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§ Pset 3 is due tonight.

§ Pset 4 is out after class.

Announcements
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§ A method of estimating the value of an unknown quantity 
using the principles of inferential statistics

§ Inferential statistics
◦ Population: a set of examples
◦ Sample: a proper subset of a population
◦ Key fact: a random sample tends to exhibit the same 

properties as the population from which it is drawn
◦ Provided size of sample is sufficiently large and random

◦ The key question: When should we believe that a sample has the same properties 
as the population?

Recap: Monte Carlo Simulation
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§ To model systems that are mathematically intractable
◦ Otherwise may not be possible to analyze a system

§ To extract useful intermediate results
§ To support iterative development by successive 

refinement
◦ Start with basic system, then incrementally add features 
§ To support exploring of variations by 

asking/answering “what if” questions
§  Let’s illustrate with random walks

Simulations Are Used a Lot
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Method to model a system where:

§ Objects start at a location and choose a random direction 
in which to take each step

§ Distribution of choice of direction (and speed) can be 
different
◦ For different object types
◦ For different environmental conditions

What are Random Walks?
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§ In modeling stocks, change in price often 
modeled as a Gaussian random walk
◦ Step size chosen from a normal distribution
◦ Basic assumption of Black-Scholes-Merton 

option pricing model

§ In population genetics, random walk 
describes statistical properties of genetic 
drift
◦ Change in frequency of specific gene variant 

in a population

Random Walks in the World
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Scholes and Merton won a Nobel Prize for this work

Darwin’s 
finches



§ Important for modeling behavior in many domains
◦ Understanding the stock market, modeling diffusion processes, 

modeling cell movement, suggesting who to follow on 
Instagram, etc.

§ Solve computational problems (Search, AI, lighting simulation)

§ Good illustration of how to use simulations to understand things

§ Excuse to cover some important programming topics
◦ Practice classes
◦ Practice plotting

Why Do We Cover Random Walks?
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§ Often called the drunkard’s walk

§ A random walk on a two-dimensional surface
◦ Walker starts at some initial location

§ Each step a fixed distance (initially)

§ Step is taken in a direction chosen randomly from a 
set of choices

§ Need a classic wanderer

Our Random Walk
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Homer – Just Odd Homer’s Odysseus – classic wanderer
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Simplified Drunkward’s Walk
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How does distance from origin at end of walk relate to 
number of steps?

Homer starts at the origin, and takes a unit step in one of 
the cardinal directions at random with equal likelihood.
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How will the expected distance from the starting 
point change as the number of steps, d, grows?

§ It won’t

§O(d)

§O(d**2)

§ O(log d)

§ O(d**0.5)

§O(2**d)

How Far will Homer Get?
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Hand Simulation
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One Possible First Step
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Another Possible First Step
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Yet Another Possible First Step
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Last Possible First Step
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After one step drunk is distance 1.0 away from start
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Possible Locations after Two Steps
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X

Assuming 1st step to right



Possible Locations after Two Steps
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X a2 + b2 = c2

c = (a2 + b2)0.5

Assuming 1st step to right



Possible Distances After Two Steps
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X 4

X 2X 2

X 2 X 2
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9 possible final locations

16 possible different paths



Possible Distances After Two Steps
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X 4

Average if equally likely is:
 (2 + 2* 1.41 + 2 + 2* 1.41 + 2 + 2* 1.41 + 2 + 2 *1.4 + 4*0)/16
=  1.205

X 2X 2

X 2 X 2
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§ Can see that expected distance seems to increase with 
number of steps, and certainly maximum distance does
◦ Went from 0 to 1 to 1.205 as expected distance

§ But can we accurately model the actual expected 
distance (i.e., with a mathematical formula)?
◦ Seems pretty hard

§ What about computing all possible paths, and 
measuring actual average distance?

Expected Distance After 100,000 Steps?
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How many possible paths are there after 100,000 
steps?

§ 100,000

§ 400,000

§ 100,000**2

§ 4**100,000

§ 2**100,000

Feasible?
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How many possible paths are there after 100,000 
steps?

§ 100,000

§ 400,000

§ 100,000**2

§ 4**100,000

§ 2**100,000

Note, the number of possible paths is different 
from the number of possible final locations – 
latter is roughly 100,000**2 = 10B

Feasible?
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§ Need a different approach to problem

§ A probabilistic simulation
◦ Won’t yield precisely correct answer
◦ But should yield a good approximation

Enumerating all Possibilities Is Not Practical
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1. Perform an experiment where you take d steps at 
random based on some distribution and ask some 
questions about what happened, e.g., what is the 
distance from starting point

◦ A particular event 

Modeling Random Walks
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1. Perform an experiment where you take d steps at 
random based on some distribution and ask some 
questions about what happened, e.g., what is the 
distance from starting point

◦ A particular event 

2. With many experiment trials/repetitions, what is 
the average distance away from the start location 
(or other properties of the set of end  or 
intermediate points)?

◦ Sampling space of possible events

3. Can’t sample all events, so want to draw statistical 
conclusions about events—topic of a later lecture

Modeling Random Walks
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§ Simulate one walk of d steps 
◦ Record distance from start at end of walk
◦ Record final location at end of walk

Structure of Simulation
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§ Simulate one walk of d steps 
◦ Record distance from start at end of walk
◦ Record final location at end of walk

§ Simulate n such walks, each of d steps
◦ Record all distances and final locations

§ Report average distance from origin over set of n walks
◦ How does this change as we increase d?

§ Will come back to final locations over set of walks later

Structure of Simulation
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Monte Carlo Simulations
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§ Stanislaw Ulam, recovering from 
an illness, was playing a lot of 
solitaire (1946)
§ Tried to figure out probability of 
winning, and failed
§ Thought about playing lots of 
hands and counting number of 
wins (i.e., sampling)
◦ ~10,000 hands needed

§ Asked Von Neumann if he could 
build a program to simulate 
many hands on ENIAC
◦ Creation of Monte Carlo 

simulation method

Programming, circa 1946



§ A method of estimating the value of an unknown 
quantity using the principles of inferential statistics

§ Inferential statistics
◦ Population: a set of examples
◦ Sample: a proper subset of a population
◦ Key fact: a random sample tends to exhibit the same 

properties as the population from which it is drawn
◦ Provided size of sample is sufficiently large and random

§ From where does name come?
◦ Ulam and von Neuman used the method to study particle 

interactions in nuclear weapons research. Because the 
research was secret, they needed a code name. Ulam 
named it after the casino in Monaco.

Monte Carlo Simulation
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§ First, some useful abstractions

§ Location—a place
◦ An object, like a drunk, has a location
◦ Location can change as object moves

§ Field—a collection of drunks with locations
◦ Implicit collection of locations
◦ Explicitly represent only locations occupied by drunks
◦ Associate location directly with a drunk
◦ Represent by collection of drunks, not collection of 

possible locations

Random Walk - Overall plan

6.100 LECTURE 13 33Fall 2025



§ Drunk
◦ Can move, change location

§ Simulation
◦ Create one or more drunks, with initial location
◦ Randomly move d steps, record final location, distance 

from start
◦ Do this n times, measure average final distance, collect 

set of final locations

Random Walk - Overall plan
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Location

Fall 2025 6.100 LECTURE 13 35

Locations are tuples

Python has functions for 
everything math.hypot() 
calculates Euclidian norm



Fields
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Modeling Drunks
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Basic activity of a drunk is to wander; 
take_step will return an x and y tuple, 
denoting change in location



Modeling Drunks
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Takes a random step 
in cardinal directions, 
but if northward, 
moves a bit further 
than if southward



Modeling Drunks
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Simulating a Single Walk

6.100 LECTURE 13 40Fall 2025

Takes a function as input

Executes the function



FUNCTIONS AS 
PARAMETERS
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Motivation

§We want to create a function such that: 
◦ Given an input list
◦ It outputs a new list with only the elements of the input 

that pass a given test (a.k.a. predicate)
◦ We want the function to be general for any test
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Solution: 
test function as parameter
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General filtering function



A list of functions
What is printed?

A) error
B) 0
C) 8

D) -12
E) something else
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In general: 
HIGHER-ORDER PROCEDURES

§ Everything in Python is an object of some particular type 
(e.g., ints, floats, strings, tuples, lists, Booleans, even None!)
§ Objects

◦ have a type
◦ can appear in RHS of assignment statement (i.e., we can bind a 

name to an object)
◦ can be used as an argument to a function
◦ can be returned as a value from a function

§ While this may seem intuitive for data structures, functions 
are also first-class objects
◦ In other words, functions can be treated just like numbers, or 

strings, or tuples, or lists, with respect to these criteria

6.100A LECTURE 8 46

Higher-order procedure: can take a function as argument, or return a 
function as value, or both



Lambda
DETOUR
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Lambda creates a function without naming it

§Convenient sugar (shorter way to write things) 
when one-line functions are needed as parameters
lambda param1, parame2… : output_expression

§Equivalent to defining
def func (param1, param2,…):

 return output_expression

And passing func 
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Lambda creates a function without naming it

§Convenient sugar (shorter way to write things) 
when one-line functions are needed as parameters

§For example: 
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Returning Functions
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Careful whether you mean the function object (without 
parentheses and parameters)
or you want to call the function with given parameters



Comprehension
DETOUR
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Some very common patterns

§Applying a function to all elements of a list

§Filtering a list according to a predicate (Boolean 
function)

§Python offers a sugar to do both easily
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LIST COMPREHENSIONS

[expr for elem in iterable if mytest]
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Default to always returning True, 
if no specific test specified



Comprehension examples
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LIST COMPREHENSIONS

[expr for elem in iterable if mytest]

§ evaluating this is same as calling function below (where fn 
is a function that computes expr)
def list_comp(old_list, fn, test=lambda x: True):
    new_list = []
    for e in old_list:
        if test(e):
            new_list.append(fn(e))
    return new_list

list_comp(iterable,
          lambda elem: expr,
          lambda elem: mytest)
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HIGHER ORDER PROCEDURES

§ Functions are first-class objects
◦ they have a type
◦ they can be assigned as a value bound to a name
◦ they can be used as an argument to another function
◦ they can be returned as a value from another function

§ This enables the creation of concise, easily read code

§ Environment model explains evolution of code, even 
when function accepts a function as argument or 
return a function as value
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Back to Random 
Walk
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Simulating a Single Walk
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Takes a function as input

Executes the function



§Using extra code 
◦ No need to understand it yet in detail. 

Animated visualization of single walk
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Simulating Multiple Walks
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Example Random 
Walk Applications
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The Web as Directed Graph

Link from i 
to m

Back link of u Forward link of u

Set Bu Rank of page u 
is R(u)

Set Fu

Amount Nu = Fu

Page n

Page u

Page w

Page yPage i

Page m Page v



§Page rank (Google) idea: 
◦ Each web page “votes” for the “importance” of pages it 

links to
◦ The weight of a vote depends on the importance of the 

page itself

§So… “
to know the importance you must know the 
importance

Demo 2: Graphs + Random Walk
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§Idea 2 : random walk on graph of web pages
◦ Slowly “accumulates” importance
◦ More “important” pages visited more.
◦ Related to friendship paradox 

Graphs + Random Walk = two trillion dollars?
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§For the case where we don’t have a graph

§Continuous space + obstacles

§Combine random walk in continuous space + creation 
of a graph

Demo 2: Path finding and random walk
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§RRT : Rapidly-exploring Random Trees

§At each step : 
◦ Pick random point in space
◦ Find closes point in existing graph, ignoring obstacles. 

Grow graph in that direction. 

Path finding and random walk

Fall 2025 6.100 LECTURE 13 67



§RRT 

Path finding and random walk
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Demo 3: Raytracing
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Demo 4: Raytracing
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Demo 4: Raytracing
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Demo 3: Raytracing
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