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Fall 2025

§ Last week
◦ Graph models and how to implement
◦ Shortest path problems on unweighted graphs
◦ Depth-first search and breadth-first search

§ Today
◦ Shortest path on weighted graphs

Topics
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§ Last-in first-out (LIFO) sequence
 (often called a stack) 

§ First-in first-out (FIFO) sequence
 (often called a queue)

Two Important Abstractions
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LIFO FIFO
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queue      tmp_path
[[A]]       A
[[A,B],[A,C],[A,D]]     AàB
[[A,C],[A,D],[A,B,E]]     AàC
[[A,D],[A,B,E],[A,C,F],[A,C,G]]AàD
[[A,B,E],[A,C,F],[A,C,G]]    AàBàE
[[A,C,F],[A,C,G],[A,B,E,H]]    AàCàF

FIFO and BFS Shortest Path
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Add paths from E
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Take next path from 
front, and delete front. 
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Guarantees first solution 
is a shortest path 

Might be other equally short paths
But don’t care
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stack     tmpPath
[[A]]     A
[[A,B],[A,C],[A,D]]   AàD
[[A,B],[A,C]]    AàC
[[A,B],[A,C,E],[A,C,F],[A,C,G]]  AàCàG
[[A,B],[A,C,E],[A,C,F],[A,C,G,H]]   AàCàGàH

LIFO and DFS Shortest Path
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A to H

Add paths from A

No paths from D
Add paths from C

Add paths from G

Take next path from rear, 
and delete rear. Add new 
paths to rear.

Could terminate here



Fall 2025

stack     tmpPath
[[A]]     A
[[A,B],[A,C],[A,D]]   AàD
[[A,B],[A,C]]    AàC
[[A,B],[A,C,E],[A,C,F],[A,C,G]]  AàCàG
[[A,B],[A,C,E],[A,C,F],[A,C,G,H]]   AàCàGàH
[[A,B],[A,C,E],[A,C,F]]   AàCàF
[[A,B],[A,C,E],[A,C,F,H]]   AàCàFàH
[[A,B],[A,C,E]]    AàCàE 
[[A,B],[A,C,E,H]]    AàCàEàH
[[A,B]]     A àB
[[A,B,E]]    AàBàE
[[A,B,E,H]]    AàBàEàH

LIFO and DFS Shortest Path
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Replace discrete frontiers 
with “sliding” stack

FIFO

BFS using a FIFO stack

We still skip over visited 

notes as before
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DFS using a LIFO Stack
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Simulate recursion with 
expanding/shrinking stack

Put children on 

LIFO stack

LIFO



Adding weights to graphs

10



Plans in real life
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§ Same graph model as before

§ Each edge 𝐴 → 𝐵, or each action 𝐴𝑐𝑡𝑖𝑜𝑛 𝑆𝑡𝑎𝑡𝑒𝐴 =
𝑆𝑡𝑎𝑡𝑒𝐵, has an associated weight

§ Cost of a path 𝐴 → 𝐵 → ⋯ → 𝑁 is the sum of the 
weights along the edges

§ A shortest path between
two nodes is one that
minimizes the path cost

Weighted shortest path problem
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§  All nodes in each frontier are discovered at their 
shortest distance from the start

§  Proof sketch:
◦ Frontier 1 has all paths of length 1
◦ Some paths of length 2 end up in frontier 2;

others end up back in frontiers 1 or 0
◦ Suppose a path in frontier 2 is not shortest
◦ Then there is some other path of length 0 or 1 to that 

path’s end node
◦ That path would have been discovered in frontier 0 

or 1, and hence not discovered in frontier 2 due to 
visited set

◦ So all paths in frontier 2 are shortest

Optimality of BFS on unweighted graphs
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Change the problem not the algorithms: 

§ If edge weights are all integers, split the edges into 
unit lengths

§  To handle non-integer weights, scale up all weights 
until practically to integers
◦ Computers have finite precision to represent floating 

point, so scaling must eventually result in integers

§  Not very efficient, but it works!

Run BFS on weighted graphs?!
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“Discretized” BFS

November 2, 2022 6.100B LECTURE 4 15
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“Discretized” BFS
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“Discretized” BFS
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“Discretized” BFS
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“Discretized” BFS
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“Discretized” BFS
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§ Want to traverse an original weighted edge in one 
step, not many small steps

§ Key concept in BFS is the frontier, how to maintain 
that now?

§ Suppose we know state 𝐴 is on the true frontier and 
expand it to state 𝐵

§ We’ve projected a potential future frontier onto 𝐵, 
but by the same reasoning, other states 𝐶, 𝐷, 𝐸, … 
may also have projected future frontiers

§ The next true frontier is the minimum of all their 
projected frontiers

Simulate “discretized” BFS efficiently?
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Dijkstra’s algorithm
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BFS on weighted graphs
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BFS on weighted graphs

6.100B LECTURE 4 24

start end2

1

1 1

10

1

100

1
Frontier 0

Frontier 1 Frontier 2

§Is this the shortest path? 
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§ With breadth first, we are guaranteed that we reach 
nodes via a minimum distance
◦ Because our notion of “frontier” corresponds to distances
◦ Since all edges have the same weight. 

§For weighted graphs, we don’t have this guarantee

Can we modify breadth first to work with weighted graphs? 
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§ With breadth first, we are guaranteed that we reach 
nodes via a minimum distance
◦ Because our notion of “frontier” corresponds to distances
◦ Since all edges have the same weight. 

§For weighted graphs, we don’t have this guarantee

§Ideas for DIJKSTRA’s shortest path: 
◦ Explicitly maintain (weighted) distance to source node
◦ Consider an edge at the frontier closest to source

◦ And check if existing shorted distances need to be 
updated

Can we modify breadth first to work with weighted graphs? 
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Dijkstra
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§ Take the path with the lowest cost (start 0)

§ Expand its neighbors (filter out path we already know)

Dijkstra
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§ Take the path with the lowest cost (start 0)

§ Expand its neighbors (filter out path we already know)

Dijkstra
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§ Take the path with the lowest cost (start 0)

§ Expand its neighbors (filter out path we already know)

Dijkstra
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§ Take the path with the lowest cost (start 0)

§ Expand its neighbors (filter out path we already know)

Dijkstra
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§ Take the path with the lowest cost (start 0)

§ Expand its neighbors (filter out path we already know)

Dijkstra
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§Shortest path ! Success !

§We even get the shortest distance from start to any node!

Dijkstra
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§ (priority) queue: store best cost and path for 
discovered nodes that are

§ finished: Similar to visited. Nodes that are on past 
frontiers

Helper methods (for the priority queue)

§ update_node(queue, node, new_cost, new_path): 
add or update a path to the queue with the cost

§ remove_min(queue): remove the path with the 
lowest cost from the queue

Dijkstra : Two Key Data Structures and Basic Idea
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§ For current node (initially start node), chose node 
with shortest distance from current node to visit first. 

§ Check each of its neighbors
◦ Calculate distance from starting node to neighbor

§Terminate only if the target is contained in the 
minimum cost path
◦ Note, that doesn’t imply that we have to explore all 

possible path

Outline of Algorithm
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Priority Queue Implementation
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§ Searching through a list for the minimum and 
removing it is 𝑂(𝑛)
§ By using a data structure called a heap, can find 
minimum in 𝑂 1  and remove in 𝑂(log 𝑛)
◦ Heaps are usually implemented on top of an underlying 

list data structure
◦ The indicies have special meaning, effectively 

representing a kind of tree

§ Python’s heapq package provides a basic 
implementation

Alternative implementation (heap)
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Only terminate when priority queue is empty or if 
the true frontier contains the target

Take the node with the smallest cost (true frontier)

Expand the queue, except if the new path was 
already part of the true frontier (i.e., we know the 

shortest path already to that node)

If the next node wasn’t part of the true frontier yet, 
we add it to the queue or update the path with its 

new cost 
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§ On the queue, tag each discovered states with its 
projected frontier so far
◦ Remember that we’re actually storing paths on the 

queue, so we can return one that reaches a goal

§ True BFS frontier lies at state/path with smallest cost
◦ Pick such a state/path to expand/extend
◦ Guaranteed that that is a shortest path
◦ So never put that state back on the queue

§ When extending a path to a neighbor already on the 
queue, update the state’s path and cost if the cost is 
lower

Dijkstra’s algorithm: key points
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Not LIFO or 

FIFO, but a 

priority queue

Effectively in 

the visited set
NOT considered 

visited



Takeaways and 
considerations
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§ Dijkstra’s algorithm simulates running discretized BFS 
on weighted graphs
◦ Requires edge weights to be non-negative (reasonably 

common assumption)
◦ Efficient implementation uses heap-based priority queue

§ A* search (not covered) extends Dijkstra’s with a 
heuristic estimate of cost-to-go
◦ Optimal paths guaranteed if heuristic is admissible and 

consistent (i.e., always an underestimate everywhere)

§ General framework for shortest paths in weighted 
graphs is called best-first search or informed search
◦ Dijkstra’s or close variants lacking a heuristic are called 

uniform-cost search

Best-first search
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§ Graphs are powerful modeling framework
◦ Capture relationships among objects

◦ Local structure composes into networks
◦ Can then infer global properties, and optimize them

§ Many important problems can be framed as finding a 
shortest path on a graph
◦ DFS and BFS are fundamental algorithms for solving 

it

§ Dijkstra’s algorithm better for finding shortest path in 
large graphs with (non-negative) weighted edges
◦ Many variants optimized for specific applications

Summarizing
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