

Weighted graphs, Dijkstra's algorithm

(download slides and .py files to follow along)

Tim Kraska

MIT Department Of Electrical Engineering and Computer Science

Topics

- Last week
 - Graph models and how to implement
 - Shortest path problems on unweighted graphs
 - Depth-first search and breadth-first search
- Today
 - Shortest path on weighted graphs

Two Important Abstractions

- Last-in first-out (LIFO) sequence (often called a stack)
- First-in first-out (FIFO) sequence (often called a queue)

FIFO

FIFO and BFS Shortest Path

Seeking path from A to H

Take next path from front, and delete front. Add new paths to rear.

<u>queue</u> tmp path

Guarantees first solution is a shortest path

[[A]]Α Add paths from A [[A,B],[A,C],[A,D]] $A \rightarrow B$ Add paths from B [[A,C],[A,D],[A,B,E]] $A \rightarrow C$ Add paths from C, don't revisit E $[[A,D],[A,B,E],[A,C,F],[A,C,G]]A \rightarrow D$ No paths from D $A \rightarrow B \rightarrow E$ [[A,B,E],[A,C,F],[A,C,G]] Add paths from E $A \rightarrow C \rightarrow F$ [[A,C,F],[A,C,G],[A,B,E,H]]

Might be other equally short paths But don't care

LIFO and DFS Shortest Path

Could terminate here

LIFO and DFS Shortest Path

[[A,B]]

[[A,B,E]]

[[A,B,E,H]]

 $A \rightarrow B$

 $A \rightarrow B \rightarrow E$

 $A \rightarrow B \rightarrow E \rightarrow H$

Add paths from B

Add paths from E

```
def bfs_fifo(graph, start, goal):
                                                          BFS using a FIFO stack
    if start == qoal:
        return [start]
                                             Replace discrete frontiers
    |queue = [[start]]
                                             with "sliding" stack
    visited = {start}
    while len(queue) > 0:
        print("Current queue:", pathlist_to_string(queue))
        # simulate iterating through current frontier
                                                           FIFO
        path = queue.pop(0)
        print(" Current BFS path:", path_to_string(path))
        current node = path[-1]
        for next_node in neighbors(graph, current_node):
                                                    We still skip over visited
            if next node in visited:
                                                     notes as before
                continue
            visited.add(next_node)
            new_path = path + [next_node]
            if next node == goal:
                return new_path
            # simulate building next frontier
            queue.append(new_path)
    return None
```

```
def dfs_lifo(graph, start, goal):
                                                       DFS using a LIFO Stack
    stack = [[start]]
    while len(stack) > 0:
        print("Current stack:", pathlist_to_string(stack))
        # simulate running the body of a recursive dfs() call
        path = stack.pop(-1)
                                       LIFO
        print(" Current DFS path:", path_to_string(path))
                                        Simulate recursion with
        current_node = path[-1]
        if current node == goal:
                                        expanding/shrinking stack
            return path
                                                                    Put children on
        # put children on stack in reverse order of which
                                                                     LIFO stack
        # we intend to explore them, because stack is life
        for next_node in reversed(neighbors(graph, current_node)):
            if next node in path:
                continue
            # prepare to simulate running dfs() on next_node
            stack.append(path + [next_node])
```

Adding weights to graphs

Plans in real life

Weighted shortest path problem

- Same graph model as before
- Each edge $A \rightarrow B$, or each action Action(StateA) = StateB, has an associated weight
- Cost of a path $A \rightarrow B \rightarrow \cdots \rightarrow N$ is the sum of the weights along the edges
- A shortest path between two nodes is one that minimizes the path cost

Optimality of BFS on unweighted graphs

- All nodes in each frontier are discovered at their shortest distance from the start
- Proof sketch:
 - Frontier 1 has all paths of length 1
 - Some paths of length 2 end up in frontier 2;
 others end up back in frontiers 1 or 0
 - Suppose a path in frontier 2 is not shortest
 - Then there is some other path of length 0 or 1 to that path's end node
 - That path would have been discovered in frontier 0 or 1, and hence not discovered in frontier 2 due to visited set
 - So all paths in frontier 2 are shortest

Run BFS on weighted graphs?!

Change the problem not the algorithms:

- If edge weights are all integers, split the edges into unit lengths
- To handle non-integer weights, scale up all weights until practically to integers
 - Computers have finite precision to represent floating point, so scaling must eventually result in integers
- Not very efficient, but it works!

Runtime depends on magnitude of weights vs discretization unit

Simulate "discretized" BFS efficiently?

- Want to traverse an original weighted edge in one step, not many small steps
- Key concept in BFS is the frontier, how to maintain that now?
- Suppose we know state A is on the true frontier and expand it to state B
- We've projected a potential future frontier onto B, but by the same reasoning, other states C, D, E, ... may also have projected future frontiers
- The next true frontier is the minimum of all their projected frontiers

Dijkstra's algorithm

BFS on weighted graphs

BFS on weighted graphs

Is this the shortest path?

Can we modify breadth first to work with weighted graphs?

- With breadth first, we are guaranteed that we reach nodes via a minimum distance
 - Because our notion of "frontier" corresponds to distances
 - Since all edges have the same weight.
- For weighted graphs, we don't have this guarantee

Can we modify breadth first to work with weighted graphs?

- With breadth first, we are guaranteed that we reach nodes via a minimum distance
 - Because our notion of "frontier" corresponds to distances
 - Since all edges have the same weight.
- For weighted graphs, we don't have this guarantee
- •Ideas for DIJKSTRA's shortest path:
 - Explicitly maintain (weighted) distance to source node
 - Consider an edge at the frontier closest to source
 - And check if existing shorted distances need to be updated

- Take the path with the lowest cost (start 0)
- Expand its neighbors (filter out path we already know)

- Take the path with the lowest cost (start 0)
- Expand its neighbors (filter out path we already know)

- Take the path with the lowest cost (start 0)
- Expand its neighbors (filter out path we already know)

- Take the path with the lowest cost (start 0)
- Expand its neighbors (filter out path we already know)

- Take the path with the lowest cost (start 0)
- Expand its neighbors (filter out path we already know)

- Take the path with the lowest cost (start 0)
- Expand its neighbors (filter out path we already know)

- Shortest path! Success!
- •We even get the shortest distance from start to any node!

Dijkstra: Two Key Data Structures and Basic Idea

- (priority) queue: store best cost and path for discovered nodes that are
- finished: Similar to visited. Nodes that are on past frontiers

Helper methods (for the priority queue)

- update_node(queue, node, new_cost, new_path): add or update a path to the queue with the cost
- remove_min(queue): remove the path with the lowest cost from the queue

Outline of Algorithm

- For current node (initially start node), chose node with shortest distance from current node to visit first.
- Check each of its neighbors
 - Calculate distance from starting node to neighbor
- Terminate only if the target is contained in the minimum cost path
 - Note, that doesn't imply that we have to explore all possible path

Priority Queue Implementation

```
def remove_min(queue):
    assert len(queue) > 0
    best_idx = 0
    min_so_far = queue[0]
    for idx in range(1, len(queue)):
        item = queue[idx]
        if item < min_so_far:
            best_idx = idx
            min_so_far = item
    return queue.pop(best_idx)</pre>
```

```
def update_node(queue, node, new_cost, new_path):
    idx = find_node(queue, node)
    if idx is None:
        print(f" Adding path to {node!r}")
        queue.append((new_cost, new_path))
        print(f" Current queue: {queue}")
    else:
        old_cost, old_path = queue[idx]
        if new cost < old cost:</pre>
            print(f" Updating path to {node!r}")
            queue[idx] = (new_cost, new_path)
            print(f" Current queue: {queue}")
        else:
            print(" No change to queue")
def find_node(queue, node):
    for idx in range(len(queue)):
        (cost, path) = queue[idx]
        if path[-1] == node:
            return idx
    return None
```

Alternative implementation (heap)

- Searching through a list for the minimum and removing it is O(n)
- By using a data structure called a heap, can find minimum in O(1) and remove in $O(\log n)$
 - Heaps are usually implemented on top of an underlying list data structure
 - The indicies have special meaning, effectively representing a kind of tree
- Python's heapq package provides a basic implementation

Spring 2024 37

```
def dijkstra(graph, start, goal):
   # store best cost and path for discovered nodes that are
   # on present or future frontier
   queue = [(0, [start])]
   # separately, store nodes that are on past frontiers
    finished = set()
                                                Only terminate when priority queue is empty or if
   while len(queue) > 0:
                                                        the true frontier contains the target
       print(f"Current queue: {queue}")
       # get a path off the true frontier
                                                  Take the node with the smallest cost (true frontier)
       cost, path = remove_min(queue)
       current_node = path[-1]
       finished.add(current node)
       print(f" Finished {current_pode!r} with cost {cost}. Finished queue : {finished}")
       # optimality guaranteed for current node, return if goal
       if current_node == goal:
           return (cost, path)
       # update paths to neighbors on priority queue
                                                         Expand the queue, except if the new path was
       for edge in neighbors(graph, current_node):
                                                      already part of the true frontier (i.e., we know the
           (next_node, weight) = edge
           if next_node not in finished:
                                                               shortest path already to that node)
               print(f"Processing {current_node!r}-->{next_node!r} with weight {weight}")
               new cost = cost + weight
               new_path = path + [next_node]
               update_node(queue, next_node, new_cost, new_path)
                                                   If the next node wasn't part of the true frontier yet,
       print()
```

return None

we add it to the queue or update the path with its new cost

Example

Dijkstra's algorithm: key points

- On the queue, tag each discovered states with its projected frontier so far
 - Remember that we're actually storing paths on the queue, so we can return one that reaches a goal
- True BFS frontier lies at state/path with smallest cost Not LIFO or
 - Pick such a state/path to expand/extend
 - Guaranteed that that is a shortest path

the visited set

So never put that state back on the queue

When extending a path to a neighbor already on the queue, update the state's path and cost if the cost is lower Effectively in

NOT considered visited

FIFO, but a

priority queue

Takeaways and considerations

Best-first search

- Dijkstra's algorithm simulates running discretized BFS on weighted graphs
 - Requires edge weights to be non-negative (reasonably common assumption)
 - Efficient implementation uses heap-based priority queue
- A* search (not covered) extends Dijkstra's with a heuristic estimate of cost-to-go
 - Optimal paths guaranteed if heuristic is admissible and consistent (i.e., always an underestimate everywhere)
- General framework for shortest paths in weighted graphs is called best-first search or informed search
 - Dijkstra's or close variants lacking a heuristic are called uniform-cost search

Summarizing

- Graphs are powerful modeling framework
 - Capture relationships among objects
 - Local structure composes into networks
 - Can then infer global properties, and optimize them
- Many important problems can be framed as finding a shortest path on a graph
 - DFS and BFS are fundamental algorithms for solving it
- Dijkstra's algorithm better for finding shortest path in large graphs with (non-negative) weighted edges
 - Many variants optimized for specific applications