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The Simple World of Newtonian Mechanics

▪ Want to build computational models of physical world

▪ Every effect has a cause, so physical world can be 
understood causally
◦ E.g., Newton’s three laws of motion

◦ Suggests that mathematical descriptions of physical 
effects are possible
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1643 – 1727 
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• First “bug” : radioactive decay

• Then Heisenberg and Bohr 
argued that at its most 
fundamental level, the behavior 
of the physical world cannot be 
predicted

◦ For example, cannot precisely 
measure position and 
momentum of a particle at the 
same time

◦ Fine to make statements of the 
form “x is highly likely to occur,” 
but not of the form “x is certain 
to occur”

◦ Introducing uncertainty into 
modeling physical world
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Two+ Centuries After Newton

“Those who are not 
shocked when they first 
come across quantum 
theory cannot possibly 
have understood it. …If 
you think you can talk 
about quantum theory 
without feeling dizzy, you 
haven't understood the 
first thing about it.”

“The more precise the 
measurement of 
position, the more 
imprecise the 
measurement of 
momentum, and vice 
versa.”

Fall 2024
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• Einstein and Schrodinger objected

◦ "I, at any rate, am convinced that He [God] does not 
throw dice."– Albert Einstein

◦ Bohr, in response, said, "Einstein, don't tell God what to 
do."

Not Everyone Bought It
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Does It Really Matter?
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• Suppose I flip two coins
• Can you correctly predict 

whether the flips will yield
• 2 heads?
• 2 tails?
• 1 head and 1 tail?

• Need to know accurately:
• weight distribution of coin
• velocity and acceleration of thumb
• orientation of coin on thumb 

before flip
• air flow around coin
• height above landing spot
• elasticity of floor
• …
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The Moral
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▪ The world might or might not be inherently unpredictable

▪ Even if not, lack of knowledge prevents precise predictions

▪Therefore, can treat the world as inherently unpredictable
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The Moral

6.100B LECTURE 5 10

▪ The world might or might not be inherently unpredictable

▪ Even if not, lack of knowledge prevents precise predictions

▪Therefore, can treat the world as inherently unpredictable

Causal nondeterminism – some events truly random

Predictive nondeterminism – in principle might be able to 
predict, but don’t have enough information.  There is chaos, 
but not randomness 

Use a stochastic process to represent systems or to model 
phenomena that seem to change in a random way 

Fall 2024



• Systems with choices in state transitions, e.g., 

• Motion of particles in a fluid (Brownian 
motion)

• Outcomes of play in football

• Systems where measurement is uncertain or 
noisy, e.g.,
• Polling data

• Radio astronomy

• Systems where can’t measure all factors, e.g.,
• Weather systems

Some Places We Use Stochastic Models
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▪ Stochastic Gradient Descent is at the heart of deep learning 
and modern AI

▪ Markov Chain Monte Carlo methods are used throughout 
inference

▪ Simulated annealing uses randomness to find optimal 
solutions

▪ Google’s Page Rank search algorithm

▪ Large language models

▪ Realistic 3D rendering uses Monte-Carlo random sampling to 
compute incoming light and to antialias pixels

▪ In robotics, path planning and control often use rapidly-
exploring Random Tree

▪Simulation of complex systems

▪ Perturbation analysis uses randomness to characterize the 
sensitivity of systems and methods

▪ Randomized algorithms

Stochasticity and Randomness in Computing
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▪ Randomness, simulation, and stochastic thinking

Today’s Lecture
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Top prizes in both 
Math and CS
Awarded in 2024



Stochastic Processes

▪ In general, a system often can be defined by a set of state 
variables, and processes that determine the transition to a next 
set of values for those variables
◦ Causal processes

◦ Example: a car’s state at a point in time is describe by a 
position, heading and velocity; its state at a subsequent time 
is determined by those parameters and the actions of the 
driver

▪ In a stochastic system, the process for determining next state 
might depend both on the previous states of the process and on 
some random element
◦ Including for predictive nondeterminism

◦ Example: a car’s future position may not be exactly 
determined by its kinematics and the actions of the driver 
because of road conditions, topography, etc.

▪ This will require a change in how we think about building 
computational models of the world
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def roll_die():
"""Return an int between 1 and 6"""

Two Specifications for a Process

6.100B LECTURE 5 15Fall 2024



def roll_die():
"""Return an int between 1 and 6"""
return 2

Two Specifications for a Process
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def roll_die():
"""Return an int between 1 and 6"""
return 2

def roll_die():
"""Return a random int between 1 and 6"""
return random.choice([1, 2, 3, 4, 5, 6])

Two Specifications for a Process
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random.choice selects an element 
from a list with equal likelihood
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def roll_die():
"""Return an int between 1 and 6"""
return 2

def roll_die():
"""Return a random int between 1 and 6"""
return random.choice([1, 2, 3, 4, 5, 6])

Two Specifications for a Process

6.100B LECTURE 5 18

Any implementation that satisfies the second specification 
would also satisfy the first.

But one that satisfies the first specification might or might 
not satisfy the second

random.choice selects an element 
from a list with equal likelihood
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Simulate Five Rolls
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def roll_die():
"""Return a random int between 1 and 6"""
return random.choice([1, 2, 3, 4, 5, 6])

def test_roll(n):
result = ''
for _ in range(n):

result += ' ' + str(roll_die())
return result

for _ in range(10):
print(test_roll(5))

Fall 2024
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Discrete Probability is About Counting

▪ Count the total number of possible events 
(often called the universe of events)

▪ Count the number of events that have the property of 
interest

▪ Divide second number by the first

▪ Probability of rolling 11111?
◦ All events: 11111, 11112, 11113, …, 11121, 11122, …, 

66666

◦ Ratio: 1/(6**5)

◦ ~0.0001286

▪ Probability of 12345?
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Same probability 
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Some Basic Facts about Probability

▪ (Discrete) Probabilities are always in the range 0 to 1.  
0 if impossible, and 1 if guaranteed

▪ If the probability of an event occurring is p, the 
probability of it not occurring must be 1-p

▪ When estimating probabilities that involve multiple 
events, must start with the question of whether the 
events are independent of each other
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Independence

▪ Two events are independent if the outcome of one 
event has no influence on the outcome of the other

▪ Independence should not be taken for granted
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How to create 
(Pseudo) Randomness
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Simple Linear Congruential Generator (LCG)

How do we create a random number?
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▪The modulus 𝑚 = 232

◦ It ensures outputs fits in a 32-bit unsigned integer range.

▪ The increment 𝑐 = 1013904223
◦ The key rule: to achieve a full period, 𝑐 must be relatively prime to 𝑚.
◦ Because 𝑚is a power of 2, this means 𝑐 just has to be odd — which it is.
◦ Being large and odd helps distribute outputs better across the 32-bit range.

▪The multiplier 𝑎 = 1664525
◦ Chosen carefully to give good statistical properties when combined with 𝑚and 𝑐.



More on pseudo random numbers
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• How do we get always different random numbers?

• How do we ensure to always get the same (pseudo) 
random numbers in the same order? Why is this useful?

• How can we create other Random Distributions?



Python random module
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random.seed(a=None)
◦ Initializes the random number generator.
◦ If a is None, uses current system time or OS entropy.
◦ Using the same seed → same random sequence (useful for reproducibility)

Uniform Numbers

▪ random.random() → float in [0.0, 1.0)

▪ random.uniform(a, b) → float in [a, b]

▪ random.randint(a, b) → integer in [a, b] (inclusive)

Choice and Sampling

▪ random.choice(seq) → random element from a sequence

▪ random.choices(seq, weights=None, k=1) → list of k elements (with optional 
weighting)

▪ random.sample(population, k) → unique sample (no repeats)

▪ random.shuffle(seq) → shuffles list in place



Python random module
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▪ random.normalvariate(mu, sigma) → normal 
(Gaussian)

▪ random.gauss(mu, sigma) → faster cached Gaussian 
(same output as above)

▪ random.expovariate(lambd) → exponential

▪ random.lognormvariate(mu, sigma) → log-normal

▪ random.paretovariate(alpha) → Pareto

And others



SIMULATING 
PROBABILITIES
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• Going to explore simulation of rolling a group of dice many 
times

• First of many simulations we will see

• Simulation
◦ Run many trials in which we select one event from the 

universe of possible events

◦ For each trial, compute some properties of event

◦ Report some statistics about the properties over the set 
of trials

Using Simulation to Estimate Probabilities
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def run_sim(goal, num_trials):
total = 0
for i in range(num_trials):

if i != 0 and i % 100_000 == 0:
print(f"Starting trial {i}")

result = ''
for _ in range(len(goal)):

result += str(roll_die())
if result == goal:

total += 1
print(f"Actual probability of {goal} = "

f"{1 / 6**len(goal):.8f}")
print(f"Estimated Probability of {goal} = "

f"{total / num_trials:.8f}")

run_sim('11111', 1000)

A Simulation of Die Rolling
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Simulate trying to roll a specific sequence
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A Simulation of Die Rolling
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Simulate trying to roll a specific sequence
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def run_sim(goal, num_trials):
total = 0
for i in range(num_trials):

if i != 0 and i % 100_000 == 0:
print(f"Starting trial {i}")

result = ''
for _ in range(len(goal)):

result += str(roll_die())
if result == goal:

total += 1
print(f"Actual probability of {goal} = "

f"{1 / 6**len(goal):.8f}")
print(f"Estimated Probability of {goal} = "

f"{total / num_trials:.8f}")

run_sim('11111', 1000)

A Simulation of Die Rolling
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Roll appropriate # of dice

Count # of hits

Compute 
observed 
probability

Repeat for 
many trials

Simulate trying to roll a specific sequence
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Output of Simulation

▪ Actual probability = 0.0001286

▪ Estimated probability = 0.0
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Output of Simulation

▪ Actual probability = 0.0001286

▪ Estimated probability = 0.0

▪ Actual probability comes directly from math, but 
estimated probability?

▪ Why did simulation give the wrong answer?
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Output of Simulation

▪ Actual probability = 0.0001286

▪ Estimated probability = 0.0

▪ Actual probability comes directly from math, but 
estimated probability?

▪ Why did simulation give the wrong answer?
◦ 6**5 = 7776 possibilities, so in 1000 trials we are unlikely 

to observe one event in that universe with enough 
frequency to estimate accurately

◦ Even if observed once, estimate would then be 0.001
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Output of Simulation

▪ Actual probability = 0.0001286

▪ Estimated probability = 0.0

▪ Actual probability comes directly from math, but 
estimated probability?

▪ Why did simulation give the wrong answer?
◦ 6**5 = 7776 possibilities, so in 1000 trials we are unlikely 

to observe one event in that universe with enough 
frequency to estimate accurately

◦ Even if observed once, estimate would then be 0.001
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Let’s try 1,000,000 trials

How about 10M trials
Actual probability of 11111 = 0.0001286
Estimated Probability of 11111 = 0.0001286

Actual probability of 11111 = 0.0001286
Estimated Probability of 11111 = 0.000131
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Morals

▪ Moral 1: it takes a lot of trials to get a good estimate 
of the frequency of occurrence of a rare event.  We’ll 
talk lots more in later lectures about how to know
when we have enough trials to trust the estimate

▪ Moral 2: one should not confuse the sample 
probability with the actual probability

▪ Moral 3: there was really no need to do this by 
simulation, since there is a perfectly good closed form 
answer.  We will see many examples where this is not 
true, where only simulation can provide answers about 
processes and outcomes
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Aesop
620 BC –
564 BC
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▪Model uncertain inputs:
◦ Identify the variables in a model that are subject to uncertainty and 

define them using probability distributions.

▪Run trials:
◦ Generate a set of random samples from the input distributions for each 

variable. Each complete set of samples represents a single "trial" or 
"iteration".

▪Calculate results:
◦ Calculate the output of the model for each trial based on the specific 

random inputs for that iteration.

▪Aggregate results (MC of MC) → More on it in later lectures
◦ Repeat the process hundreds or thousands of times. The results from all 

the trials are collected to form a probability distribution of possible 
outcomes.

▪Analyze the distribution:
◦ Analyze the aggregated results to understand the range of possibilities 

and the likelihood of each outcome, rather than relying on a single 
average estimate.

What did we just do? Monte Carlo Simulation
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▪ To model systems that are mathematically 
intractable
◦ Otherwise may not be possible to analyze a system

▪ To extract useful intermediate results

▪ To support iterative development by successive 
refinement
◦ Start with basic system, then incrementally add 

features 

▪ To support exploring of variations by 
asking/answering “what if” questions

▪ Let’s illustrate with Monte Carlo Simulation

Simulations Are Used a Lot
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Another Example
§ Assume you had a great boardgame idea, you want to 

commercialize

§ You estimate that you can sell 10,000 games at a 
price of $15 and a cost of $10, and a fixed cost of 
$10k. So overall you expect 
10k*($15 - $10) - $10k =  $40k profit

§ However, you are also uncertain about all of these 
numbers and you estimate that the price might have 
to be between $10 and $20, whereas the cost might 
vary between $5 and $15 and demand might follow a 
normal distribution with a variance of 1000

Under these conditions, how likely is it that you will make 
a profit?
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▪Using randomized computation to model stochastic 
situations

▪Using randomized computation to solve problems that 
are not inherently random

▪E.g., what’s 𝜋

Exploiting Randomness
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▪Using randomized computation to model stochastic 
situations

▪Using randomized computation to solve problems that 
are not inherently random

▪E.g., what’s 𝜋

Exploiting Randomness
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Game: March 14th 2017

It was photoshopped, but …
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𝜋
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𝑐𝑖𝑟𝑐𝑢𝑚𝑓𝑒𝑟𝑒𝑛𝑐𝑒

𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟
= 𝜋 𝑎𝑟𝑒𝑎 = 𝜋 ∗ 𝑟𝑎𝑑𝑖𝑢𝑠2
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Rhind Papyrus (~1550 BCE)
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4*(8/9)2 = 3.16 
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~1100 Years Later
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“And he made a molten sea, ten cubits

from the one brim to the other: it was 

round all about, and his height was five 

cubits: and a line of thirty cubits did 

compass it round about.”

—1  Kings 7.23
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~300 Years Later (Archimedes)
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3 + 10/71 < π < 3 + 10/70

Perimeter of interior hexagon is 6r
Circumference of circle is 2πr
So 3 is a lower bound on π

rr

r

Similarly, the length of the sides of
the outer hexagon provides an upper bound
on π

Archimedes used a 96-sided polygon

3.140845070422535 < π < 3.142857142857143

10/15/2025



▪ Zu Chongzhi used polygons with 
24,576 sides!

700 Years later
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3.1415926 <  π  < 3.1415927
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▪ Adriaan Anthonisz (1527-1607) estimated it at 
355/113 (roughly 3.1415929203539825)

And ~1000 Years Later
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~300 Years Later (Buffon-Laplace)
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estimate_pi_archery.mp4


~300 Years Later (Buffon-Laplace)
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As = 2*2 = 4
Ac = πr2 = π

𝑛𝑒𝑒𝑑𝑙𝑒𝑠 𝑖𝑛 𝑐𝑖𝑟𝑐𝑙𝑒

𝑛𝑒𝑒𝑑𝑙𝑒𝑠 𝑖𝑛 𝑠𝑞𝑢𝑎𝑟𝑒
=

𝑎𝑟𝑒𝑎 𝑜𝑓 𝑐𝑖𝑟𝑐𝑙𝑒

𝑎𝑟𝑒𝑎 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒

𝑎𝑟𝑒𝑎 𝑜𝑓 𝑐𝑖𝑟𝑐𝑙𝑒 =
𝑎𝑟𝑒𝑎 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒 ∗ 𝑛𝑒𝑒𝑑𝑙𝑒𝑠 𝑖𝑛 𝑐𝑖𝑟𝑐𝑙𝑒

𝑛𝑒𝑒𝑑𝑙𝑒𝑠 𝑖𝑛 𝑠𝑞𝑢𝑎𝑟𝑒

𝑎𝑟𝑒𝑎 𝑜𝑓 𝑐𝑖𝑟𝑐𝑙𝑒 =
4 ∗ 𝑛𝑒𝑒𝑑𝑙𝑒𝑠 𝑖𝑛 𝑐𝑖𝑟𝑐𝑙𝑒

𝑛𝑒𝑒𝑑𝑙𝑒𝑠 𝑖𝑛 𝑠𝑞𝑢𝑎𝑟𝑒
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Drop needles at random



Simulating Monte-Carlo Method
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Let’s try 10, 100, 1000 and 10000 needles

What are the minimum and maximum possible estimates?

10/15/2025

Random float between 0 and 1



With  10 needles, estimate for pi: 2.4

With  100 needles, estimate for pi: 3.12

With  1000 needles, estimate for pi: 3.184

With  10000 needles, estimate for pi: 3.162

With  100000 needles, estimate for pi: 3.14352

With  1000000 needles, estimate for pi: 3.144664

With  10000000 needles, estimate for pi: 3.1412016

With  100000000 needles, estimate for pi: 3.14208944

Throwing needles
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Definite Integrals: Geometric Intrepretation
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Wikipedia

න
𝑎

𝑏

𝑓 𝑥 𝑑𝑥
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Sin(x)
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Integral of sin(x) from 
0 to π is area under 
the curve 



Random Points
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Count number 
of points 
below curve, 
compared to 
total number 
of points



Integration by Sampling
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Integral of sin from 0 to 3.141593 = 1.999850
Integral of sin from 0 to 6.283185 = -0.003081
Integral of cos from 0 to 3.141593 = -0.001723

integrate_and_print(np.sin, 0, np.pi)
integrate_and_print(np.sin, 0, 2*np.pi)
integrate_and_print(np.cos, 0, np.pi)
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Word of caution!! Introducing a Bug
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• Suppose I forgot to multiply 
by 4 in my throw_needles
procedure

• Code would still converge as 
I increased the number of 
needles

• But just because it 
converges, doesn’t mean the 
answer is right!

• It just means that I can say 
with some confidence that 
on any subsequent trial, the 
answer will lie within a 
particular range 



Motivation and eye candy from graphics
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https://people.csail.mit.edu/tzumao/h2mc/http://madebyevan.com/webgl-path-tracing/

https://www.youtube.com/watch?v=frLwRLS_ZR0
https://graphics.pixar.com/library/Path
TracedMovies/paper.pdf
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▪ Monte Carlo simulation provides a method for 
estimating parameters of a model by simulating or 
sampling a subset of a population

▪ Need ways to determine confidence in estimate
◦ Depends on size of sample

◦ Depends on variance of samples

◦ Will return to this more formally next lecture

▪ Buffon-Laplace is one example of a random sampling 
method

Summary

6.100B LECTURE 6 6710/15/2025

https://www.google.com/url?sa=i&url=https%3A%2F%2Fmemegenerator.net%2Finstance%2F75051300%2Fthe-most-interesting-man-in-the-world-i-dont-always-pay-attention-but-when-i-do-its-for-the-take-hom&psig=AOvVaw1wuBnkAO7MN4se6rCr2I3i&ust=1649939927569000&source=images&cd=vfe&ved=0CAoQjRxqFwoTCKjFhK-HkfcCFQAAAAAdAAAAABAD

