
Weighted graphs,
Dijkstra’s algorithm
(download slides and .py files to follow along)

Tim Kraska

MIT Department Of Electrical Engineering and
Computer Science

6.100 LECTURE 11 1Fall 2025

Fall 2025

§ Last week
◦ Graph models and how to implement
◦ Shortest path problems on unweighted graphs
◦ Depth-first search and breadth-first search

§ Today
◦ Shortest path on weighted graphs

Topics

6.100 LECTURE 11 3

Fall 2025

§ Last-in first-out (LIFO) sequence
 (often called a stack)

§ First-in first-out (FIFO) sequence
 (often called a queue)

Two Important Abstractions

6.100 LECTURE 11 4Fall 2025

LIFO FIFO

Fall 2025

queue tmp_path
[[A]] A
[[A,B],[A,C],[A,D]] AàB
[[A,C],[A,D],[A,B,E]] AàC
[[A,D],[A,B,E],[A,C,F],[A,C,G]]AàD
[[A,B,E],[A,C,F],[A,C,G]] AàBàE
[[A,C,F],[A,C,G],[A,B,E,H]] AàCàF

FIFO and BFS Shortest Path

6.100 LECTURE 11 5

A

B

C

D G

F

E

HSeeking path from
A to H

Add paths from A

Add paths from B

Add paths from C, don’t revisit E

Add paths from E

No paths from D

Take next path from
front, and delete front.
Add new paths to rear.

Guarantees first solution
is a shortest path

Might be other equally short paths
But don’t care

Fall 2025

stack tmpPath
[[A]] A
[[A,B],[A,C],[A,D]] AàD
[[A,B],[A,C]] AàC
[[A,B],[A,C,E],[A,C,F],[A,C,G]] AàCàG
[[A,B],[A,C,E],[A,C,F],[A,C,G,H]] AàCàGàH

LIFO and DFS Shortest Path

6.100 LECTURE 11 6

A

B

C

D G

F

E

H
Seeking path from
A to H

Add paths from A

No paths from D
Add paths from C

Add paths from G

Take next path from rear,
and delete rear. Add new
paths to rear.

Could terminate here

Fall 2025

stack tmpPath
[[A]] A
[[A,B],[A,C],[A,D]] AàD
[[A,B],[A,C]] AàC
[[A,B],[A,C,E],[A,C,F],[A,C,G]] AàCàG
[[A,B],[A,C,E],[A,C,F],[A,C,G,H]] AàCàGàH
[[A,B],[A,C,E],[A,C,F]] AàCàF
[[A,B],[A,C,E],[A,C,F,H]] AàCàFàH
[[A,B],[A,C,E]] AàCàE
[[A,B],[A,C,E,H]] AàCàEàH
[[A,B]] A àB
[[A,B,E]] AàBàE
[[A,B,E,H]] AàBàEàH

LIFO and DFS Shortest Path

6.100 LECTURE 11 7

A

B

C

D G

F

E

H
Seeking path from
A to H

Add paths from A

No paths from D
Add paths from C

Add paths from G

Add paths from F

Add paths from E

Add paths from B

Add paths from E

Take next path from rear,
and delete rear. Add new
paths to rear.

Fall 2025 6.100 LECTURE 11 8

Replace discrete frontiers
with “sliding” stack

FIFO

BFS using a FIFO stack

We still skip over visited

notes as before

Fall 2025

DFS using a LIFO Stack

6.100 LECTURE 11 9

Simulate recursion with
expanding/shrinking stack

Put children on

LIFO stack

LIFO

Adding weights to graphs

10

Plans in real life

11

§ Same graph model as before

§ Each edge 𝐴 → 𝐵, or each action 𝐴𝑐𝑡𝑖𝑜𝑛 𝑆𝑡𝑎𝑡𝑒𝐴 =
𝑆𝑡𝑎𝑡𝑒𝐵, has an associated weight

§ Cost of a path 𝐴 → 𝐵 → ⋯ → 𝑁 is the sum of the
weights along the edges

§ A shortest path between
two nodes is one that
minimizes the path cost

Weighted shortest path problem

12

10

12
3

510

6

B

C

DA

§ All nodes in each frontier are discovered at their
shortest distance from the start

§ Proof sketch:
◦ Frontier 1 has all paths of length 1
◦ Some paths of length 2 end up in frontier 2;

others end up back in frontiers 1 or 0
◦ Suppose a path in frontier 2 is not shortest
◦ Then there is some other path of length 0 or 1 to that

path’s end node
◦ That path would have been discovered in frontier 0

or 1, and hence not discovered in frontier 2 due to
visited set

◦ So all paths in frontier 2 are shortest

Optimality of BFS on unweighted graphs

13

Change the problem not the algorithms:

§ If edge weights are all integers, split the edges into
unit lengths

§ To handle non-integer weights, scale up all weights
until practically to integers
◦ Computers have finite precision to represent floating

point, so scaling must eventually result in integers

§ Not very efficient, but it works!

Run BFS on weighted graphs?!

14

“Discretized” BFS

November 2, 2022 6.100B LECTURE 4 15

B

Pr

Ph

N

C
D

1
1

2

2

3

3

5
1

4

“Discretized” BFS

November 2, 2022 6.100B LECTURE 4 16

B

Pr

Ph

N

C
D

2

2

3

3

5
1

4

“Discretized” BFS

November 2, 2022 6.100B LECTURE 4 17

B

Pr

Ph

N

C
D

3

3

5
1

4

“Discretized” BFS

November 2, 2022 6.100B LECTURE 4 18

B

Pr

Ph

N

C
D

3

5
1

4

“Discretized” BFS

November 2, 2022 6.100B LECTURE 4 19

B

Pr

Ph

N

C
D

“Discretized” BFS

November 2, 2022 6.100B LECTURE 4 20

B

Pr

Ph

N

C
D

1

2 3
4

5

6

7

8

9

10

11

Runtime depends on
magnitude of weights
vs discretization unit

§ Want to traverse an original weighted edge in one
step, not many small steps

§ Key concept in BFS is the frontier, how to maintain
that now?

§ Suppose we know state 𝐴 is on the true frontier and
expand it to state 𝐵

§ We’ve projected a potential future frontier onto 𝐵,
but by the same reasoning, other states 𝐶, 𝐷, 𝐸, …
may also have projected future frontiers

§ The next true frontier is the minimum of all their
projected frontiers

Simulate “discretized” BFS efficiently?

21

Dijkstra’s algorithm

22

BFS on weighted graphs

6.100B LECTURE 4 23

start end2

1

1 1

10

1

100

1

BFS on weighted graphs

6.100B LECTURE 4 24

start end2

1

1 1

10

1

100

1
Frontier 0

Frontier 1 Frontier 2

§Is this the shortest path?

1

Spring 2024

§ With breadth first, we are guaranteed that we reach
nodes via a minimum distance
◦ Because our notion of “frontier” corresponds to distances
◦ Since all edges have the same weight.

§For weighted graphs, we don’t have this guarantee

Can we modify breadth first to work with weighted graphs?

6.100B LECTURE 4 25

Spring 2024

§ With breadth first, we are guaranteed that we reach
nodes via a minimum distance
◦ Because our notion of “frontier” corresponds to distances
◦ Since all edges have the same weight.

§For weighted graphs, we don’t have this guarantee

§Ideas for DIJKSTRA’s shortest path:
◦ Explicitly maintain (weighted) distance to source node
◦ Consider an edge at the frontier closest to source

◦ And check if existing shorted distances need to be
updated

Can we modify breadth first to work with weighted graphs?

6.100B LECTURE 4 26

Spring 2024

Dijkstra

6.100B LECTURE 4 27

start end
2

1

1 1 1
0

110

100

§ Take the path with the lowest cost (start 0)

§ Expand its neighbors (filter out path we already know)

1

1

Spring 2024

§ Take the path with the lowest cost (start 0)

§ Expand its neighbors (filter out path we already know)

Dijkstra

6.100B LECTURE 4 28

start end
2

1

1 1 1
0

1

2
110

100 1

Spring 2024

§ Take the path with the lowest cost (start 0)

§ Expand its neighbors (filter out path we already know)

Dijkstra

6.100B LECTURE 4 29

start end
2

1

1 1 1
110

1

2
1

101

10

100
1

Spring 2024

§ Take the path with the lowest cost (start 0)

§ Expand its neighbors (filter out path we already know)

Dijkstra

6.100B LECTURE 4 30

start end

1
3 110

1

2
1

1 1 1

10

100 1

2

101

Spring 2024

§ Take the path with the lowest cost (start 0)

§ Expand its neighbors (filter out path we already know)

Dijkstra

6.100B LECTURE 4 31

start end
2

1

1 1 1
3 4 110

1

2
110

100 1
101

Spring 2024

§ Take the path with the lowest cost (start 0)

§ Expand its neighbors (filter out path we already know)

Dijkstra

6.100B LECTURE 4 32

start end
2

1
3 40

1

2 115
1

1 1 1

10

100 1
101

Spring 2024

§Shortest path ! Success !

§We even get the shortest distance from start to any node!

Dijkstra

6.100B LECTURE 4 33

start end

1

end
2

1

1 1 1
0

110

100 1

1

Spring 2024

§ (priority) queue: store best cost and path for
discovered nodes that are

§ finished: Similar to visited. Nodes that are on past
frontiers

Helper methods (for the priority queue)

§ update_node(queue, node, new_cost, new_path):
add or update a path to the queue with the cost

§ remove_min(queue): remove the path with the
lowest cost from the queue

Dijkstra : Two Key Data Structures and Basic Idea

6.100B LECTURE 4 34

Spring 2024

§ For current node (initially start node), chose node
with shortest distance from current node to visit first.

§ Check each of its neighbors
◦ Calculate distance from starting node to neighbor

§Terminate only if the target is contained in the
minimum cost path
◦ Note, that doesn’t imply that we have to explore all

possible path

Outline of Algorithm

6.100B LECTURE 4 35

Spring 2024

Priority Queue Implementation

6.100B LECTURE 4 36

Spring 2024

§ Searching through a list for the minimum and
removing it is 𝑂(𝑛)
§ By using a data structure called a heap, can find
minimum in 𝑂 1 and remove in 𝑂(log 𝑛)
◦ Heaps are usually implemented on top of an underlying

list data structure
◦ The indicies have special meaning, effectively

representing a kind of tree

§ Python’s heapq package provides a basic
implementation

Alternative implementation (heap)

37

Spring 2024 6.100B LECTURE 4 38

Only terminate when priority queue is empty or if
the true frontier contains the target

Take the node with the smallest cost (true frontier)

Expand the queue, except if the new path was
already part of the true frontier (i.e., we know the

shortest path already to that node)

If the next node wasn’t part of the true frontier yet,
we add it to the queue or update the path with its

new cost

39

Example

§ On the queue, tag each discovered states with its
projected frontier so far
◦ Remember that we’re actually storing paths on the

queue, so we can return one that reaches a goal

§ True BFS frontier lies at state/path with smallest cost
◦ Pick such a state/path to expand/extend
◦ Guaranteed that that is a shortest path
◦ So never put that state back on the queue

§ When extending a path to a neighbor already on the
queue, update the state’s path and cost if the cost is
lower

Dijkstra’s algorithm: key points

40

Not LIFO or

FIFO, but a

priority queue

Effectively in

the visited set
NOT considered

visited

Takeaways and
considerations

51

§ Dijkstra’s algorithm simulates running discretized BFS
on weighted graphs
◦ Requires edge weights to be non-negative (reasonably

common assumption)
◦ Efficient implementation uses heap-based priority queue

§ A* search (not covered) extends Dijkstra’s with a
heuristic estimate of cost-to-go
◦ Optimal paths guaranteed if heuristic is admissible and

consistent (i.e., always an underestimate everywhere)

§ General framework for shortest paths in weighted
graphs is called best-first search or informed search
◦ Dijkstra’s or close variants lacking a heuristic are called

uniform-cost search

Best-first search

52

Fall 2025

§ Graphs are powerful modeling framework
◦ Capture relationships among objects

◦ Local structure composes into networks
◦ Can then infer global properties, and optimize them

§ Many important problems can be framed as finding a
shortest path on a graph
◦ DFS and BFS are fundamental algorithms for solving

it

§ Dijkstra’s algorithm better for finding shortest path in
large graphs with (non-negative) weighted edges
◦ Many variants optimized for specific applications

Summarizing

6.100 LECTURE 11 53

