
Lecture 13:
Distributions,
Random walks

(download slides and .py files to follow along)

Tim Kraska

MIT Department of Electrical Engineering and
Computer Science

6.100 LECTURE 13 1Fall 2025

§ Pset 3 is due tonight.

§ Pset 4 is out after class.

Announcements

Fall 2025 6.100 LECTURE 13 2

§ A method of estimating the value of an unknown quantity
using the principles of inferential statistics

§ Inferential statistics
◦ Population: a set of examples
◦ Sample: a proper subset of a population
◦ Key fact: a random sample tends to exhibit the same

properties as the population from which it is drawn
◦ Provided size of sample is sufficiently large and random

◦ The key question: When should we believe that a sample has the same properties
as the population?

Recap: Monte Carlo Simulation

6.100 LECTURE 13 3Fall 2025

§ To model systems that are mathematically intractable
◦ Otherwise may not be possible to analyze a system

§ To extract useful intermediate results
§ To support iterative development by successive

refinement
◦ Start with basic system, then incrementally add features
§ To support exploring of variations by

asking/answering “what if” questions
§ Let’s illustrate with random walks

Simulations Are Used a Lot

6.100 LECTURE 13 4Fall 2025

Method to model a system where:

§ Objects start at a location and choose a random direction
in which to take each step

§ Distribution of choice of direction (and speed) can be
different
◦ For different object types
◦ For different environmental conditions

What are Random Walks?

6.100 LECTURE 13 5Fall 2025

§ In modeling stocks, change in price often
modeled as a Gaussian random walk
◦ Step size chosen from a normal distribution
◦ Basic assumption of Black-Scholes-Merton

option pricing model

§ In population genetics, random walk
describes statistical properties of genetic
drift
◦ Change in frequency of specific gene variant

in a population

Random Walks in the World

6.100 LECTURE 13 6Fall 2025

Scholes and Merton won a Nobel Prize for this work

Darwin’s
finches

§ Important for modeling behavior in many domains
◦ Understanding the stock market, modeling diffusion processes,

modeling cell movement, suggesting who to follow on
Instagram, etc.

§ Solve computational problems (Search, AI, lighting simulation)

§ Good illustration of how to use simulations to understand things

§ Excuse to cover some important programming topics
◦ Practice classes
◦ Practice plotting

Why Do We Cover Random Walks?

Fall 2025 6.100 LECTURE 13 7

§ Often called the drunkard’s walk

§ A random walk on a two-dimensional surface
◦ Walker starts at some initial location

§ Each step a fixed distance (initially)

§ Step is taken in a direction chosen randomly from a
set of choices

§ Need a classic wanderer

Our Random Walk

6.100 LECTURE 13 9
Homer – Just Odd Homer’s Odysseus – classic wanderer

Fall 2025

Simplified Drunkward’s Walk

6.100 LECTURE 13 10

How does distance from origin at end of walk relate to
number of steps?

Homer starts at the origin, and takes a unit step in one of
the cardinal directions at random with equal likelihood.

Fall 2025

How will the expected distance from the starting
point change as the number of steps, d, grows?

§ It won’t

§O(d)

§O(d**2)

§ O(log d)

§ O(d**0.5)

§O(2**d)

How Far will Homer Get?

6.100 LECTURE 13 11Fall 2025

Hand Simulation

6.100 LECTURE 13 12Fall 2025

One Possible First Step

6.100 LECTURE 13 13Fall 2025

Another Possible First Step

6.100 LECTURE 13 14Fall 2025

Yet Another Possible First Step

6.100 LECTURE 13 15Fall 2025

Last Possible First Step

6.100 LECTURE 13 16

After one step drunk is distance 1.0 away from start

Fall 2025

Possible Locations after Two Steps

6.100 LECTURE 13 17Fall 2025

X

Assuming 1st step to right

Possible Locations after Two Steps

6.100 LECTURE 13 18

0 2

1.41

1.41

Fall 2025

X a2 + b2 = c2

c = (a2 + b2)0.5

Assuming 1st step to right

Possible Distances After Two Steps

6.100 LECTURE 13 19

X 4

X 2X 2

X 2 X 2

Fall 2025

9 possible final locations

16 possible different paths

Possible Distances After Two Steps

6.100 LECTURE 13 20

X 4

Average if equally likely is:
 (2 + 2* 1.41 + 2 + 2* 1.41 + 2 + 2* 1.41 + 2 + 2 *1.4 + 4*0)/16
= 1.205

X 2X 2

X 2 X 2

Fall 2025

1.411.41

1.41 1.41

2

2

2

2

0

§ Can see that expected distance seems to increase with
number of steps, and certainly maximum distance does
◦ Went from 0 to 1 to 1.205 as expected distance

§ But can we accurately model the actual expected
distance (i.e., with a mathematical formula)?
◦ Seems pretty hard

§ What about computing all possible paths, and
measuring actual average distance?

Expected Distance After 100,000 Steps?

6.100 LECTURE 13 21Fall 2025

How many possible paths are there after 100,000
steps?

§ 100,000

§ 400,000

§ 100,000**2

§ 4**100,000

§ 2**100,000

Feasible?

6.100 LECTURE 13 22Fall 2025

How many possible paths are there after 100,000
steps?

§ 100,000

§ 400,000

§ 100,000**2

§ 4**100,000

§ 2**100,000

Note, the number of possible paths is different
from the number of possible final locations –
latter is roughly 100,000**2 = 10B

Feasible?

6.100 LECTURE 13 23Fall 2025

§ Need a different approach to problem

§ A probabilistic simulation
◦ Won’t yield precisely correct answer
◦ But should yield a good approximation

Enumerating all Possibilities Is Not Practical

6.100 LECTURE 13 24Fall 2025

1. Perform an experiment where you take d steps at
random based on some distribution and ask some
questions about what happened, e.g., what is the
distance from starting point

◦ A particular event

Modeling Random Walks

6.100 LECTURE 13 25Fall 2025

1. Perform an experiment where you take d steps at
random based on some distribution and ask some
questions about what happened, e.g., what is the
distance from starting point

◦ A particular event

2. With many experiment trials/repetitions, what is
the average distance away from the start location
(or other properties of the set of end or
intermediate points)?

◦ Sampling space of possible events

3. Can’t sample all events, so want to draw statistical
conclusions about events—topic of a later lecture

Modeling Random Walks

6.100 LECTURE 13 26Fall 2025

§ Simulate one walk of d steps
◦ Record distance from start at end of walk
◦ Record final location at end of walk

Structure of Simulation

6.100 LECTURE 13 27Fall 2025

§ Simulate one walk of d steps
◦ Record distance from start at end of walk
◦ Record final location at end of walk

§ Simulate n such walks, each of d steps
◦ Record all distances and final locations

§ Report average distance from origin over set of n walks
◦ How does this change as we increase d?

§ Will come back to final locations over set of walks later

Structure of Simulation

6.100 LECTURE 13 28Fall 2025

Monte Carlo Simulations

Fall 2025 6.100 LECTURE 13 29

§ Stanislaw Ulam, recovering from
an illness, was playing a lot of
solitaire (1946)
§ Tried to figure out probability of
winning, and failed
§ Thought about playing lots of
hands and counting number of
wins (i.e., sampling)
◦ ~10,000 hands needed

§ Asked Von Neumann if he could
build a program to simulate
many hands on ENIAC
◦ Creation of Monte Carlo

simulation method

Programming, circa 1946

§ A method of estimating the value of an unknown
quantity using the principles of inferential statistics

§ Inferential statistics
◦ Population: a set of examples
◦ Sample: a proper subset of a population
◦ Key fact: a random sample tends to exhibit the same

properties as the population from which it is drawn
◦ Provided size of sample is sufficiently large and random

§ From where does name come?
◦ Ulam and von Neuman used the method to study particle

interactions in nuclear weapons research. Because the
research was secret, they needed a code name. Ulam
named it after the casino in Monaco.

Monte Carlo Simulation

6.100 LECTURE 13 30Fall 2025

§ First, some useful abstractions

§ Location—a place
◦ An object, like a drunk, has a location
◦ Location can change as object moves

§ Field—a collection of drunks with locations
◦ Implicit collection of locations
◦ Explicitly represent only locations occupied by drunks
◦ Associate location directly with a drunk
◦ Represent by collection of drunks, not collection of

possible locations

Random Walk - Overall plan

6.100 LECTURE 13 33Fall 2025

§ Drunk
◦ Can move, change location

§ Simulation
◦ Create one or more drunks, with initial location
◦ Randomly move d steps, record final location, distance

from start
◦ Do this n times, measure average final distance, collect

set of final locations

Random Walk - Overall plan

Fall 2025 6.100 LECTURE 13 34

Location

Fall 2025 6.100 LECTURE 13 35

Locations are tuples

Python has functions for
everything math.hypot()
calculates Euclidian norm

Fields

Fall 2025 6.100 LECTURE 13 36

Modeling Drunks

Fall 2025 6.100 LECTURE 13 37

Basic activity of a drunk is to wander;
take_step will return an x and y tuple,
denoting change in location

Modeling Drunks

Fall 2025 6.100 LECTURE 13 38

Takes a random step
in cardinal directions,
but if northward,
moves a bit further
than if southward

Modeling Drunks

Fall 2025 6.100 LECTURE 13 39

Simulating a Single Walk

6.100 LECTURE 13 40Fall 2025

Takes a function as input

Executes the function

FUNCTIONS AS
PARAMETERS

6.100A LECTURE 8 41

DETOUR

Motivation

§We want to create a function such that:
◦ Given an input list
◦ It outputs a new list with only the elements of the input

that pass a given test (a.k.a. predicate)
◦ We want the function to be general for any test

6.100A LECTURE 8 42

6.100A LECTURE 8 43

Solution:
test function as parameter

6.100A LECTURE 8 44

General filtering function

A list of functions
What is printed?

A) error
B) 0
C) 8

D) -12
E) something else

6.100A LECTURE 8 45

In general:
HIGHER-ORDER PROCEDURES

§ Everything in Python is an object of some particular type
(e.g., ints, floats, strings, tuples, lists, Booleans, even None!)
§ Objects

◦ have a type
◦ can appear in RHS of assignment statement (i.e., we can bind a

name to an object)
◦ can be used as an argument to a function
◦ can be returned as a value from a function

§ While this may seem intuitive for data structures, functions
are also first-class objects
◦ In other words, functions can be treated just like numbers, or

strings, or tuples, or lists, with respect to these criteria

6.100A LECTURE 8 46

Higher-order procedure: can take a function as argument, or return a
function as value, or both

Lambda
DETOUR

6.100A LECTURE 8 47

Lambda creates a function without naming it

§Convenient sugar (shorter way to write things)
when one-line functions are needed as parameters
lambda param1, parame2… : output_expression

§Equivalent to defining
def func (param1, param2,…):

 return output_expression

And passing func

6.100A LECTURE 8 48

Lambda creates a function without naming it

§Convenient sugar (shorter way to write things)
when one-line functions are needed as parameters

§For example:

6.100A LECTURE 8 49

Returning Functions

Fall 2025 6.100 LECTURE 13 50

Careful whether you mean the function object (without
parentheses and parameters)
or you want to call the function with given parameters

Comprehension
DETOUR

6.100A LECTURE 8 51

Some very common patterns

§Applying a function to all elements of a list

§Filtering a list according to a predicate (Boolean
function)

§Python offers a sugar to do both easily
6.100A LECTURE 8 52

LIST COMPREHENSIONS

[expr for elem in iterable if mytest]

6.100A LECTURE 5 53

Default to always returning True,
if no specific test specified

Comprehension examples

6.100A LECTURE 8 54

LIST COMPREHENSIONS

[expr for elem in iterable if mytest]

§ evaluating this is same as calling function below (where fn
is a function that computes expr)
def list_comp(old_list, fn, test=lambda x: True):
 new_list = []
 for e in old_list:
 if test(e):
 new_list.append(fn(e))
 return new_list

list_comp(iterable,
 lambda elem: expr,
 lambda elem: mytest)

6.100A LECTURE 5 55

HIGHER ORDER PROCEDURES

§ Functions are first-class objects
◦ they have a type
◦ they can be assigned as a value bound to a name
◦ they can be used as an argument to another function
◦ they can be returned as a value from another function

§ This enables the creation of concise, easily read code

§ Environment model explains evolution of code, even
when function accepts a function as argument or
return a function as value

6.100A LECTURE 8 56

Back to Random
Walk

6.100A LECTURE 8 58

Simulating a Single Walk

6.100 LECTURE 13 59Fall 2025

Takes a function as input

Executes the function

§Using extra code
◦ No need to understand it yet in detail.

Animated visualization of single walk

Fall 2025 6.100 LECTURE 13 60

Simulating Multiple Walks

6.100 LECTURE 13 61Fall 2025

Example Random
Walk Applications

Fall 2025 6.100 LECTURE 13 62

The Web as Directed Graph

Link from i
to m

Back link of u Forward link of u

Set Bu Rank of page u
is R(u)

Set Fu

Amount Nu = Fu

Page n

Page u

Page w

Page yPage i

Page m Page v

§Page rank (Google) idea:
◦ Each web page “votes” for the “importance” of pages it

links to
◦ The weight of a vote depends on the importance of the

page itself

§So… “
to know the importance you must know the
importance

Demo 2: Graphs + Random Walk

Fall 2025 6.100 LECTURE 13 64

§Idea 2 : random walk on graph of web pages
◦ Slowly “accumulates” importance
◦ More “important” pages visited more.
◦ Related to friendship paradox

Graphs + Random Walk = two trillion dollars?

Fall 2025 6.100 LECTURE 13 65

§For the case where we don’t have a graph

§Continuous space + obstacles

§Combine random walk in continuous space + creation
of a graph

Demo 2: Path finding and random walk

Fall 2025 6.100 LECTURE 13 66

§RRT : Rapidly-exploring Random Trees

§At each step :
◦ Pick random point in space
◦ Find closes point in existing graph, ignoring obstacles.

Grow graph in that direction.

Path finding and random walk

Fall 2025 6.100 LECTURE 13 67

§RRT

Path finding and random walk

Fall 2025 6.100 LECTURE 13 68

Demo 3: Raytracing

Fall 2025 6.100 LECTURE 13 69

Demo 4: Raytracing

Fall 2025 6.100 LECTURE 13 70

Demo 4: Raytracing

Fall 2025 6.100 LECTURE 13 71

Demo 3: Raytracing

Fall 2025 6.100 LECTURE 13 72

