Graphs

(download slides and .py files to follow along)

Tim Kraska

MIT Department Of Electrical Engineering and
Computer Science

September 29, 2025 6.100 LECTURE 8

Topics

= Last week
o Dictionaries

> Tuples
o Mutation
o Alias

= Today
> graph models and how to implement
o depth-first search

September 29, 2025 6.100 LECTURE 8 3

IDON'T TRUST PEOPLE WITH

What s a Graph? GRAPH PAPER.

- Global Surface Temperature THEY'RE AI.WAYS PI.I]T“NG

Best performing S&P 500 stocks of the decade } | | Favorite Ice Cream Flavors SUME“"“G

12—month Runnixig Mean
s | 32—month Running Mean
= January—December Mean

2
Netflix - N 1.2

Facebaok: Pun Based Hunor
MarketAxess Holdings - MKTX

1.0

ABIOMED - ABMD

@ Strawberry
Broadcom - AVGO 8 @ Mint Chocolate
Regeneron Pharmaceuticals - REGN Chip

United Rentals - URI
Take-Two Interactiv o Sof tware - TTWO
TransDign Group - TDG

Align Technology - ALGN

NVDIA - NVDA

Temperature Anomaly (°C)

T T T T
1500 2,000 2,500 3,000 3,500

1920 1940 1960 1980

pie
line

Distribution of Men's and Women's Incomes in 2016 simple 3D scatter plot

&
550
~ A%

50,000

N Marketing

w— ARG
— At

30,000

20000 N
Information |~

Technobogy - - g 2 o Deseleperent
10,000 : z

Cugemer
Suppart

0
$0 $20,000 $40,000 $60,000 $80,000 $19 0000 $140000 $160,000 $180,000

histogram radar scatter plot

These are all visual presentations of information; we want a
structure that supports computation or inference

September 29, 2025 6.100 LECTURE 8

What is a Graph?

= Set of nodes (vertices)

September 29, 2025

6.100 LECTURE 8

THISIS GIT. T TRACKS COLLABORATIVE. LIORK
ON PROJECTS THROUGH A BEAUTIFUL
DISTRIBUTED GRAPH THEORY TREE. MODEL.

CoOL. HOU DO WE-VEE IT?

NO IDEA. JUST MEMORIZE. THESE. SHELL
COMMANDS AND TYPE THEM To SYNC DR
IF YOU GET ERRORS, SAVE YOUR WORK
ELSEWHERE, DELETE THE. PROJECT,
AND DOWUNLOAD A FRESH COPY.

%@W

THISIS GIT. T TRACKS COLLABORATIVE. LIORK
ON PROJECTS THROUGH A BEAUTIFUL
DISTRIBUTED GRAPH THEORY TREE. MODEL.

What is a Graph? mmi,:.,%myﬁ

IF YOU GET ERRORS, SAVE YOUR WORK
ELSELMHERE, DELETE THE. PROJECT
AND DOWNLOAD A FRESH COPY.

= Set of nodes (vertices) \
> Might have associated names or properties ljﬁf@%%
= Set of edges (arcs) each connecting a pair of nodes
o Undirected (graph)

September 29, 2025 6.100 LECTURE 8

What is a Graph? o T
= Set of nodes (vertices) \
> Might have properties associated with them jﬁf@?%

= Set of edges (arcs) each connecting a pair of nodes
o Undirected (graph)
o Directed (digraph)
o Source (parent) and destination (child) nodes

> Unweighted or weighted Graph:

> Assume non-negative * might not be completely
connected

e could have loops, both
single length and longer

September 29, 2025 6.100 LECTURE 8

What is a Graph? o T
= Set of nodes (vertices) \
> Might have properties associated with them jﬁﬁ@%%

= Set of edges (arcs) each connecting a pair of nodes
o Undirected (graph)
o Directed (digraph)
o Source (parent) and destination (child) nodes

> Unweighted or weighted Graph:

> Assume non-negative * might not be completely
connected

e could have loops, both
single length and longer

Path:B>A—>C->D

September 29, 2025 6.100 LECTURE 8

Trees: An Impor

tant Special Case

= A special kind of directed graph in which any pair of

nodes is connected by

a single path from the node

closer to the root to the node further from the root

Leaves

Unique path from
root to each node

Root
O

Computer scientists draw trees with root at top

September 29, 2025

6.100 LECTURE 8

Example tree

Question:

Where did | put my
pset file?

Filesystem is a tree

/

school personal downloads

7\ / VAT

fall24 spring25 photos bills slides.pdf psetl beach.jpg

16.5690 8.02 Cpset.py) utils.py

First Reported Use of Graph Theory

. , —

\~-

problem (1735)

o Known today as
Kaliningrad

o Two islands plus two
mainland portions of
city connected by 7
bridges

" |s it possible to take a &
walk that traverses
each of the 7 bridges
exactly once?

September 29, 2025 6.100 LECTURE 8

Leonhard Euler’s Model

1707-1783

= Each island (or side of mainland) a node
= Each bridge an undirected edge

=" Model abstracts away irrelevant details
o Size of islands

o Length of bridges

o All that matters are the connections between nodes

= |s there a path that contains each edge exactly once?

Poll:
Do you think that such a path exists?

September 29, 2025 6.100 LECTURE 8

Leonhard Euler’s Model

= Each island a node

= Each bridge an undirected edge

=" Model abstracts away irrelevant details
o Size of islands

o Length of bridges

= |s there a path that contains each edge exactly once?
> No!

o For such a path to exist, each node except the first and last must
have an even number of edges

> No node has an even number of edges!

September 29, 2025 6.100 LECTURE 8 16

What'’s Interesting About This

= Not the Kdnigsberg bridges problem itself

1707-1783

= Rather, the way Euler solved it

= A new way to think about a very large class of
problems

o Abstract out unnecessary details

> Focus on nodes (key elements) and edges (connections
between key elements)

> Model cost of traversing edges in graph
o Optimize paths across edges

September 29, 2025 6.100 LECTURE 8 17

Graphs

> Routes between Boston and San Jose

> How the atoms in a molecule are related to one another
o Ancestral relationships (family trees)

> Business/social/political connections

o Functions and expressions in python

(0]

September 29, 2025 6.100 LECTURE 8 18

Graphs model a wide range of systems

= Computer networks

o Efficiently route information from
one node to another, over large set
of packets?

* Transportation networks

o Efficiently get to a particular
destination?

= Logistics networks
> How can | efficiently move ekl ol
products to destinations in a el
warehouse or between centers? s ITE—

= Social networks

> How can | understand diffusion of L
misinformation, identify clusters of oF A SOCIAL 4%
people with similar characteristics NETWORK | |

The first three examples all ask about finding an
efficient path between nodes; the last example
suggests that there can be other kinds of questions

Why Graphs Are So Useful

= Not only do graphs capture relationships in
connected networks of items, they support
inference on those structures

/ Find sequences of links between
elements (aka the path problem)
Find least expensive path between
elements (aka the shortest path

_problem))

* Partition graph into k (equal) sized

subgraphs with minimal connections
between them (aka graph partition
problem or graph clique problem) 11

* Find the most efficient way to separate ==

sets of connected elements (aka the min- "=

cut/max-flow problem)

You’ll see these problems in 6.120(o4,
6.121 5 o006, and other classes

September 29, 2025 6.100 LECTURE 8 0

A Classic Graph Optimization Problem

= Shortest (unweighted) path

o Fewest number of edges from a source node to a
destination node

September 29, 2025 6.100 LECTURE 8 21

A Classic Graph Optimization Problem

CShortest (unweighted) path et

o Fewest number of edges from a source node to a
destination node

= Shortest weighted path
\0 Minimizes the sum of the weights of its edges /

September 29, 2025 6.100 LECTURE 8

THEY SAY THE SHORTEST DISTANCE
BETWEEN TWO POINTS IS A STRAIGHT LINE.

Some Shortest Path Problems

THEY HAVE NEVER DRIVEN IN
~ SEATTLE. WE HAVE TO USE A TESSERACT.

" Finding a route from one city to another
= Routing data on communication networks
= Warehouse logistics of storing and retrieving products

= Finding a path for a molecule through a chemical

. ‘\\;‘\\\ 7\
labyrinth MY PR Y

=\
. ¥ g G .-:A B\
0k A CemE T

I i i l LA
IH 2 ,' l.
) — _\."g : i L = ; : b 4
S e T o il |
! i " T
= B 0 7

~
AT

September 29, 2025 6.100 LECTURE 8

IMPLEMENTING GRAPHS

MATH GossiP

Howe you heard the nawe” | | Mice. called John and Evie
M (Texvi losk hey call soshe called
hasekF),

Representations of Digraphs im

= Digraph is a directed graph (A—(8) e | [T
o Edges pass in one direction only I z@@ %ﬁ
> Need to represent collection of edges © - mjlg
= Adjacency matrix d
o Rows: source nodes -uﬂﬂ
o Columns: destination nodes A 1
° Cellls, d] =1 if thereisan edge fromstod _ B 1
= 0 otherwise C 1
D 1 1

o Note that in digraph, matrix is not symmetric
o Uses O(|nodes | **2) memory

= Assumes at most one arc between node pairs

o Easily generalized to multiple arcs with
weights

September 29, 2025 6.100 LECTURE 8 27

MATH GossiP

: : Sl &___—J
Representations of Digraphs S A
" Digraph is a directed graph (A—(B) S T | [T

o Edges pass in one direction only I I %E

> Need to represent collection of edge¢p)~ (¢ @f |\ R
® Adjacency matrix

o Rows: source nodes

o Columns: destination nodes

o Cell[s, d] =1 if there is an edge fromstod

= 0 otherwise A: [D]

° Note that in digraph, matrix is not symmetric B: [A

o Uses O(|nodes|**2) memory C: .'B.'
= Adjacency list D: [A, D]

o Associate with each node a list of destination

nodes that can be reached by one edge

o Uses O(] edﬁes |) memory, therefore good for
sparse graphs

September 29, 2025 6.100 LECTURE 8 28

An Example Digraph

Insight 1: Store nodes
as dictionary keys, and
edges using adjacency
lists for each node

Insight 2: Store edge
weights by turning
each adjacency list
into a dictionary

Adjacency Lists
Boston:
Providence:
New York:
Chicago:
Denver:
Phoenix:
Los Angeles:

| Edges from that node |

September 29, 2025 6.100 LECTURE 8

Prowdence

Chlcago

Boston

/.

\.

Los
Angeles

29

An Example Digraph

Insight 1: Store nodes
as dictionary keys, and
edges using adjacency
lists for each node

Insight 2: Store edge
weights by turning

(39\\ each adjacency list
665\ ® into a dictionary
\O©
P‘_ Adjacency Lists
Boston: Providence(1), New York(1)

Providence: | Boston(1), New York(1)
New York: Chicago(1)

Chicago: Denver(1), Phoenix(1)
Phoenix(1), New York(1) |

Phoenix:
Los Angeles:| Boston(1)

| Edges from that node |

Boston

/.

Chlcago

Prowdence

Unweighted edges all
have weight 1

September 29, 2025 6.100 LECTURE 8

Los
Angeles

30

Let’s look at some code

Filesystem is a tree @

/chool personal downloads
fall24 spring25 fall25 photos bills slides.pdf psetl beach.jpg

6.100 8.01 Cpsetpy) testpy

filesystem = {
"home": ["school", "personal", "downloads"],
"school": ["fall24", "spring25", "fall25"],
"fall25": ["6.100", "8.01"],
"personal”: ["photos", "bills"],
"downloads": ["slides.pdf", "psl", "beach.jpg"],
"psl1": ["pset.py", "test.py"],

FINDING PATHS IN TREES

Example tree

Question:

Where did | put my
pset file?

Filesystem is a tree

/

/chool personal downloads
fall24 spring25 fall25 photos bills slides.pdf psetl beach.jpg

6.100 8.01 Cpsetpy) test.py

Approach 1: Leverage recursive structure

= Keep exploring children = After branching on child,

before considering siblings recursively find a path to
target, using child as new
root

/

scho{ personal downloads
spring25 fall25 photos bills slides.pdf psetl beach.jpg

\

7 Covetrr D testy

6.100 8.0

Approach 1: Leverage recursive structure

= Keep exploring children = After branching on child,

before considering siblings recursively find a path to
target, using child as new
root

/

A/scho{ personal downloads
fall24 spring25 \ fall25 photos bills slides.pdf psetl beach.jpg

\

a Covetrr D testy

6.100 8.0

Approach 1: Leverage recursive structure

= Keep exploring children = After branching on child,

before considering siblings recursively find a path to
target, using child as new
root

Depth-First Search (DFS)

/

/chool personal downloads
fall24 spring2 photos bills slides.pdf psetl beach.jpg

@ test.py

Example Implementation

def dfs_tree_helper(graph, goal, path):
print("Current DFS path:", path_to_string(path))

stop if reached goal

current_node = path[-1]

if current_node == goal:
return path

check if goal in subtrees
for next_node in get_neighbors(graph, current_node):
result = dfs_tree_helper(graph, goal, path + [next_nodel)
if result is not None:
return result

no nodes in subtree are goal, backtrack to parent/caller
return None

def dfs_tree(graph, start, goal):

return dfs_tree_helper(graph, goal, [start]) @
print(dfs_tree(filesystem, "home", "pset.py")) 4/’\;

chool ?rson\al downloads
fall24 spring25 fall25 photos bills slides.pdf psetl beach.jpg

6.100 8.01 test.py

September 29, 2025 6.100 LECTURE 8 37

Example Implementation

def dfs_tree_helper(graph, goal, path):

print("Current DFS path:", path_to_string(path)) dfs_tree_helper(graph, “pset.py”, [“home”])

stop if reached goal dfs_tree_helper(graph, “pset.py”, [“home”,”school”])
current_node = path[-1]
if current_node == goal: l
return path dfs_tree_helper(graph, “pset.py”,
[“home”,"”school”,”fall24"”])
check if goal in subtrees

for next_node in get_neighbors(graph, current_node):

result = dfs_tree_helper(graph, goal, path + [next_node])
if result is not None:

return result

no nodes in subtree are goal, backtrack to parent/caller
return None

def dfs_tree(graph, start, goal):

return dfs_tree_helper(graph, goal, [start])

print(dfs_tree(filesystem, "home", "pset.py")) A
chool personal downloads
— / N\ 7 VN

fall24 spring25 fall25 photos bills

slides.pdf psetl beach.jpg

6.100 8.01 test.py

6.100 LECTURE 8

September 29, 2025

38

Example Implementation

def dfs_tree_helper(graph, goal, path):

print("Current DFS path:", path_to_string(path)) dfs_tree_helper(graph, “pset.py”, [“home”])

stop if reached goal dfs_tree_helper(graph, “pset.py”, [“home”,”school”])
current_node = path[-1]
if current_node == goal: l

return path

dfs_tree_helper(graph, “pset.py”,

[Mhomell n

,"school”,”spring25”])
check if goal in subtrees

for next_node in get_neighbors(graph, current_node):

result = dfs_tree_helper(graph, goal, path + [next_node])
if result is not None:

return result

no nodes in subtree are goal, backtrack to parent/caller
return None

def dfs_tree(graph, start, goal):

return dfs_tree_helper(graph, goal, [start])

print(dfs_tree(filesystem, "home", "pset.py")) A
chool personal downloads
— / N\ 7 VN

fall24 spring25 fall25 photos bills

slides.pdf psetl beach.jpg

6.100 8.01 test.py

6.100 LECTURE 8

September 29, 2025

39

Approach 2: Scan across branches

" Follow successive layers = Each frontier is one step
of depth away from the away from the previous
root frontier

o Layers are “frontiers”

Frontier 0
home
l Frontier 1
ichool personal downloads
fall24 spring25 photos bills slides.pdf psetl beach.jpg

/ N\ /' \

16.5690 8.02 pset.py utils.py

Approach 2: Scan across branches

" Follow successive layers = Each frontier is one step
of depth away from the away from the previous
root frontier

o Layers are “frontiers”

Breadth-First Search (BFS)

/ Frontier 1
4

school personal downloads
/ / \ / \ / \ \ Frontier 2
4 X [4 X r'd v N
fall24 spring25 fall25 photos bills slides.pdf psetl beach.jpg
/ \ / \ Frontier 3
4 N
6.100 8.01 pset.py test.py

Factors affecting performance

= Shortest distance between start and goal
o BFS guaranteed to find it

o But time and memory can grow quickly with that
distance, because...

= Branching factor

> Exponential growth in the number of nodes/states at
each frontier

o Inherent in tree structure, affects DFS, too

= Order of exploring neighbors
o Affects DFS more than BFS

o Could get lucky and go down all the right branches

> But going down wrong branch, especially early on, can be
wasteful

Let’s take a short break

https://imgur.com/gallery/n50uj

https://imgur.com/gallery/n5Ouj

GENERALIZING SEARCH
TO GRAPHS

DFS: Avoiding infinite cycles

<
Providence \

DFS: Avoiding infinite cycles

DFS: Avoiding infinite cycles

DFS: Avoiding infinite cycles

DFS: Avoiding infinite cycles

DFS: Avoiding infinite cycles

DFS: Avoiding infinite cycles

Boston
ovidence

" Encounter cycles when
expanding to nodes
already on the path

= Prevent DFS “subtrees”
from looping back on
themselves

Los
Angeles

TRACE:
path: Boston
path: Boston -> Providence
AVOID self-loop from Providence to Boston
path: Boston -> Providence -> New York
path: Boston -> Providence -> New York -> Chicago
path: Boston -> Providence -> New York -> Chicago -> Denver
AVOID self-loop from Denver to New York
path: Boston -> Providence -> New York -> Chicago -> Denver -> Phoenix
['Boston', 'Providence', 'New York', 'Chicago', 'Denver', 'Phoenix']

def dfs_graph_helper(graph, goal, path):
print("Current DFS path:", path_to_string(path))

current_node = path[-1]
if current_node == goal:
return path

possible_paths = []
for next_node in get_neighbors(graph, current_node):

avoid self-loops

if next_node in path:
print(f" AVOID self-loop from {current_node} to {next_node}")
continue

Boston

result = dfs_graph_helper(graph, goal, path + [next_nodel)

if result is not None: \;
return result

return None /

def dfs_graph(graph, start, goal):

return dfs_graph_helper(graph, goal, [start])

September 29, 2025 6.100 LECTURE 8 54

BFS: Avoiding previously seen nodes

Frontler 0
= Already storing paths so < /

far when expanding their

end nodes \
T

= Can do even better:
Reject any new child / '}

already in a previous or

Chlcago

current frontier \.
Los
k

BFS: Avoiding previously seen nodes
>

Frontier O
<

Frontier 1

= Already storing paths so
far when expanding their
end nodes

= Can do even better:
Reject any new child
already in a previous or

current frontier \.
Ks /
Angeles

BFS: Avoiding previously seen nodes
>

Frontier O
<

Frontier 1

= Already storing paths so
far when expanding their
end nodes

= Can do even better:
Reject any new child

already in a previous or

current frontier k /
/

BFS: Avoiding previously seen nodes
>

Frontier O
<

Frontier 1

= Already storing paths so
far when expanding their
end nodes

= Can do even better:
Reject any new child
already in a previous or
current frontier

Los
Angeles

Frontier 3

BFS: Shortest-path property

>

Frontier O
<

Frontier 1

= Already storing paths so
far when expanding their
end nodes

= Can do even better:
Reject any new child
already in a previous or
current frontier

= Each next frontier n
contains exactly those
nodes reachable in n
steps from the root

> Nodes are discovered at
their shortest distances

Los
Angeles

Frontier 3

TAKEAWAYS AND
CONSIDERATIONS

Generalizing goal check to goal test function

= Goal may be defined in terms of properties rather
than a single state

" Instead of checking state == goal, abstract away
into goal test(state)

= Beware of function’s complexity
o Gets checked on every state, has a multiplicative effect

Limitations of DFS and BFS

= No edge weights
> Some actions may be more expensive than others

> Same number of actions in plan does not
guarantee same cost to execute

= Branching

o Even small branching factors lead to explosion in
exploring state space

o Visited set helps, but only if action outcomes overlap

> Branching order can lead to vastly different solutions and
performance

