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§ Last week
◦ Dictionaries
◦ Tuples
◦ Mutation
◦ Alias

§ Today
◦ graph models and how to implement
◦ depth-first search

Topics
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bar line

histogram radar scatter plot

pie

What is a Graph?
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These are all visual presentations of information; we want a 
structure that supports computation or inference
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§ Set of nodes (vertices)

What is a Graph?
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§ Set of nodes (vertices)
◦ Might have associated names or properties

§ Set of edges (arcs) each connecting a pair of nodes
◦ Undirected (graph)

What is a Graph?
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§ Set of nodes (vertices)
◦ Might have properties associated with them

§ Set of edges (arcs) each connecting a pair of nodes
◦ Undirected (graph)
◦ Directed (digraph)

◦ Source (parent) and destination (child) nodes
◦ Unweighted or weighted

◦ Assume non-negative

What is a Graph?
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§ Set of nodes (vertices)
◦ Might have properties associated with them

§ Set of edges (arcs) each connecting a pair of nodes
◦ Undirected (graph)
◦ Directed (digraph)

◦ Source (parent) and destination (child) nodes
◦ Unweighted or weighted

◦ Assume non-negative
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• might not be completely 

connected
• could have loops, both 

single length and longer
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Path: B à A à C à D



§ A special kind of directed graph in which any pair of 
nodes is connected by a single path from the node 
closer to the root to the node further from the root

Trees: An Important Special Case
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Root

Leaves

Computer scientists draw trees with root at top

Unique path from 
root to each node



Example tree
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Question: 
Where did I put my 

pset file?

Filesystem is a tree

home

school personal downloads

fall24 spring25 photos

pset.py

slides.pdf pset1 beach.jpg

16.S690 8.02

bills

utils.py



First Reported Use of Graph Theory
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§ Bridges of Königsberg 
problem (1735) 
◦ Known today as 

Kaliningrad
◦ Two islands plus two 

mainland portions of 
city connected by 7 
bridges

§ Is it possible to take a 
walk that traverses 
each of the 7 bridges 
exactly once?
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Leonhard Euler’s Model
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§ Each island (or side of mainland) a node

§ Each bridge an undirected edge

§ Model abstracts away irrelevant details
◦ Size of islands
◦ Length of bridges

◦ All that matters are the connections between nodes

§ Is there a path that contains each edge exactly once?

September 29, 2025

Poll:  
Do you think that such a path exists?

1707-1783



Leonhard Euler’s Model
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§ Each island a node

§ Each bridge an undirected edge

§ Model abstracts away irrelevant details
◦ Size of islands
◦ Length of bridges

§ Is there a path that contains each edge exactly once?
◦ No!

◦ For such a path to exist, each node except the first and last must 
have an even number of edges

◦ No node has an even number of edges!
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§ Not the Königsberg bridges problem itself

§ Rather, the way Euler solved it

§ A new way to think about a very large class of 
problems
◦ Abstract out unnecessary details
◦ Focus on nodes (key elements) and edges (connections 

between key elements)
◦ Model cost of traversing edges in graph
◦ Optimize paths across edges

What’s Interesting About This
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1707-1783



§ Capture and reason about relationships among entities
◦ Routes between Boston and San Jose
◦ How the atoms in a molecule are related to one another
◦ Ancestral relationships (family trees)
◦ Business/social/political connections
◦ Functions and expressions in python
◦ …

Graphs
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§ Computer networks
◦ Efficiently route information from 

one node to another, over large set 
of packets?

§ Transportation networks
◦ Efficiently get to a particular 

destination?
§ Logistics networks

◦ How can I efficiently move 
products to destinations in a 
warehouse or between centers?

§ Social networks
◦ How can I understand diffusion of 

misinformation, identify clusters of 
people with similar characteristics

Graphs model a wide range of systems

September 29, 2025 6.100 LECTURE 8 19

The first three examples all ask about finding an 
efficient path between nodes; the last example 
suggests that there can be other kinds of questions



§ Not only do graphs capture relationships in 
connected networks of items, they support 
inference on those structures

Why Graphs Are So Useful
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• Find sequences of links between 
elements (aka the path problem)

• Find least expensive path between 
elements (aka the shortest path 
problem)

• Partition graph into k (equal) sized 
subgraphs with minimal connections 
between them (aka graph partition 
problem or graph clique problem)

• Find the most efficient way to separate 
sets of connected elements (aka the min-
cut/max-flow problem)

You’ll see these problems in 6.120[6.042], 
6.121[6.006], and other classes 



§ Shortest (unweighted) path
◦ Fewest number of edges from a source node to a 

destination node

A Classic Graph Optimization Problem
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§ Shortest (unweighted) path
◦ Fewest number of edges from a source node to a 

destination node

§ Shortest weighted path
◦ Minimizes the sum of the weights of its edges

A Classic Graph Optimization Problem
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§ Finding a route from one city to another

§ Routing data on communication networks

§ Warehouse logistics of storing and retrieving products

§ Finding a path for a molecule through a chemical 
labyrinth

Some Shortest Path Problems
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IMPLEMENTING GRAPHS
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§ Digraph is a directed graph
◦ Edges pass in one direction only 
◦ Need to represent collection of edges

§ Adjacency matrix
◦ Rows: source nodes
◦ Columns: destination nodes
◦ Cell[s, d] = 1 if there is an edge from s to d
                   = 0 otherwise
◦ Note that in digraph, matrix is not symmetric
◦ Uses O(|nodes|**2) memory

§ Assumes at most one arc between node pairs
◦ Easily generalized to multiple arcs with 

weights

Representations of Digraphs
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§ Digraph is a directed graph
◦ Edges pass in one direction only 
◦ Need to represent collection of edges

§ Adjacency matrix
◦ Rows: source nodes
◦ Columns: destination nodes
◦ Cell[s, d] = 1 if there is an edge from s to d
                   = 0 otherwise
◦ Note that in digraph, matrix is not symmetric
◦ Uses O(|nodes|**2) memory

§ Adjacency list
◦ Associate with each node a list of destination 

nodes that can be reached by one edge
◦ Uses O(|edges|) memory, therefore good for 

sparse graphs

Representations of Digraphs
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A: [D]
B: [A]
C: [B]
D: [A, D]

A B

CD



An Example Digraph
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Adjacency Lists
Boston:            
Providence:  
New York:  
Chicago:   
Denver:   
Phoenix:
Los Angeles: 

September 29, 2025

Node Edges from that node

Insight 1: Store nodes 
as dictionary keys, and 
edges using adjacency 
lists for each node

Boston

Providence

Phoenix

New 
York

Chicago

Denver

Los 
Angeles

Insight 2: Store edge 
weights by turning 
each adjacency list 
into a dictionary



An Example Digraph

6.100 LECTURE 8 30

Adjacency Lists
Boston:  Providence(1), New York(1)
Providence: Boston(1), New York(1)
New York: Chicago(1)
Chicago:  Denver(1), Phoenix(1)
Denver:  Phoenix(1), New York(1)
Phoenix:
Los Angeles: Boston(1)

September 29, 2025

All nodes in graph

Node Edges from that node

Insight 1: Store nodes 
as dictionary keys, and 
edges using adjacency 
lists for each node

Unweighted edges all 
have weight 1

Boston

Providence

Phoenix

New 
York

Chicago

Denver

Los 
Angeles

Insight 2: Store edge 
weights by turning 
each adjacency list 
into a dictionary



Let’s look at some code
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Filesystem is a tree
home

school personal downloads

fall24 spring25 photos

pset.py

slides.pdf pset1 beach.jpg

6.100 8.01

bills

test.py

fall25



FINDING PATHS IN TREES
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Example tree
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Question: 
Where did I put my 

pset file?

Filesystem is a tree

home

school personal downloads

fall24 spring25 photos

pset.py

slides.pdf pset1 beach.jpg
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test.py

fall25



§ Keep exploring children 
before considering siblings

§ After branching on child, 
recursively find a path to 
target, using child as new 
root

Approach 1: Leverage recursive structure

34
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§ Keep exploring children 
before considering siblings

§ After branching on child, 
recursively find a path to 
target, using child as new 
root

Approach 1: Leverage recursive structure
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§ Keep exploring children 
before considering siblings

§ After branching on child, 
recursively find a path to 
target, using child as new 
root

Approach 1: Leverage recursive structure
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Depth-First Search (DFS)
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Example Implementation
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Example Implementation
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home

school personal downloads

fall24 spring25 photos

pset.py

slides.pdf pset1 beach.jpg
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test.py

fall25

dfs_tree_helper(graph, “pset.py”, [“home”])

dfs_tree_helper(graph, “pset.py”, [“home”,”school”])

dfs_tree_helper(graph, “pset.py”, 
[“home”,”school”,”fall24”])



Example Implementation
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home

school personal downloads

fall24 spring25 photos

pset.py

slides.pdf pset1 beach.jpg
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test.py

fall25

dfs_tree_helper(graph, “pset.py”, [“home”])

dfs_tree_helper(graph, “pset.py”, [“home”,”school”])

dfs_tree_helper(graph, “pset.py”, 
[“home”,”school”,”spring25”])



§ Follow successive layers 
of depth away from the 
root
◦ Layers are “frontiers”

§ Each frontier is one step 
away from the previous 
frontier

Approach 2: Scan across branches

40

home

school personal downloads

fall24 spring25 photos

16.S690 8.02

bills

Frontier 0

Frontier 1

pset.py

slides.pdf pset1 beach.jpg

utils.py



§ Follow successive layers 
of depth away from the 
root
◦ Layers are “frontiers”

§ Each frontier is one step 
away from the previous 
frontier

Approach 2: Scan across branches
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Frontier 2

Frontier 1

Breadth-First Search (BFS)
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school personal downloads
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§ Shortest distance between start and goal
◦ BFS guaranteed to find it
◦ But time and memory can grow quickly with that 

distance, because…

§ Branching factor
◦ Exponential growth in the number of nodes/states at 

each frontier
◦ Inherent in tree structure, affects DFS, too

§ Order of exploring neighbors
◦ Affects DFS more than BFS
◦ Could get lucky and go down all the right branches
◦ But going down wrong branch, especially early on, can be 

wasteful

Factors affecting performance
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Let’s take a short break
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https://imgur.com/gallery/n5Ouj

https://imgur.com/gallery/n5Ouj


GENERALIZING SEARCH 
TO GRAPHS
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DFS: Avoiding infinite cycles
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DFS: Avoiding infinite cycles
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DFS: Avoiding infinite cycles
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DFS: Avoiding infinite cycles
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DFS: Avoiding infinite cycles
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DFS: Avoiding infinite cycles
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§ Encounter cycles when 
expanding to nodes 
already on the path

§ Prevent DFS “subtrees” 
from looping back on 
themselves

DFS: Avoiding infinite cycles
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TRACE:
path: Boston
path: Boston -> Providence
  AVOID self-loop from Providence to Boston
path: Boston -> Providence -> New York
path: Boston -> Providence -> New York -> Chicago
path: Boston -> Providence -> New York -> Chicago -> Denver
  AVOID self-loop from Denver to New York
path: Boston -> Providence -> New York -> Chicago -> Denver -> Phoenix
['Boston', 'Providence', 'New York', 'Chicago', 'Denver', 'Phoenix']

Los 
Angeles

Boston

Phoenix

Providence

Chicago

Denver

New 
York



§ Already storing paths so 
far when expanding their 
end nodes

§ Can do even better: 
Reject any new child 
already in a previous or 
current frontier

BFS: Avoiding previously seen nodes
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§ Already storing paths so 
far when expanding their 
end nodes

§ Can do even better: 
Reject any new child 
already in a previous or 
current frontier

BFS: Avoiding previously seen nodes
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Frontier 2

§ Already storing paths so 
far when expanding their 
end nodes

§ Can do even better: 
Reject any new child 
already in a previous or 
current frontier

BFS: Avoiding previously seen nodes
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Frontier 2

§ Already storing paths so 
far when expanding their 
end nodes

§ Can do even better: 
Reject any new child 
already in a previous or 
current frontier

BFS: Avoiding previously seen nodes
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Frontier 2

§ Already storing paths so 
far when expanding their 
end nodes

§ Can do even better: 
Reject any new child 
already in a previous or 
current frontier

§ Each next frontier 𝒏 
contains exactly those 
nodes reachable in 𝒏 
steps from the root
◦ Nodes are discovered at 

their shortest distances

BFS: Shortest-path property
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TAKEAWAYS AND 
CONSIDERATIONS
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§ Goal may be defined in terms of properties rather 
than a single state

§ Instead of checking state == goal, abstract away 
into goal_test(state)

§ Beware of function’s complexity
◦ Gets checked on every state, has a multiplicative effect

Generalizing goal check to goal test function
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§ No edge weights
◦ Some actions may be more expensive than others
◦ Same number of actions in plan does not

guarantee same cost to execute

§ Branching
◦ Even small branching factors lead to explosion in 

exploring state space
◦ Visited set helps, but only if action outcomes overlap

◦ Branching order can lead to vastly different solutions and 
performance

Limitations of DFS and BFS

65

Next 

time!


