
Shortest paths, 
Breadth-first 
search
(download slides and .py files to follow along)

Tim Kraska

MIT Department Of Electrical  Engineering and 
Computer Science

6.100 LECTURE 9 1October 1, 2025



§ Last week
◦ Graphs and how to implement them
◦ Depth-first search

§ Today
◦ Breadth-first search
◦ Shortest path

Topics
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§ Keep exploring children 
before considering siblings

§ After branching on child, 
recursively find a path to 
target, using child as new 
root

Depth-first search (last lecture)
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§ Keep exploring children 
before considering siblings

§ After branching on child, 
recursively find a path to 
target, using child as new 
root

Approach 1: Leverage recursive structure
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§ Follow successive layers 
of depth away from the 
root
◦ Layers are “frontiers”

§ Each frontier is one step 
away from the previous 
frontier

Approach 2: Scan across branches
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§ Follow successive layers 
of depth away from the 
root
◦ Layers are “frontiers”

§ Each frontier is one step 
away from the previous 
frontier

Approach 2: Scan across branches
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BFS on Trees
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Each frontier is a list of 

paths from the root into 

the nodes in that frontier

Slide frontier 

window down 

a level

Append all children of 

current frontier nodes 

into next frontierStop search once 

we reach target



Time and memory can grow quickly with that distance, 
because…

§ Branching factor
◦ Exponential growth in the number of nodes/states at 

each frontier
◦ Inherent in tree structure, affects DFS, too

§ Order of exploring neighbors
◦ Affects DFS more than BFS
◦ Could get lucky and go down all the right branches
◦ But going down wrong branch, especially early on, can be 

wasteful

Factors affecting performance
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§ Already storing paths so 
far when expanding their 
end nodes

§ Can do even better: 
Reject any new child 
already in a previous or 
current frontier

BFS for graphs
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§ Already storing paths so 
far when expanding their 
end nodes

§ Can do even better: 
Reject any new child 
already in a previous or 
current frontier

BFS: Avoiding previously seen nodes

21

Los 
Angeles

Boston

Phoenix

Providence

Chicago

Denver

New 
York

Frontier 0

Frontier 1



Frontier 2

§ Already storing paths so 
far when expanding their 
end nodes

§ Can do even better: 
Reject any new child 
already in a previous or 
current frontier

BFS: Avoiding previously seen nodes
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Frontier 2

§ Already storing paths so 
far when expanding their 
end nodes

§ Can do even better: 
Reject any new child 
already in a previous or 
current frontier

BFS: Avoiding previously seen nodes
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Frontier 2

§ Already storing paths so 
far when expanding their 
end nodes

§ Can do even better: 
Reject any new child 
already in a previous or 
current frontier

BFS: Avoiding previously seen nodes
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Question:
Will this always return the shortest path?



Frontier 2

§ Already storing paths so 
far when expanding their 
end nodes

§ Can do even better: 
Reject any new child 
already in a previous or 
current frontier

§ Each next frontier 𝒏 
contains exactly those 
nodes reachable in 𝒏 
steps from the root
◦ Nodes are discovered at 

their shortest distances

BFS: Shortest-path property
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BFS on Graphs
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TAKEAWAYS AND 
CONSIDERATIONS
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§ Goal may be defined in terms of properties rather 
than a single state

§ Instead of checking state == goal, abstract away 
into goal_test(state)

§ Beware of function’s complexity
◦ Gets checked on every state, has a multiplicative effect

Generalizing goal check to goal test function
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§ No edge weights
◦ Some actions may be more expensive than others
◦ Same number of actions in plan does not

guarantee same cost to execute

§ Branching
◦ Even small branching factors lead to explosion in 

exploring state space
◦ Visited set helps, but only if action outcomes overlap

◦ Branching order can lead to vastly different solutions and 
performance

Limitations of DFS and BFS
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§  BFS always returns the 
shortest path for 
unweighted graph

§ Is that also true for weighted 
graphs?

§ If it isn’t can you think 
of a “simple” way to 
use our existing breadth-first 
search to also find the
shortest path for weighted
graphs?

What if the graph is weighted?
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How do we store a weights
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