
Dictionaries, 
Tuples, Hashing
6.1000 LECTURE 7

FALL 2025

16.1000 LECTURE 7



Storing associated data

▪ E.g., registrar stores term records of each student’s living group and 
course registration

▪ One strategy: parallel lists
◦ names = [name1, name2, name3]
addresses = [address1, address2, address3]
classes = [classes1, classes2, classes3]

▪ Another strategy: nested lists
◦ records = [

[name1, address1, classes1],
[name2, address2, classes2],
[name3, address3, classes3],

]

▪ Disadvantages
◦ access by index is hard to read
◦ indexing is error-prone, need to keep lists synchronized

6.1000 LECTURE 7 2



Another way: Python dictionaries

▪ Use student names as direct “indicies”/selectors into data

▪ Parallel dict strategy
◦ addresses = {

name1: address1, name2: address2, name3: address3
}
classes = {

name1: classes1, name2: classes2, name3: classes3
}

◦ addresses[name1] → address1

▪ Nested dict strategy
◦ records = {

name1: {"address": address1, "classes": classes1},
name2: {"address": address2, "classes": classes2},
name3: {"address": address3, "classes": classes3},

}

◦ records[name1]["address"] → address1

6.1000 LECTURE 7 3



Python dict overview

▪ A mapping type from keys to values
◦ https://docs.python.org/3/library/stdtypes.html#mapping-

types-dict

▪ Square bracket syntax connotes analogy to list indexing
◦ lists have implicit sequential indicies
◦ dicts have explicit key labels

▪ Keys can be (almost) any Python object
◦ so ordering no longer makes sense

▪ dict objects in memory are conceptually two-column tables
◦ left column contains references to keys
◦ right column contains references to values associated with 

those keys
◦ like lists, no objects stored in dicts

6.1000 LECTURE 7 4

https://docs.python.org/3/library/stdtypes.html#mapping-types-dict


dictmutating operations

▪ add or update key-value pair

◦ dict[key] = value

▪ delete key-value pair

◦ del dict[key]

◦ dict.pop(key, default)

▪ merge with other dictionaries
◦ dict | other

◦ dict |= other

◦ dict.update(other)

6.1000 LECTURE 7 5



dict operations

▪ object creation

◦ {} is empty dict

◦ {key1: val1, key2: val2} is dict literal

◦ dict() constructor copies any dict passed in

◦ or creates new dict from sequence of [key, value] pairs

◦ len(dict)

◦ dict.copy()

◦ dict.clear()

▪ key and value retrieval

◦ key in dict

◦ dict[key] → value

◦ dict.get(key, default) → value

◦ if key not in dict, returns default instead of raising KeyError

6.1000 LECTURE 7 6



Immutability of dict keys

▪ dict keys must be hashable
◦ for Python’s built-in types, hashable basically means 

immutable

▪ When you associate a key with a value:
◦ expect to be able to retrieve the value by looking up with an 

equivalent (==) key, no matter how it was constructed

◦ if keys are mutable (e.g., lists), code that runs after a key 
mutation may be unaware that the key has changed

6.1000 LECTURE 7 7



Common types for dict keys

▪ ints
◦ bools are really ints underneath the hood, so avoid those

▪ floats are a bad idea
◦ mathematically equivalent expressions may not yield

equivalent floats

▪ strs are a great idea
◦ natural labels

◦ this is one reason why Python’s strs are immutable

▪ tuples are also good
◦ tuples are just like lists, but immutable

◦ for a tuple to be hashable, all its nested contents must also 
be immutable

6.1000 LECTURE 7 8



Iterating over dicts

▪ No inherent ordering of dict keys, unlike list indicies
◦ but still wish to retrieve all elements

◦ nature of code/time means have to do so sequentially

▪ Python’s for directly iterates over dict keys

◦ for key in dict:
value = dict[key]

◦ list(dict) will product a list of dict’s keys

▪ Can also iterate over dictionary views
◦ dict.keys()

◦ dict.values()

◦ dict.items() → produces (key, value) tuples

6.1000 LECTURE 7 9



Example: word frequencies in song lyrics

▪ Study code on your own

▪ Note how dicts are being created, updated, iterated over, 
deleted from

6.1000 LECTURE 7 10



List indexing and direct addressing

▪ List elements are contiguous in memory

◦ each cell, being a reference to another location in memory, is a 
fixed size

◦ so if you know where index 0 is, can immediately calculate where 
to look up index i very

◦ don’t need to traverse list sequentially from start to index i

▪ However, membership test requires sequential traversal

▪ Another storage scheme: direct addressing

◦ let the list index represent the actual data

◦ because any object’s bit representation can be interpreted as an int

◦ when putting object in list, store a True flag at the index that 
represents the object

◦ theoretically possible, impractical due to insane memory space

6.1000 LECTURE 7 11



Hashing and dictionaries

▪ Idea: translate each objects into a smaller address space
◦ magic translation through a mathematical hash function

▪ As long as number of objects is still smaller than number of 
addresses, underlying list has enough spaces to store pointers to all 
objects
◦ Note: order is unlikely to be preserved

▪ Issue: sometimes, hash function will map two objects to the same 
index
◦ called a collision
◦ Fix: store objects in secondary lists called chains at each index in 

the underlying list

▪ Result: hash tables have the performance of direct addressing 
when determining membership
◦ Python dicts are just hash tables for keys, with values stored 

next to each key

6.1000 LECTURE 7 12


