
Graphs
(download slides and .py files to follow along)

Tim Kraska

MIT Department Of Electrical Engineering and
Computer Science

6.100 LECTURE 8 1September 29, 2025

§ Last week
◦ Dictionaries
◦ Tuples
◦ Mutation
◦ Alias

§ Today
◦ graph models and how to implement
◦ depth-first search

Topics

6.100 LECTURE 8 3September 29, 2025

bar line

histogram radar scatter plot

pie

What is a Graph?

6.100 LECTURE 8 5

These are all visual presentations of information; we want a
structure that supports computation or inference

September 29, 2025

§ Set of nodes (vertices)

What is a Graph?

6.100 LECTURE 8 6

E
B

C

DA

September 29, 2025

§ Set of nodes (vertices)
◦ Might have associated names or properties

§ Set of edges (arcs) each connecting a pair of nodes
◦ Undirected (graph)

What is a Graph?

6.100 LECTURE 8 7

E
B

C

DA

September 29, 2025

§ Set of nodes (vertices)
◦ Might have properties associated with them

§ Set of edges (arcs) each connecting a pair of nodes
◦ Undirected (graph)
◦ Directed (digraph)

◦ Source (parent) and destination (child) nodes
◦ Unweighted or weighted

◦ Assume non-negative

What is a Graph?

6.100 LECTURE 8
8

10

12
3

September 29, 2025

5
10

Graph:
• might not be completely

connected
• could have loops, both

single length and longer
6

E
B

C

DA

§ Set of nodes (vertices)
◦ Might have properties associated with them

§ Set of edges (arcs) each connecting a pair of nodes
◦ Undirected (graph)
◦ Directed (digraph)

◦ Source (parent) and destination (child) nodes
◦ Unweighted or weighted

◦ Assume non-negative

What is a Graph?

6.100 LECTURE 8
9

10

12
3

September 29, 2025

5
10

Graph:
• might not be completely

connected
• could have loops, both

single length and longer
6

E
B

C

DA

Path: B à A à C à D

§ A special kind of directed graph in which any pair of
nodes is connected by a single path from the node
closer to the root to the node further from the root

Trees: An Important Special Case

6.100 LECTURE 8 10September 29, 2025

Root

Leaves

Computer scientists draw trees with root at top

Unique path from
root to each node

Example tree

11

Question:
Where did I put my

pset file?

Filesystem is a tree

home

school personal downloads

fall24 spring25 photos

pset.py

slides.pdf pset1 beach.jpg

16.S690 8.02

bills

utils.py

First Reported Use of Graph Theory

6.100 LECTURE 8 14

§ Bridges of Königsberg
problem (1735)
◦ Known today as

Kaliningrad
◦ Two islands plus two

mainland portions of
city connected by 7
bridges

§ Is it possible to take a
walk that traverses
each of the 7 bridges
exactly once?

September 29, 2025

Leonhard Euler’s Model

6.100 LECTURE 8 15

§ Each island (or side of mainland) a node

§ Each bridge an undirected edge

§ Model abstracts away irrelevant details
◦ Size of islands
◦ Length of bridges

◦ All that matters are the connections between nodes

§ Is there a path that contains each edge exactly once?

September 29, 2025

Poll:
Do you think that such a path exists?

1707-1783

Leonhard Euler’s Model

6.100 LECTURE 8 16

§ Each island a node

§ Each bridge an undirected edge

§ Model abstracts away irrelevant details
◦ Size of islands
◦ Length of bridges

§ Is there a path that contains each edge exactly once?
◦ No!

◦ For such a path to exist, each node except the first and last must
have an even number of edges

◦ No node has an even number of edges!

September 29, 2025

§ Not the Königsberg bridges problem itself

§ Rather, the way Euler solved it

§ A new way to think about a very large class of
problems
◦ Abstract out unnecessary details
◦ Focus on nodes (key elements) and edges (connections

between key elements)
◦ Model cost of traversing edges in graph
◦ Optimize paths across edges

What’s Interesting About This

6.100 LECTURE 8 17September 29, 2025

1707-1783

§ Capture and reason about relationships among entities
◦ Routes between Boston and San Jose
◦ How the atoms in a molecule are related to one another
◦ Ancestral relationships (family trees)
◦ Business/social/political connections
◦ Functions and expressions in python
◦ …

Graphs

6.100 LECTURE 8 18September 29, 2025

§ Computer networks
◦ Efficiently route information from

one node to another, over large set
of packets?

§ Transportation networks
◦ Efficiently get to a particular

destination?
§ Logistics networks

◦ How can I efficiently move
products to destinations in a
warehouse or between centers?

§ Social networks
◦ How can I understand diffusion of

misinformation, identify clusters of
people with similar characteristics

Graphs model a wide range of systems

September 29, 2025 6.100 LECTURE 8 19

The first three examples all ask about finding an
efficient path between nodes; the last example
suggests that there can be other kinds of questions

§ Not only do graphs capture relationships in
connected networks of items, they support
inference on those structures

Why Graphs Are So Useful

6.100 LECTURE 8 20September 29, 2025

• Find sequences of links between
elements (aka the path problem)

• Find least expensive path between
elements (aka the shortest path
problem)

• Partition graph into k (equal) sized
subgraphs with minimal connections
between them (aka graph partition
problem or graph clique problem)

• Find the most efficient way to separate
sets of connected elements (aka the min-
cut/max-flow problem)

You’ll see these problems in 6.120[6.042],
6.121[6.006], and other classes

§ Shortest (unweighted) path
◦ Fewest number of edges from a source node to a

destination node

A Classic Graph Optimization Problem

6.100 LECTURE 8 21September 29, 2025

B

C

DA

E

§ Shortest (unweighted) path
◦ Fewest number of edges from a source node to a

destination node

§ Shortest weighted path
◦ Minimizes the sum of the weights of its edges

A Classic Graph Optimization Problem

6.100 LECTURE 8 22September 29, 2025

10

2
3

5
10

6

B

C

DA

E

Next lecture

§ Finding a route from one city to another

§ Routing data on communication networks

§ Warehouse logistics of storing and retrieving products

§ Finding a path for a molecule through a chemical
labyrinth

Some Shortest Path Problems

6.100 LECTURE 8 23September 29, 2025

IMPLEMENTING GRAPHS

6.100 LECTURE 8 26September 29, 2025

§ Digraph is a directed graph
◦ Edges pass in one direction only
◦ Need to represent collection of edges

§ Adjacency matrix
◦ Rows: source nodes
◦ Columns: destination nodes
◦ Cell[s, d] = 1 if there is an edge from s to d
 = 0 otherwise
◦ Note that in digraph, matrix is not symmetric
◦ Uses O(|nodes|**2) memory

§ Assumes at most one arc between node pairs
◦ Easily generalized to multiple arcs with

weights

Representations of Digraphs

6.100 LECTURE 8 27September 29, 2025

A B C D

A 1

B 1

C 1

D 1 1

d

s

A B

CD

§ Digraph is a directed graph
◦ Edges pass in one direction only
◦ Need to represent collection of edges

§ Adjacency matrix
◦ Rows: source nodes
◦ Columns: destination nodes
◦ Cell[s, d] = 1 if there is an edge from s to d
 = 0 otherwise
◦ Note that in digraph, matrix is not symmetric
◦ Uses O(|nodes|**2) memory

§ Adjacency list
◦ Associate with each node a list of destination

nodes that can be reached by one edge
◦ Uses O(|edges|) memory, therefore good for

sparse graphs

Representations of Digraphs

6.100 LECTURE 8 28September 29, 2025

A: [D]
B: [A]
C: [B]
D: [A, D]

A B

CD

An Example Digraph

6.100 LECTURE 8 29

Adjacency Lists
Boston:
Providence:
New York:
Chicago:
Denver:
Phoenix:
Los Angeles:

September 29, 2025

Node Edges from that node

Insight 1: Store nodes
as dictionary keys, and
edges using adjacency
lists for each node

Boston

Providence

Phoenix

New
York

Chicago

Denver

Los
Angeles

Insight 2: Store edge
weights by turning
each adjacency list
into a dictionary

An Example Digraph

6.100 LECTURE 8 30

Adjacency Lists
Boston: Providence(1), New York(1)
Providence: Boston(1), New York(1)
New York: Chicago(1)
Chicago: Denver(1), Phoenix(1)
Denver: Phoenix(1), New York(1)
Phoenix:
Los Angeles: Boston(1)

September 29, 2025

All nodes in graph

Node Edges from that node

Insight 1: Store nodes
as dictionary keys, and
edges using adjacency
lists for each node

Unweighted edges all
have weight 1

Boston

Providence

Phoenix

New
York

Chicago

Denver

Los
Angeles

Insight 2: Store edge
weights by turning
each adjacency list
into a dictionary

Let’s look at some code

31

Filesystem is a tree
home

school personal downloads

fall24 spring25 photos

pset.py

slides.pdf pset1 beach.jpg

6.100 8.01

bills

test.py

fall25

FINDING PATHS IN TREES

32

Example tree

33

Question:
Where did I put my

pset file?

Filesystem is a tree

home

school personal downloads

fall24 spring25 photos

pset.py

slides.pdf pset1 beach.jpg

6.100 8.01

bills

test.py

fall25

§ Keep exploring children
before considering siblings

§ After branching on child,
recursively find a path to
target, using child as new
root

Approach 1: Leverage recursive structure

34

home

school personal downloads

fall24 spring25 photos

pset.py

slides.pdf pset1 beach.jpg

6.100 8.01

bills

test.py

fall25

§ Keep exploring children
before considering siblings

§ After branching on child,
recursively find a path to
target, using child as new
root

Approach 1: Leverage recursive structure

35

home

school personal downloads

fall24 spring25 photos

pset.py

slides.pdf pset1 beach.jpg

6.100 8.01

bills

test.py

fall25

§ Keep exploring children
before considering siblings

§ After branching on child,
recursively find a path to
target, using child as new
root

Approach 1: Leverage recursive structure

36

Depth-First Search (DFS)

home

school personal downloads

fall24 spring25 photos

pset.py

slides.pdf pset1 beach.jpg

6.100 8.01

bills

test.py

fall25

Example Implementation

September 29, 2025 6.100 LECTURE 8 37

home

school personal downloads

fall24 spring25 photos

pset.py

slides.pdf pset1 beach.jpg

6.100 8.01

bills

test.py

fall25

Example Implementation

September 29, 2025 6.100 LECTURE 8 38

home

school personal downloads

fall24 spring25 photos

pset.py

slides.pdf pset1 beach.jpg

6.100 8.01

bills

test.py

fall25

dfs_tree_helper(graph, “pset.py”, [“home”])

dfs_tree_helper(graph, “pset.py”, [“home”,”school”])

dfs_tree_helper(graph, “pset.py”,
[“home”,”school”,”fall24”])

Example Implementation

September 29, 2025 6.100 LECTURE 8 39

home

school personal downloads

fall24 spring25 photos

pset.py

slides.pdf pset1 beach.jpg

6.100 8.01

bills

test.py

fall25

dfs_tree_helper(graph, “pset.py”, [“home”])

dfs_tree_helper(graph, “pset.py”, [“home”,”school”])

dfs_tree_helper(graph, “pset.py”,
[“home”,”school”,”spring25”])

§ Follow successive layers
of depth away from the
root
◦ Layers are “frontiers”

§ Each frontier is one step
away from the previous
frontier

Approach 2: Scan across branches

40

home

school personal downloads

fall24 spring25 photos

16.S690 8.02

bills

Frontier 0

Frontier 1

pset.py

slides.pdf pset1 beach.jpg

utils.py

§ Follow successive layers
of depth away from the
root
◦ Layers are “frontiers”

§ Each frontier is one step
away from the previous
frontier

Approach 2: Scan across branches

41

Frontier 2

Frontier 1

Breadth-First Search (BFS)

home

school personal downloads

fall24 spring25 photos

pset.py

slides.pdf pset1 beach.jpg

6.100 8.01

bills

test.py

fall25

Frontier 3

§ Shortest distance between start and goal
◦ BFS guaranteed to find it
◦ But time and memory can grow quickly with that

distance, because…

§ Branching factor
◦ Exponential growth in the number of nodes/states at

each frontier
◦ Inherent in tree structure, affects DFS, too

§ Order of exploring neighbors
◦ Affects DFS more than BFS
◦ Could get lucky and go down all the right branches
◦ But going down wrong branch, especially early on, can be

wasteful

Factors affecting performance

44

Let’s take a short break

45

https://imgur.com/gallery/n5Ouj

https://imgur.com/gallery/n5Ouj

GENERALIZING SEARCH
TO GRAPHS

46

DFS: Avoiding infinite cycles

47

Los
Angeles

Boston

Phoenix

Providence

Chicago

Denver

New
York

DFS: Avoiding infinite cycles

48

Los
Angeles

Boston

Phoenix

Chicago

Denver

New
York

Providence

DFS: Avoiding infinite cycles

49

Los
Angeles

Boston

Phoenix

Chicago

Denver

Providence

New
York

DFS: Avoiding infinite cycles

50

Los
Angeles

Boston

Phoenix

Denver

Providence

New
York

Chicago

DFS: Avoiding infinite cycles

51

Providence

New
York

Chicago

Denver

Los
Angeles

Boston

Phoenix

DFS: Avoiding infinite cycles

52

Providence

New
York

Chicago

Denver

Los
Angeles

Boston

Phoenix

§ Encounter cycles when
expanding to nodes
already on the path

§ Prevent DFS “subtrees”
from looping back on
themselves

DFS: Avoiding infinite cycles

53

Providence

New
York

Chicago

Denver

Los
Angeles

Boston

Phoenix

September 29, 2025 6.100 LECTURE 8 54

TRACE:
path: Boston
path: Boston -> Providence
 AVOID self-loop from Providence to Boston
path: Boston -> Providence -> New York
path: Boston -> Providence -> New York -> Chicago
path: Boston -> Providence -> New York -> Chicago -> Denver
 AVOID self-loop from Denver to New York
path: Boston -> Providence -> New York -> Chicago -> Denver -> Phoenix
['Boston', 'Providence', 'New York', 'Chicago', 'Denver', 'Phoenix']

Los
Angeles

Boston

Phoenix

Providence

Chicago

Denver

New
York

§ Already storing paths so
far when expanding their
end nodes

§ Can do even better:
Reject any new child
already in a previous or
current frontier

BFS: Avoiding previously seen nodes

57

Los
Angeles

Boston

Phoenix

Providence

Chicago

Denver

New
York

Frontier 0

§ Already storing paths so
far when expanding their
end nodes

§ Can do even better:
Reject any new child
already in a previous or
current frontier

BFS: Avoiding previously seen nodes

58

Los
Angeles

Boston

Phoenix

Providence

Chicago

Denver

New
York

Frontier 0

Frontier 1

Frontier 2

§ Already storing paths so
far when expanding their
end nodes

§ Can do even better:
Reject any new child
already in a previous or
current frontier

BFS: Avoiding previously seen nodes

59

Los
Angeles

Boston

Phoenix

Providence

Chicago

Denver

New
York

Frontier 0

Frontier 1

Frontier 2

§ Already storing paths so
far when expanding their
end nodes

§ Can do even better:
Reject any new child
already in a previous or
current frontier

BFS: Avoiding previously seen nodes

60

Los
Angeles

Boston

Phoenix

Providence

Chicago

New
York

Frontier 0

Frontier 1

Frontier 3

Denver

Frontier 2

§ Already storing paths so
far when expanding their
end nodes

§ Can do even better:
Reject any new child
already in a previous or
current frontier

§ Each next frontier 𝒏
contains exactly those
nodes reachable in 𝒏
steps from the root
◦ Nodes are discovered at

their shortest distances

BFS: Shortest-path property

61

Los
Angeles

Boston

Phoenix

Providence

Chicago

New
York

Frontier 0

Frontier 1

Frontier 3

Denver

TAKEAWAYS AND
CONSIDERATIONS

63

§ Goal may be defined in terms of properties rather
than a single state

§ Instead of checking state == goal, abstract away
into goal_test(state)

§ Beware of function’s complexity
◦ Gets checked on every state, has a multiplicative effect

Generalizing goal check to goal test function

64

§ No edge weights
◦ Some actions may be more expensive than others
◦ Same number of actions in plan does not

guarantee same cost to execute

§ Branching
◦ Even small branching factors lead to explosion in

exploring state space
◦ Visited set helps, but only if action outcomes overlap

◦ Branching order can lead to vastly different solutions and
performance

Limitations of DFS and BFS

65

Next

time!

