
Shortest paths,
Breadth-first
search
(download slides and .py files to follow along)

Tim Kraska

MIT Department Of Electrical Engineering and
Computer Science

6.100 LECTURE 9 1October 1, 2025

§ Last week
◦ Graphs and how to implement them
◦ Depth-first search

§ Today
◦ Breadth-first search
◦ Shortest path

Topics

6.100 LECTURE 9 3October 1, 2025

Recap

4

exists_in(”school", "pset.py")

exists_in(”fall24", "pset.py")

exists_in("home", "pset.py")
home

school personal downloads

fall24 spring25 photos

pset.py

slides.pdf pset1 beach.jpg

6.100 8.01

bills

test.py

fall25

Function calls

Recap

5

exists_in(”school", "pset.py")

exists_in(”spring25", "pset.py")

exists_in("home", "pset.py")
home

school personal downloads

fall24 spring25 photos

pset.py

slides.pdf pset1 beach.jpg

6.100 8.01

bills

test.py

fall25

Function calls

Recap

6

exists_in(”school", "pset.py")

exists_in(”fall25", "pset.py")

exists_in("home", "pset.py")
home

school personal downloads

fall24 spring25 photos

pset.py

slides.pdf pset1 beach.jpg

6.100 8.01

bills

test.py

fall25

exists_in(”6.100", "pset.py")

Function calls

Recap

7

exists_in(”school", "pset.py")

exists_in(”fall25", "pset.py")

exists_in("home", "pset.py")
home

school personal downloads

fall24 spring25 photos

pset.py

slides.pdf pset1 beach.jpg

6.100 8.01

bills

test.py

fall25

exists_in(”8.01", "pset.py")

Function calls

Recap

8

exists_in(”school", "pset.py")

exists_in(”fall25", "pset.py")

exists_in("home", "pset.py")
home

school personal downloads

fall24 spring25 photos

pset.py

slides.pdf pset1 beach.jpg

6.100 8.01

bills

test.py

fall25

exists_in(”8.01", "pset.py")

Function calls

Recap

9

exists_in(”personal", "pset.py")

exists_in(”photos", "pset.py")

exists_in("home", "pset.py")
home

school personal downloads

fall24 spring25 photos

pset.py

slides.pdf pset1 beach.jpg

6.100 8.01

bills

test.py

fall25

Function calls

Recap

10

exists_in(”personal", "pset.py")

exists_in(”bills", "pset.py")

exists_in("home", "pset.py")
home

school personal downloads

fall24 spring25 photos

pset.py

slides.pdf pset1 beach.jpg

6.100 8.01

bills

test.py

fall25

Function calls

Recap

11

exists_in(”personal", "pset.py")

exists_in(”bills", "pset.py")

exists_in("home", "pset.py")
home

school personal downloads

fall24 spring25 photos

pset.py

slides.pdf pset1 beach.jpg

6.100 8.01

bills

test.py

fall25

Function calls

Recap

12

exists_in(”downloads", "pset.py")

exists_in(”slides.pdf", "pset.py")

exists_in("home", "pset.py")
home

school personal downloads

fall24 spring25 photos

pset.py

slides.pdf pset1 beach.jpg

6.100 8.01

bills

test.py

fall25

Function calls

Recap

13

exists_in(”downloads", "pset.py")

exists_in(”pset1", "pset.py")

exists_in("home", "pset.py")
home

school personal downloads

fall24 spring25 photos

pset.py

slides.pdf pset1 beach.jpg

6.100 8.01

bills

test.py

fall25

exists_in(”pset.py", "pset.py")

Returns true and terminates

Returns true and terminates

Returns true and terminates

Returns true and terminatesFunction calls

§ Keep exploring children
before considering siblings

§ After branching on child,
recursively find a path to
target, using child as new
root

Depth-first search (last lecture)

14

home

school personal downloads

fall24 spring25 photos

16.S690 8.02

bills

pset.py

slides.pdf pset1 beach.jpg

utils.py

§ Keep exploring children
before considering siblings

§ After branching on child,
recursively find a path to
target, using child as new
root

Approach 1: Leverage recursive structure

15

home

school personal downloads

fall24 spring25 photos

16.S690 8.02

bills

Depth-First Search (DFS)

pset.py

slides.pdf pset1 beach.jpg

utils.py

§ Follow successive layers
of depth away from the
root
◦ Layers are “frontiers”

§ Each frontier is one step
away from the previous
frontier

Approach 2: Scan across branches

16

home

school personal downloads

fall24 spring25 photos

16.S690 8.02

bills

Frontier 0

Frontier 1

pset.py

slides.pdf pset1 beach.jpg

utils.py

§ Follow successive layers
of depth away from the
root
◦ Layers are “frontiers”

§ Each frontier is one step
away from the previous
frontier

Approach 2: Scan across branches

17

home

school personal downloads

fall24 spring25 photos

16.S690 8.02

bills

Frontier 2

Frontier 1

Breadth-First Search (BFS)

pset.py

slides.pdf pset1 beach.jpg

utils.py

BFS on Trees

18

Each frontier is a list of

paths from the root into

the nodes in that frontier

Slide frontier

window down

a level

Append all children of

current frontier nodes

into next frontierStop search once

we reach target

Time and memory can grow quickly with that distance,
because…

§ Branching factor
◦ Exponential growth in the number of nodes/states at

each frontier
◦ Inherent in tree structure, affects DFS, too

§ Order of exploring neighbors
◦ Affects DFS more than BFS
◦ Could get lucky and go down all the right branches
◦ But going down wrong branch, especially early on, can be

wasteful

Factors affecting performance

19

§ Already storing paths so
far when expanding their
end nodes

§ Can do even better:
Reject any new child
already in a previous or
current frontier

BFS for graphs

20

Los
Angeles

Boston

Phoenix

Providence

Chicago

Denver

New
York

Frontier 0

§ Already storing paths so
far when expanding their
end nodes

§ Can do even better:
Reject any new child
already in a previous or
current frontier

BFS: Avoiding previously seen nodes

21

Los
Angeles

Boston

Phoenix

Providence

Chicago

Denver

New
York

Frontier 0

Frontier 1

Frontier 2

§ Already storing paths so
far when expanding their
end nodes

§ Can do even better:
Reject any new child
already in a previous or
current frontier

BFS: Avoiding previously seen nodes

22

Los
Angeles

Boston

Phoenix

Providence

Chicago

Denver

New
York

Frontier 0

Frontier 1

Frontier 2

§ Already storing paths so
far when expanding their
end nodes

§ Can do even better:
Reject any new child
already in a previous or
current frontier

BFS: Avoiding previously seen nodes

23

Los
Angeles

Boston

Phoenix

Providence

Chicago

New
York

Frontier 0

Frontier 1

Frontier 3

Denver

Frontier 2

§ Already storing paths so
far when expanding their
end nodes

§ Can do even better:
Reject any new child
already in a previous or
current frontier

BFS: Avoiding previously seen nodes

24

Los
Angeles

Boston

Phoenix

Providence

Chicago

New
York

Frontier 0

Frontier 1

Frontier 3

Denver

Question:
Will this always return the shortest path?

Frontier 2

§ Already storing paths so
far when expanding their
end nodes

§ Can do even better:
Reject any new child
already in a previous or
current frontier

§ Each next frontier 𝒏
contains exactly those
nodes reachable in 𝒏
steps from the root
◦ Nodes are discovered at

their shortest distances

BFS: Shortest-path property

25

Los
Angeles

Boston

Phoenix

Providence

Chicago

New
York

Frontier 0

Frontier 1

Frontier 3

Denver

BFS on Graphs

26

TAKEAWAYS AND
CONSIDERATIONS

27

§ Goal may be defined in terms of properties rather
than a single state

§ Instead of checking state == goal, abstract away
into goal_test(state)

§ Beware of function’s complexity
◦ Gets checked on every state, has a multiplicative effect

Generalizing goal check to goal test function

28

§ No edge weights
◦ Some actions may be more expensive than others
◦ Same number of actions in plan does not

guarantee same cost to execute

§ Branching
◦ Even small branching factors lead to explosion in

exploring state space
◦ Visited set helps, but only if action outcomes overlap

◦ Branching order can lead to vastly different solutions and
performance

Limitations of DFS and BFS

29

§ BFS always returns the
shortest path for
unweighted graph

§ Is that also true for weighted
graphs?

§ If it isn’t can you think
of a “simple” way to
use our existing breadth-first
search to also find the
shortest path for weighted
graphs?

What if the graph is weighted?

October 1, 2025 6.100 LECTURE 9 30

Los
Angeles

Boston

Phoenix

Providence

Chicago

Denver

New
York

1

1

8

2

2

4
3

3

5

1

How do we store a weights

October 1, 2025 6.100 LECTURE 9 31

Los
Angeles

Boston

Phoenix

Providence

Chicago

Denver

New
York

1

1

8

2

2

4
3

3

5

1

Los
Angeles

Boston

Phoenix

Providence

Chicago

Denver

New
York

Los
Angeles

2

Los
Angeles

 3

Los
Angeles

4

Los
Angeles

 5

Los
Angeles

 6

Los
Angeles

 8

Los
Angeles

 7

Boston 2

Providence
2

New
York 2

New
York 3

Denver 2

Denver 3

Denver 4

Chicago
2

Chicago
3

Chicago4

Chicago5

Chicago6

Chicago7 Need unique names!!!

