly documented

◦ changing the representation can impact large amounts of 
code

◦ forced to work with Python’s built-in operations

6.1000 LECTURE 14 4



6.1000 LECTURE 1 5



Custom data types and attributes

▪ Python comes with built-in types
◦ every object is an instance of a type

◦ can write out a literal object, can also instantiate with ()

▪ We can define our own types, using the class keyword

◦ must instantiate with ()

◦ inspect object’s type with type() or isinstance()

▪ An object of a custom type is basically a namespace
◦ can store variables in it, pointing to other objects

◦ these variables are called attributes

◦ accessed via dot notation, object.attribute

◦ hence, objects are inherently mutable

6.1000 LECTURE 14 6



Using functions in classes: bound methods

▪ Sometimes, it makes sense for functions to apply only to 
objects of a custom type

▪ Define those functions inside the class
◦ a class is also an object, can store attributes inside it

◦ now those functions can only be accessed through dot 
notation, class.function(arg1, arg2, ...)

▪ Because these functions are meant to operate on instances of 
a class, would like to use dot notation on objects themselves
◦ obj.function(arg2, ...) is equivalent and preferred 

to the class.function() syntax

◦ obj.function is a bound method, not a real function, but
automatically translated with obj as arg1 when called

6.1000 LECTURE 14 7



self convention

▪ While obj.function() is called without arg1,
function() still has to be defined with arg1 parameter so 
it can be assigned to obj

▪ Hence arg1 is effectively always an object of type class

▪ Widely accepted convention is to name arg1 as self

▪ self has no inherent meaning in Python, just a name

6.1000 LECTURE 14 8



__init__() method

▪ Tiresome to build objects by manually specifying attributes

▪ Python recognizes certain “double-underscore” (or “dunder”) 
method names

▪ When a class is called to instantiate a new object

◦ an empty object is created

◦ that object is passed to __init__() if it exists

◦ any arguments passed to the class() call also get passed to 
__init__()

◦ the body of __init__() can choose to populate the object (i.e., 
self) as desired

◦ the now populated/initialized object is returned

▪ __init__() fills a similar role as “constructor” in other languages

◦ mechanism is somewhat different

6.1000 LECTURE 14 9



6.1000 LECTURE 1 10



Non-method class attributes

▪ Recall that functions in classes are just attributes

▪ Can define other attributes that don’t point to function 
objects

▪ These are typically used to store information common to the 
class and not specific to any one object instance

▪ A common use case: Keep track of ID number generation, so 
that __init__() can assign each new object a unique ID

6.1000 LECTURE 14 11



Protecting internal state

▪ Python has no watertight mechanism to prevent modification 
of an object’s attributes

▪ Mitigation 1: when storing mutable data passed into 
__init__(), consider storing a copy

▪ Mitigation 2: specify accessor methods (getters and/or 
setters)
◦ encourage users to follow an interface

◦ use obj._leading_underscore convention to 
discourage direct attribute access

6.1000 LECTURE 14 12



__str__() method

▪ Another “dunder” method

▪ When call str(obj), automatically defers to 
obj.__str__() if it exists

▪ When call print(obj) or evaluate f"{obj}", also 
automatically retrieves result of str(obj)

▪ Customize the string representation of your classes and how 
they print
◦ useful for debugging

◦ recommend implementing __str__() right after
__init__()

6.1000 LECTURE 14 13


