Classes
Attributes & Methods

6.1000 LECTURE 14
FALL 2025




Announcements

= Pset 3 checkoff due Fri, 10/24
= Pset 4 due next Wed, 10/29

= Midterm 2 in three weeks, 11/12
° review environment diagrams!

6.1000 LECTURE 14



Review function call semantics

|ldentify function object
Evaluate arguments in order
Set up frame/environment for function

Assign parameter names in frame

Al S

Run body with respect to that frame until return
= [f reference any variables not in frame, look instead in the global frame

6. Evaluate original function call as returned object

= Check yourself using https://pythontutor.com/!

o Beware of defaults: we don’t “inline primitives” in our
drawings

o Some Python features may not be available

6.1000 LECTURE 14


https://pythontutor.com/

Representing structured data

= General strategies
o nested lists

o parallel lists
> nested dicts
o parallel dicts

= Downsides
o structure needs to be thoroughly documented

o changing the representation can impact large amounts of
code

° forced to work with Python’s built-in operations

6.1000 LECTURE 14



Data Abstraction




Custom data types and attributes

= Python comes with built-in types
o every object is an instance of a type

° can write out a literal object, can also instantiate with ()

= We can define our own types, using the class keyword
> must instantiate with ()

° inspect object’s type with type() or isinstance()

= An object of a custom type is basically a namespace
o can store variables in it, pointing to other objects

o these variables are called attributes
o accessed via dot notation, object.attribute
° hence, objects are inherently mutable

6.1000 LECTURE 14



Using functions in classes: bound methods

= Sometimes, it makes sense for functions to apply only to
objects of a custom type

= Define those functions inside the class
° a class is also an object, can store attributes inside it

> now those functions can only be accessed through dot
notation, class.function(argl, arg2, ...)

= Because these functions are meant to operate on instances of
a class, would like to use dot notation on objects themselves

°cobj.function(arg2, ...) isequivalent and preferred
to the class. function() syntax

°cobj.function is a bound method, not a real function, but
automatically translated with obj as argl when called

6.1000 LECTURE 14 7



self convention

= While obj . function() is called without arg1l,
function() still has to be defined with argl parameter so
it can be assigned to obj

" Hence argl is effectively always an object of type class
= Widely accepted convention is to name argl as self

= self has no inherent meaning in Python, just a name

6.1000 LECTURE 14 8



__init__() method

= Tiresome to build objects by manually specifying attributes

= Python recognizes certain “double-underscore” (or “dunder”)
method names

= When a class is called to instantiate a new object

° an empty object is created

o that object is passedto __init () if it exists

° any arguments passed to the class () call also get passed to
__init_ ()

o the body of __init__ () can choose to populate the object (i.e.,
self) as desired

> the now populated/initialized object is returned

= init__ () fills a similar role as “constructor” in other languages
> mechanism is somewhat different

6.1000 LECTURE 14 9



Object-oriented
Practices



Non-method class attributes

= Recall that functions in classes are just attributes

= Can define other attributes that don’t point to function
objects

= These are typically used to store information common to the
class and not specific to any one object instance

= A common use case: Keep track of ID number generation, so
that __init_ () can assign each new object a unique ID

6.1000 LECTURE 14 11



Protecting internal state

= Python has no watertight mechanism to prevent modification
of an object’s attributes

= Mitigation 1: when storing mutable data passed into
__init__ (), consider storing a copy

= Mitigation 2: specify accessor methods (getters and/or
setters)

o encourage users to follow an interface

cuseobj. Lleading _underscore convention to
discourage direct attribute access

6.1000 LECTURE 14 12



__str__ () method

= Another “dunder” method

* When call str(obj), automatically defers to
obj. str__ () ifitexists

= When call print(obj) or evaluate f"{ob7j}", also
automatically retrieves result of str(obj)

= Customize the string representation of your classes and how
they print

o useful for debugging

o recommend implementing __str__ () right after
_init_ ()

6.1000 LECTURE 14 13



