Weighted graphs,
Dijkstra’s algorithm

(download slides and .py files to follow along)

Tim Kraska

MIT Department Of Electrical Engineering and
Computer Science

Fall 2025 6.100 LECTURE 11

Topics re. o

'3? : 3

o/
= Last week L @
> Graph models and how to implement S I

o Shortest path problems on unweighted graphs
o Depth-first search and breadth-first search

= Today
o Shortest path on weighted graphs

Fall 2025 6.100 LECTURE 11

Two Important Abstractions

= Last-in first-out (LIFO) sequence
(often called a stack)

= First-in first-out (FIFO) sequence
(often called a queue)

Fall 2025 Fall 2025 6.100 LECTURE 11

FIFO and BFS Shortest Path

Seeking path from %
AtoH \@

Take next path from
front, and delete front.
Add new paths to rear.

Guarantees first solution

queue tmp path is a shortest path
: A]] A Add paths from A
[A,B],[A,C,[A,D]] A—>B

- - Add paths from B
[A,CLIA,DL[A,B,E]] A—>C

[A,D],[A,B,E],[A,CF],[ACG]JA>D
[A,B,E]L[A,CF]LIACG]] A>B->E
[A,CFL[ACG][ABEH]] A>COF

Add paths from C, don’t revisit E

No paths from D
Add paths from E

Might be other equally short paths
But don’t care

Fall 2025 6.100 LECTURE 11

LIFO and DFS Shortest Path

Take next path from rear,

Seeking path from /@_______——»
N and delete rear. Add new

Ato H @-.@
stack \®

paths to rear.

tmpPath
::A]] B A Add paths from A
[A,B], -A'C]'[A'D]] A=D No paths from D
[A,B],[A,CI] AS>C P f
. . Add paths from C
I A/B ’ .AICIE]I[AICIF]I[AICIG]] A%C%G Add paths from G
[A,B],[A,C,ELIA,CFLIA,CG,HII A>C2>GoH

Could terminate here

Fall 2025 6.100 LECTURE 11

LIFO and DFS Shortest Path

. B > Take next path from rear,
Zetik:_Tg path from /Q"/: and delete rear. Add new
% ' paths to rear.

stack \@ tmpPath

ZZA]] o A Add paths from A

[A,B],[A,C],[A,D]] A->D

A BLIAC]] ADC No paths from D

e T _ Add paths from C

[A,B,[A,CELACFLIACG A>C>G

- o . : paths from G

[A,B],[A,C,E][A,C,F],[A,C,G,H]] A—->C>G~>H

: A/ B) AICIE) AICIF] A%C%F Add paths from F

[A,B]IA,CE][A,CFHI]] A>C>F>H

::A’B:’ :A’C’E'] A>CoE Add paths from E

[A,B],[A,CEH]] A->C>E>H

[A,B]] A:Be Add paths from B

[A,B,E]] A->B-E

- Add paths f E

[A,B,E,HI] ASBDEDH e em

Fall 2025 6.100 LECTURE 11

def bfs_fifo(graph, start, goal):
if start == goal:

return [start]
queue = [[start]] Replace discrete frontiers

visited = {start} with “sliding” stack

BFS using a FIFO stack

while len(queue) > 0:
print("Current queue:", pathlist_to_string(queue))

simulate iterating through current frontier
path = queue.pop(0) FIFO
print(" Current BFS path:", path_to_string(path))

current_node = path[-1]
for next_node in neighbors(graph, current_node):

(if next_node in visited: N . cNexV““£
continue we st S\fe’io‘e
visited.add(next_node) ‘“ﬁgSas
_new_path = path + [next_node]
if next_node == goal:

return new_path

simulate building next frontier
queue.append(new_path)
return None

def dfs_lifo(graph, start, goal): DFS using a LIFO Stack
stack = [[start]]

while len(stack) > 0:
print("Current stack:", pathlist_to_string(stack))

simulate running the body of a recursive dfs() call
path = stack.pop(-1) LIFO
print(" Current DFS path:", path_to_string(path))

current_node = path[-1] Simulate recursion with
if current_node == goal: expanding/shrinking stack
return path
N
put children on stack in reverse order of which tchwye“o
we intend to explore them, because stack is lifo \)&ngack

for next_node in |reversed(neighbors(graph, current_node)):
if next_node 1n path:
continue

prepare to simulate running dfs() on next_node
stack.append(path + [next_node])

return None

Adding weights to graphs

Plans in real li

e

o5t wARD'TWO £ =) INNER BELT 1 5
Wrwe g bl
B s ! 3 90
Ao =
% LSS Constitito () CENTRAL; MAVERICK
0 Misen =4 SQUARE / BARIS STREE
ambrj
MID-CAMBRIDGE 9o st X . Q
@ ambriq \ 7
8 ! ?9 St 16 ¥ : Terminal E °
S : : g\
2 S e, s ﬁm“eg"" 'r \ Enterprise Rent-A-Car @ =
= — - /'Cj% A ; :
g 7 e 4 P Terminal C
/ i (¥ ff
3 Cambridge 7 O\ 2 Jeffries‘Poin =
a 9 &5 %ogy, Binne : LR\ A= N o o ¥’ Neighborhood: !
po B s "y pst " /WEST END \XNORTH END ‘\ s ‘l\
4 5] 1 . : :
' é\‘o ? § dhei k : o9 Boston Yacht Haven Terminal A South ° e Terminal B East
Pt &8 ain st S W | D) N /L \@/ Inn/& Marina
A 5] INain) Sie © al : ¢ iTop | rated
W = {O~-Cambiridge:s T \
Massachusetts Instltute O MemO! :3 ‘ 2
of Technol ogy § z e e
\ = (0]
o) 2 ﬁj ® > @ 23 min
i Ve & - @ every 9 min {
Qe \0/, CharlesRiver Esplanade ™5 g
c“,\é oS ; Boston” &7
.+ *Common Q
o S‘ ®
“Bostony D goac®” o
) Unlversny g Sl ot ™ 2 e
2 v e SR
§ - ‘ Vo — CO“““O BACK BAY @ g \\\ \\\ \\\
s —— BAY VILLAGE 2 e
= o i \\
2 () @ Fenway Park 90 060 3 = ;' Tl
: _ Q i 7 S
St AN TTe & P - ../ Boston Conuention I,
2 A ® S i o e
oe Target @ 60‘\$\°:; .% \(9\" P S - .\Q{’ =’ and Exhibition"Center e Rueal
& Nt : % & $$QQ 93 Q% . < L \\\\
S ! RO PO 20 [N N 5 i

Weighted shortest path problem

= Same graph model as before

= Each edge A — B, or each action Action(StateA) =
StateB, has an associated weight

" CostofapathA - B — -+ = N is the sum of the
weights along the edges

= A shortest path between
two nodes is one that
minimizes the path cost

Optimality of BFS on unweighted graphs

= All nodes in each frontier are discovered at their
shortest distance from the start

= Proof sketch:
o Frontier 1 has all paths of length 1

o Some paths of length 2 end up in frontier 2;
others end up back in frontiers 1 or O

o Suppose a path in frontier 2 is not shortest

o Then there is some other path of length O or 1 to that
path’s end node

o That path would have been discovered in frontier 0
or 1, and hence not discovered in frontier 2 due to
visited set

o So all paths in frontier 2 are shortest

Run BFS on weighted graphs?!

Change the problem not the algorithms:

= |f edge weights are all integers, split the edges into
unit lengths

= To handle non-integer weights, scale up all weights
until practically to integers

o Computers have finite precision to represent floating
point, so scaling must eventually result in integers

= Not very efficient, but it works!

“Discretized” BFS

“Discretized” BFS

“Discretized” BFS

ey
-
_J

“Discretized” BFS

(A

o
rd

Od g 3

s

“Discretized” BFS

(3
\
-

X

4
<

N/

“Discretized” BFS

Runtime depends on
magnitude of weights
vs discretization unit

November 2, 2022 6.100B LECTURE 4

Simulate “discretized” BFS efficiently?

= Want to traverse an original weighted edge in one
step, not many small steps

= Key concept in BFS is the frontier, how to maintain
that now?

= Suppose we know state A is on the true frontier and
expand it to state B

= We've projected a potential future frontier onto B,
but by the same reasoning, other states C, D, E, ...
may also have projected future frontiers

= The next true frontier is the minimum of all their
projected frontiers

Dijkstra’s algorithm

BFS on weighted graphs

start p)

1 end

BFS on weighted graphs

=|s this the shortest path?

Frontier 1 Frontier 2

Can we modify breadth first to work with weighted graphs?

= With breadth first, we are guaranteed that we reach
nodes via a minimum distance

o Because our notion of “frontier” corresponds to distances
o Since all edges have the same weight.

"For weighted graphs, we don’t have this guarantee

Spring 2024 6.100B LECTURE 4

Can we modify breadth first to work with weighted graphs?

= With breadth first, we are guaranteed that we reach
nodes via a minimum distance

o Because our notion of “frontier” corresponds to distances
o Since all edges have the same weight.

"For weighted graphs, we don’t have this guarantee

=|deas for DIJKSTRA's shortest path:
o Explicitly maintain (weighted) distance to source node
o Consider an edge at the frontier closest to source

o And check if existing shorted distances need to be
updated

Spring 2024 6.100B LECTURE 4

Dijkstra

= Take the path with the lowest cost (start 0)

= Expand its neighbors (filter out path we already know)

start end

o EEEE
- [}

Spring 2024 6.100B LECTURE 4

Dijkstra

= Take the path with the lowest cost (start 0)

= Expand its neighbors (filter out path we already know)

start end

1|T|1

._I
1 1

Q_i 100 Bl D

|_OQ
IN_
L_
K

Dijkstra

= Take the path with the lowest cost (start 0)

= Expand its neighbors (filter out path we already know)

start end
1 1

| |1
101

D
O 100

Spring 2024 6.100B LECTURE 4

Dijkstra

= Take the path with the lowest cost (start 0)

= Expand its neighbors (filter out path we already know)

start end

o - [S][o]fe]:
0 |_2_| \3_| L |
. ‘@
1 101

Dijkstra

= Take the path with the lowest cost (start 0)

= Expand its neighbors (filter out path we already know)

start

Spring 2024 6.100B LECTURE 4

Dijkstra

= Take the path with the lowest cost (start 0)

= Expand its neighbors (filter out path we already know)

start

0

MY

® I @ :
2 3

10

Dijkstra

sShortest path ! Success !

="We even get the shortest distance from start to any node!

start end

1

Spring 2024 6.100B LECTURE 4

Dijkstra : Two Key Data Structures and Basic Idea

= (priority) queue: store best cost and path for
discovered nodes that are

= finished: Similar to visited. Nodes that are on past
frontiers

Helper methods (for the priority queue)

= update node(queue, node, new_cost, new_path):
add or update a path to the queue with the cost

" remove min(queue): remove the path with the
lowest cost from the queue

Spring 2024 6.100B LECTURE 4

Outline of Algorithm

" For current node (initially start node), chose node
with shortest distance from current node to visit first.

= Check each of its neighbors
o Calculate distance from starting node to neighbor

=sTerminate only if the target is contained in the
minimum cost path

> Note, that doesn’t imply that we have to explore all
possible path

Spring 2024 6.100B LECTURE 4

Priority Queue Implementation

def remove_min(queue): def update_node(queue, node, new_cost, new_path):
assert len(queue) > 0 idx = find_node(queue, node)
best_idx = 0 if idx is None:
min_so_far = queue(0] print(f" Adding path to {node!r}")
for idx in range(1, len(queue)): queue.append((new_cost, new_path))
item = queue[idx] print(f" Current queue: {queue}")
if item < min_so_far: else:
best_idx = idx old_cost, old_path = queue[idx]
min_so_far = item if new_cost < old_cost:
return queue.pop(best_idx) print(f" Updating path to {node!r}")

queue[idx] = (new_cost, new_path)
print(f" Current queue: {queuel}")

else:
print(" No change to queue")

def find_node(queue, node):
for idx in range(len(queue)):
(cost, path) = queue[idx]
if path[-1] == node:
return idx
return None

6.100B LECTURE 4

Spring 2024

Alternative implementation (heap)

= Searching through a list for the minimum and
removing it is 0(n)

= By using a data structure called a heap, can find
minimum in 0(1) and remove in O (logn)
o Heaps are usually implemented on top of an underlying
list data structure

> The indicies have special meaning, effectively
representing a kind of tree

" Python’s heapq package provides a basic
implementation

Spring 2024

def dijkstra(graph, start, goal):
store best cost and path for discovered nodes that are
on present or future frontier
queue = [(0, [start])]
separately, store nodes that are on past frontiers
finished = set()

Only terminate when priority queue is empty or if
the true frontier contains the target

while len(queue) > 0: O —

print(f"Current queue: {queue}")

get a path off the true frontier
cost, path = remove_min(queue)
current_node = path[-1]
finished.add(current_node)
print(f" Finished {current_

Take the node with the smallest cost (true frontier)

de!r} with cost {cost}. Finished queue : {finished}")
optimality guaranteed fgr current node, return if goal
if current_node == goal:

return (cost, path)

update paths to neighbors on priority queue Expand the queue except if the new path Was
Vi

for edge in neighbors(graph, current_node):)]
(next_node, weight) = edge / already part of the true frontier (i.e., we know the
if next_node not in finished:

shortest path aIread¥ to that node)
print(f"Processing {current_node!r}-—>{next_node!r} with weight {weight}"

new_cost = cost + weight
new_path = path + [next_node]

update_node(queue, next_node, new_cost, new_path)
T

print() -~ | If the next node wasn’t part of the true frontier yet,
we add it to the queue or update the path with its
new cost

return None

Example

Dijkstra’s algorithm: key points

= On the queue, tag each discovered states with its
projected frontier so far

o Remember that we’re actually storing paths on the
gueue, so we can return one that reaches a goal

= True BFS frontier lies at state/path with smallest cost
o Pick such a state/path to expand/extend

o Guaranteed that that is a shortest path
> So never put that state back on the queue

= When extenging a path to a neighbor already on the
gueue, update the state’s path cost if the cost is
lower

Takeaways and
considerations

Best-first search

= Dijkstra’s algorithm simulates running discretized BFS
on weighted graphs

o Requires edge weights to be non-negative (reasonably
common assumption)

o Efficient implementation uses heap-based priority queue

= A* search (not covered) extends Dijkstra’s with a
heuristic estimate of cost-to-go

o Optimal paths guaranteed if heuristic is admissible and
consistent (i.e., always an underestimate everywhere)

= General framework for shortest paths in weighted
graphs is called best-first search or informed search

o Dijkstra’s or close variants lacking a heuristic are called
uniform-cost search

Summarizing

= Graphs are powerful modeling framework
o Capture relationships among objects

o Local structure composes into networks
o Can then infer global properties, and optimize them

= Many important problems can be framed as finding a
shortest path on a graph

> DFS and BFS are fundamental algorithms for solving
it

= Dijkstra’s algorithm better for finding shortest path in
large graphs with (non-negative) weighted edges
> Many variants optimized for specific applications

Fall 2025 6.100 LECTURE 11

