Lecture 13:
Distributions,

Random walks

(download slides and .py files to follow along)

Tim Kraska

MIT Department of Electrical Engineering and
Computer Science

Announcements

= Pset 3 is due tonight.

= Pset 4 is out after class.

Fall 2025 6.100 LECTURE 13 p

Recap: Monte Carlo Simulation

= A method of estimating the value of an unknown quantity
using the principles of inferential statistics

= Inferential statistics
o Population: a set of examples

o Sample: a proper subset of a population

o Key fact: a random sample tends to exhibit the same
properties as the population from which it is drawn

o Provided size of sample is sufficiently large and random

> The key question: When should we believe that a sample has the same properties
as the population?

Fall 2025 6.100 LECTURE 13 3

Simulations Are Used a Lot

To model systems that are mathematically intractable
o Otherwise may not be possible to analyze a system

To extract useful intermediate results

To support iterative development by successive
refinement

Start with basic system, then incrementally add features

To support exploring of variations by
asking/answering “what if” questions

Let’s illustrate with random walks

Fall 2025 6.100 LECTURE 13 4

What are Random Walks?

Method to model a system where:

= Objects start at a location and choose a random direction
in which to take each step

= Distribution of choice of direction (and speed) can be
different

o For different object types
o For different environmental conditions

. . .
of
o . .
@
.
s *°® o *
o®
®
.
®
®
. : o*®
s @ 9

Fall 2025 6.100 LECTURE 13 5

Random Walks in the World

= In modeling stocks, change in price often
modeled as a Gaussian random walk

o Step size chosen from a normal distribution

o Basic assumption of Black-Scholes-Merton
option pricing model

Scholes and Merton won a Nobel Prize for this work

" In population genetics, random walk
describes statistical properties of genetic
drift

o Change in frequency of specific gene variant
in a population

Fall 2025 6.100 LECTURE 13

DVER 5 MILUON CUPIES SULD

A RANDOM
WALK DOWN
WALL STREET

Darwin’s
finches

6

Why Do We Cover Random Walks?

" Important for modeling behavior in many domains

o Understanding the stock market, modeling diffusion processes,
modeling cell movement, suggesting who to follow on
Instagram, etc.

= Solve computational problems (Search, Al, lighting simulation)

= Good illustration of how to use simulations to understand things

= Excuse to cover some important programming topics
o Practice classes

° Practice plotting

Fall 2025 6.100 LECTURE 13

Our Random Walk

= Often called the drunkard’s walk

= A random walk on a two-dimensional surface
o Walker starts at some initial location

= Each step a fixed distance (initially)

= Step is taken in a direction chosen randomly from a
set of choices

Homer’s Odysseus — classic wanderer Homer — Just Odd
Fall 2025 6.100 LECTURE 13

Simplified Drunkward’s Walk

Random Walk Theory

Here

Homer starts at the origin, and takes a unit step in one of

— the cardinal directions at random with equal likelihood.
| | | | | | | | |

~ How does distance from origin at end of walk relate to
number of steps?

Fall 2025 6.100 LECTURE 13

10

How Far will Homer Get?

CALM

AND

How will the expected distance from the starting BtV

point change as the number of steps, d, grows?

" [t won't
=0O(d)
="O(d**2)

" O(log d)

" O(d**0.5)
"0O(2**d)

Fall 2025 6.100 LECTURE 13 11

Hand Simulation

Fall 2025 6.100 LECTURE 13 12

One Possible First Step

Fall 2025 6.100 LECTURE 13 13

Another Possible First Step

Fall 2025 6.100 LECTURE 13 14

Yet Another Possible First Step

Fall 2025 6.100 LECTURE 13 15

Last Possible First Step

After one step drunk is distance 1.0 away from start

Fall 2025

6.100 LECTURE 13

16

Possible Locations after Two Steps

Assuming 1%t step to right

Fall 2025 6.100 LECTURE 13 17

Possible Locations after Two Steps

a’+b?=c?
¢ = (a2 + b2)0S

Assuming 1%t step to right

Fall 2025 6.100 LECTURE 13 18

Possible Distances After Two Steps

[[|
9 possible final locations

16 possible different paths

Fall 2025 6.100 LECTURE 13 19

Possible Distances After Two Steps

Average if equally likely is:
(2+42%141+2+2*1.41+2+2%1.41+2+2*1.4+4*%0)/16
= 1.205

Fall 2025 6.100 LECTURE 13

20

Expected Distance After 100,000 Steps?

= Can see that expected distance seems to increase with
number of steps, and certainly maximum distance does

> Went from 0 to 1 to 1.205 as expected distance

= But can we accurately model the actual expected
distance (i.e., with a mathematical formula)?

o Seems pretty hard

= What about computing all possible paths, and
measuring actual average distance?

Fall 2025 6.100 LECTURE 13 21

Feasible? KEEP
CALM

AND

How many possible paths are there after 100,000 EHaytaTey
steps?

= 100,000

= 400,000

= 100,000**2
= 4**100,000

= 2**100,000

Fall 2025 6.100 LECTURE 13 22

-

Feasible? KEEP
(of-\R\"|

AND

How many possible paths are there after 100,000 EHaytaTey
steps?

= 100,000

= 400,000

= 100,000**2
= 4%*100,000
= 2**100,000

Note, the number of possible paths is different
from the number of possible final locations —
latter is roughly 100,000**2 = 10B

Fall 2025 6.100 LECTURE 13 23

Enumerating all Possibilities Is Not Practical

= Need a different approach to problem

= A probabilistic simulation
> Won’t yield precisely correct answer

o But should yield a good approximation

Fall 2025 6.100 LECTURE 13 24

Modeling Random Walks

1. Perform an experiment where you take d steps at
random based on some distribution and ask some
guestions about what happened, e.g., what is the
distance from starting point

o A particular event

Fall 2025 6.100 LECTURE 13 25

Modeling Random Walks

1. Perform an experiment where you take d steps at
random based on some distribution and ask some
guestions about what happened, e.g., what is the
distance from starting point

o A particular event

2. With many experiment trials/repetitions, what is
the average distance away from the start location
(or other properties of the set of end or
intermediate points)?

o Sampling space of possible events

3. Can’t sample all events, so want to draw statistical
conclusions about events—topic of a later lecture

Fall 2025 6.100 LECTURE 13 26

Structure of Simulation

= Simulate one walk of d steps
o Record distance from start at end of walk

o Record final location at end of walk

Fall 2025 6.100 LECTURE 13 27

Structure of Simulation

= Simulate one walk of d steps
o Record distance from start at end of walk e

o Record final location at end of walk

odinow

= Simulate n such walks, each of d steps
o Record all distances and final locations

= Report average distance from origin over set of n walks
> How does this change as we increase d?

= Will come back to final locations over set of walks later

Fall 2025 6.100 LECTURE 13 28

Monte Carlo Simulations

= Stanislaw Ulam, recovering from
an illness, was playing a lot of
solitaire (1946)

" Tried to figure out probability of
winning, and failed

=" Thought about playing lots of
hands and counting number of
wins (i.e., sampling)

> ~10,000 hands needed

= Asked Von Neumann if he could
build a program to simulate
many hands on ENIAC

o Creation of Monte Carlo
simulation method

Programming, circa 1946

Fall 2025 6.100 LECTURE 13

Monte Carlo Simulation

= A method of estimating the value of an unknown
guantity using the principles of inferential statistics

" Inferential statistics
o Population: a set of examples
o Sample: a proper subset of a population

o Key fact: a random sample tends to exhibit the same
properties as the population from which it is drawn

o Provided size of sample is sufficiently large and random

* From where does hame come?

> Ulam and von Neuman used the method to study particle
interactions in nuclear weapons research. Because the
research was secret, they needed a code name. Ulam
named it after the casino in Monaco.

Fall 2025 6.100 LECTURE 13 30

Random Walk - Overall plan

" First, some useful abstractions

" Location—a place
> An object, like a drunk, has a location

o Location can change as object moves

= Field—a collection of drunks with locations
o Implicit collection of locations

o Explicitly represent only locations occupied by drunks
> Associate location directly with a drunk

> Represent by collection of drunks, not collection of
possible locations

Fall 2025 6.100 LECTURE 13 33

Random Walk - Overall plan

= Drunk
o Can move, change location

= Simulation
o Create one or more drunks, with initial location

> Randomly move d steps, record final location, distance
from start

> Do this n times, measure average final distance, collect
set of final locations

Fall 2025 6.100 LECTURE 13 34

Location

def

def

def

def

def

def

make_location(x, y):
/ Locations are tuples
return (x, y)

move(loc, dx, dy):
X, y = loc
return (x + dx, y + dy)

“Yes, business is brisk - Location, Location, Location!’

get_x(loc):
return loc[0]
C
b
get_y(loc): Python has functions for -
return loc[1] everything math.hypot() 3

calculates Euclidian norm

dist(loc_a, c_b):
return hypot(loc_al@] - loc_b[0], loc_all] - loc_b[1])

loc_str(loc):
return '<' + str(get_x(loc)) + ', ' + str(get_y(loc)) + '>'

Fall 2025 6.100 LECTURE 13 35

Fields

def make_field():
return {}

def add_drunk(field, drunk_id, 1loc):
if drunk_id in field:
raise ValueError("Duplicate drunk")
field[drunk_id] = loc

def get_loc(field, drunk_id):
if drunk_id not in field:
raise ValueError("Drunk not in field")
return field[drunk_id]

Fall 2025 6.100 LECTURE 13 36

Modeling Drunks

def usual_step():
return random.choice([(0, 1), (0, -1), (1, @), (-1, @)])

Basic activity of a drunk is to wander;
take_step will return an x and y tuple,

denoting change in location

6.100 LECTURE 13 37

Fall 2025

Modeling Drunks

def usual_step():
return random.choice([(0, 1), (@0, -1), (1, @), (-1, 0)])

def masochist_step(): :
return random.choice([(0.0, 1.1), (0.0, -0.9), (1.0, 0.0), (-1.0, 0.0)])

Takes a random step
in cardinal directions,
but if northward,
moves a bit further
than if southward

Fall 2025 6.100 LECTURE 13

38

Modeling Drunks

def usual_step():
return random.choice([(0, 1), (@0, -1), (1, @), (-1, @0)])

def masochist_step(): =
return random.choice([(0.0, 1.1), (0.0, -0.9), (1.0, 0.0), (-1.0, 0.0)])

def liberal_step():
return random.choice([(0.0, 1.0), (0.0, -1.0), (0.9, 0.0), (-1.1, 0.0)])

def conservative_step():
return random.choice([(0.0, 1.0), (0.0, -1.0), (1.1, 0.0), (-0.9, 0.0)])

def liberal_masochist_step():
Flip between liberal and masochist tendencies
if random.choice([True, False]):
return liberal_step()
else:
return masochist_step()

def corner_step():
return random.choice([(0.71, ©0.71), (.71, -0.71), (-0.71, 0.71), (-0.71, -0.71)])

def continuous_step():
return (random.uniform(-1,1), random.uniform(-1,1))

Fall 2025 6.100 LECTURE 13 39

Simulating a Single Walk

/ Takes a function as input

def move_drunk(field, drunk_id, step_fn):
if drunk_id not in field:
raise ValueError("Drunk not in field")

dx, dy = step_fn()
field[drunk_id] = move(field[drunk_id], dx, dy)

def walk(field, drunk_id, step_fn, num_steps):
"""Moves drunk_id num_steps times; returns distance from start to end."""
start = get_loc(field, drunk_id)
for _ in range(num_steps):
move_drunk(field, drunk_id, step_fn)
return dist(start, get_loc(field, drunk_id))

Fall 2025 6.100 LECTURE 13

40

FUNCTIONS AS
PARAMETERS

DDDDDD

Motivation

=\\We want to create a function such that:
o Given an input list

° |t outputs a new list with only the elements of the input
that pass a given test (a.k.a. predicate)

> We want the function to be general for any test

6.100A LECTURE 8 42

Solution:
test function as parameter

filtered list

6.100A LECTURE 8 43

General filtering function

def filtered_list(orig_1list, test):

out_list = []
for e in orig_list:
if test(e):
out_list.append(e)

return out list

def test_odd(x):
return x%2 ==

L=1[1, 2, 3, 4, 5]

print(filtered_list(1l, test_odd))

6.100A LECTURE 8

TAKE YOUR

A list of functions TURN ALREADY

add_all(n, fns): What is printed?
ans = 0
for f in fns: A) error

ans += f(n)

return ans B) 0)

f(x): return x*%3 C) 8
g(x): return x%2

h(x): return —=2%x D) -12

list_of_functions = [f, g, h]

. . B E) something else
print (add_all(2, list_of_functions))

6.100A LECTURE 8

In general:
HIGHER-ORDER PROCEDURES

- Everything in Python is an object of some particular type
(e.g., ints, floats, strings, tuples, lists, Booleans, even None!)

= Objects
> have a type

o can appear in RHS of assignment statement (i.e., we can bind a
name to an object)

o can be used as an argument to a function
o can be returned as a value from a function

= While this may seem intuitive for data structures, functions
are also first-class objects

> In other words, functions can be treated just like numbers, or
strings, or tuples, or lists, with respect to these criteria

Higher-order procedure: can take a function as argument, or return a
function as value, or both

6.100A LECTURE 8 46

Lambda

DETOUR

Lambda creates a function without naming it

=*Convenient sugar (shorter way to write things)
when one-line functions are needed as parameters

lambda paraml, parameZ.. : output expression

sEquivalent to defining

def func (paraml, paramZ,..):

return output expression

And passing func

6.100A LECTURE 8 48

Lambda creates a function without naming it

"Convenient sugar (shorter way to write things)
when one-line functions are needed as parameters

"For example:

XX 2 ==N

test_odd(x):
return x%2 == 1

1=1[1, 2, 3, 4, 5]

print(filtered_1list(1, test_odd))

print(filtered_list(1, X: X%2 == 1))

6.100A LECTURE 8

Returning Functions

def make_specialized_filtering_function(test):
return lambda orig_list : filtered_list(orig_list, test)

f = make_specialized_filtering_function()

Careful whether you mean the function object (without
parentheses and parameters)
or you want to call the function with given parameters

Fall 2025 6.100 LECTURE 13 50

Comprenhension

DETOUR

Some very common patterns

"Applying a function to all elements of a list

"Filtering a list according to a predicate (Boolean
function)

filtered_list(orig_list, test):
out_list = []
for e in orig_list:

if test(e):
out_list.append(e)

return out_list

=Python offers a sugar to do both easily

6.100A LECTURE 8

52

LIST COMPREHENSIONS

[expr elem iterable mytest]

Default to always returning Tru
if no specific test specified

6.100A LECTURE 5 53

Comprehension examples

L = [n for n in range(200) if n%2==1]
12 = [nx%2 for n in 1]

12 = [n¥k%2 for n in 1 if n%s2==1]

6.100A LECTURE 8 54

LIST COMPREHENSIONS

[expr elem lterable mytest]

= evaluating this is same as calling function below (where £n
is a function that computes expr)

list comp(old list, fn, test= X: True):
new list = []
e old list:
test (e) :
new list.append (fn(e))

new list

list comp (iterable,
elem: expr,

elem: mytest)

6.100A LECTURE 5 55

HIGHER ORDER PROCEDURES

= Functions are first-class objects
> they have a type

> they can be assigned as a value bound to a name
° they can be used as an argument to another function
> they can be returned as a value from another function

= This enables the creation of concise, easily read code

= Environment model explains evolution of code, even
when function accepts a function as argument or
return a function as value

6.100A LECTURE 8 56

Back to Random
Walk

Simulating a Single Walk

/ Takes a function as input

def move_drunk(field, drunk_id, step_fn):
if drunk_id not in field:
raise ValueError("Drunk not in field")

dx, dy = step_fn()
field[drunk_id] = move(field[drunk_id], dx, dy)

def walk(field, drunk_id, step_fn, num_steps):
"""Moves drunk_id num_steps times; returns distance from start to end."""
start = get_loc(field, drunk_id)
for _ in range(num_steps):
move_drunk(field, drunk_id, step_fn)
return dist(start, get_loc(field, drunk_id))

Fall 2025 6.100 LECTURE 13

59

Animated visualization of single walk

=Using extra code
> No need to understand it yet in detail.

def walk_with_viz(field, drunk_id, step_fn, num_steps, pause=0.0001, axis_max=30, clr='black'):
"""Same as walk(), but draws the path live."""
Lx, Ly =[], []
start = get_loc(field, drunk_id)

plt.xlim(-axis_max, axis_max)
plt.ylim(-axis_max, axis_max)
plt.plot(@, @, 'o', color=clr, markersize=3)

Lx.append(get_x(start))
Ly.append(get_y(start))

for _ in range(num_steps):
move_drunk(field, drunk_id, step_fn)
loc = get_loc(field, drunk_id)
Lx.append(get_x(1loc))
Ly.append(get_y(loc))
plt.plot(Lx, Ly, linewidth=1, color=clr)
plt.draw()
plt.show(block=False)
plt.pause(pause)

return dist(start, get_loc(field, drunk_id))

Fall 2025 6.100 LECTURE 13 60

Simulating Multiple Walks

def sim_walks(num_steps, num_trials, step_fn):
"""Runs num_trials walks of num_steps; returns list of final distances."""
origin = make_location(@, 0)
distances = []
for _ in range(num_trials):
f = make_field()
add_drunk(f, "Homer", origin)
distances.append(round(walk(f, "Homer", step_fn, num_steps), 1))
return distances

def drunk_test(walk_lengths, num_trials, step_fn, step_name="step_fn"):
"""For each length, run sim_walks and print summary stats."""
for num_steps in walk_lengths:
distances = sim_walks(num_steps, num_trials, step_fn)
print(step_name, "random walk of", num_steps, "steps")
print(" Mean =", round(sum(distances) / len(distances), 4))
print(" Max =", max(distances), "Min =", min(distances))

Fall 2025 6.100 LECTURE 13 61

Fxample Random
Walk Applications

The Web as Directed Graph

Back link of u Forward link of u

Link from i (h (h
tom

Page m

ENL)

/ﬂ N —

"
Q)
0Q
[¢]
<

~
il
i

~
il
e

~

o
Q)

]
[¢]
=]

7 N\
() (L =
Set B, Rank of page u >etF,
is R(u) Amount N, = h:u |
J ()

Demo 2: Graphs + Random Walk

"Page rank (Google) idea:
o Each web page “votes” for the “importance” of pages it
links to

> The weight of a vote depends on the importance of the
page itself

o

=S0...
to know the importance you must know the
iImportance

Fall 2025 6.100 LECTURE 13 64

= two trillion dollars?

Graphs + Random Walk

random walk on graph of web pages

=|dea 2

o Slowly “accumulates” importance

°c More “important”

pages visited more.

o Related to friendship paradox

65

6.100 LECTURE 13

Fall 2025

Demo 2: Path finding and random walk

"For the case where we don’t have a graph
=Continuous space + obstacles

=Combine random walk in continuous space + creation
of a graph

Fall 2025 6.100 LECTURE 13 66

Path finding and random walk

=RRT : Rapidly-exploring Random Trees

"At each step :
o Pick random point in space

> Find closes point in existing graph, ignoring obstacles.
Grow graph in that direction.

Fall 2025 6.100 LECTURE 13 67

Path finding and random walk

*"RRT

10

® Start

0 T T T T
0 2 4 6 8 10

Fall 2025 6.100 LECTURE 13 68

Demo 3: Raytracing

Fall 2025 6.100 LECTURE 13 69

Demo 3: Raytracing

Fall 2025 6.100 LECTURE 13

