
Lists and Mutation
6.1000 LECTURE 6

FALL 2025

16.1000 LECTURE 6



Announcements

▪ Pset 1 checkoff available through Wednesday 9/24

▪ Pset 2 out, due next Monday 9/29
◦ redownload for updated test.py as of Saturday 9/20 at 3 pm

▪ Midterm 1 in two weeks 10/6
◦ covers lectures 1–9, psets 1–2

◦ study lecture code, finger exercises, psets, checkoffs

◦ lectures 7–9 will be tested less heavily

▪ Pset 3 to be released Wednesday 10/8 after midterm
◦ uses lectures 8–10 material

6.1000 LECTURE 6 2



List mutation operations

▪ Review Python’s documentation
◦ non-mutating sequence ops

◦ applies to list, str, range

◦ https://docs.python.org/3/library/stdtypes.html#sequence-
types-list-tuple-range

◦ mutating sequence ops

◦ https://docs.python.org/3/library/stdtypes.html#mutable-
sequence-types

◦ list-specific mutating ops

◦ https://docs.python.org/3/library/stdtypes.html#lists

6.1000 LECTURE 6 3

https://docs.python.org/3/library/stdtypes.html#sequence-types-list-tuple-range
https://docs.python.org/3/library/stdtypes.html#mutable-sequence-types
https://docs.python.org/3/library/stdtypes.html#lists


List mutation operations

▪ Index assignment

◦ list[idx] = val

▪ Grow or shrink by element

◦ list.append(val)

◦ list.extend(vals), list += vals

◦ list.remove(val)

▪ Grow or shrink by index
◦ list.insert(idx, val)

◦ list.pop(idx), del list[idx]

6.1000 LECTURE 6 4



List mutation operations

▪ Sort and reverse

◦ list.sort() vs sorted(list)

◦ list.reverse() vs reversed(list)

▪ Clearing

◦ list.clear()

6.1000 LECTURE 6 5



Why mutation?

▪ Lists can get arbitrarily long
◦ to change a small amount of content, would be wasteful to 

create an entirely new list

▪ So why aren’t strs mutable? They can get quite long as well.
◦ language design tradeoff: immutable objects have

advantages

◦ will discuss more next lecture

6.1000 LECTURE 6 6



Meaning of “dot” notation

▪ E.g., list.append(val) or str.index(char)

▪ These are actual functions, but they work only on sequences
◦ as if you were calling something like:

◦ append(list, val)

◦ index(str, char)

▪ Doesn’t make sense to call int.append(val)

▪ Mechanism will become more clear by Lecture 14
◦ classes and custom types

6.1000 LECTURE 6 7



Naming suggestions

▪ Don’t name your lists list

▪ Avoid naming them a single character L

▪ Call them what they represent
◦ seq, sequence, numbers, names, x_vals

▪ Conventions is lowercase with underscores

▪ Start reading PEP 8
◦ https://peps.python.org/pep-0008/

◦ https://pep8.org/

6.1000 LECTURE 6 8

https://peps.python.org/pep-0008/
https://pep8.org/


Aliasing vs copying

▪ Aliasing is when there are two or more references to the 
same object
◦ your_list = [

["peanut butter", "jelly"], "toast“
]

◦ my_list = your_list

▪ Copying is when an object’s contents are duplicated in a 
separate but equivalent object
◦ my_list = your_list.copy()
◦ equivalent forms:

◦ my_list = list(your_list)
◦ my_list = your_list[:]

◦ note that my_list[0] and your_list[0] are still aliases
◦ refer to the same list ["peanut butter", "jelly"]

6.1000 LECTURE 6 9



Shallow vs deep copying

▪ From previous slide
◦ your_list = [

["peanut butter", "jelly"], "toast"
] 

▪ Default copies only work on single object’s contents, not objects
referenced by those contents
◦ my_list = your_list.copy()

▪ Deep copying traverses any nested compound structure to arbitrary 
depth
◦ import copy
◦ my_list = copy.deepcopy(your_list)
◦ now my_list[0] and your_list[0] are no longer aliases

▪ Deep copying is rarely truly needed
◦ copy.deepcopy() is fairly complex, needs to work for many types to 

arbitraty nesting depth
◦ most applications don’t involve arbitrary depth

6.1000 LECTURE 6 10



Aliasing in functions

▪ Aliasing happens all the time
◦ e.g., function parameters are aliases of references in the 

calling frame

◦ inconsequential for immutable objects

◦ can be useful and/or dangerous

◦ useful: saves memory, different names in different contexts

◦ dangerous: code in another context may not be aware contents 
of list or nested lists are changing

▪ Good practice
◦ don’t mutate objects accessible from arguments unless 

docstring/spec says to

◦ keep function parameters assigned to original inputs

6.1000 LECTURE 6 11



Mutating examples

▪ Study code

▪ Often more than one way to apply mutating operations to 
achieve final result
◦ Try coming up with alternate solutions, or explaining why 

they wouldn’t work

▪ Be careful when mutating what you’re looping over
◦ indices can shift

◦ end of the list can shift

◦ consider iterating over a separate sequence that’s not being 
mutated

6.1000 LECTURE 6 12



Takeaways

▪ Lists are mutable sequences of object references
◦ no objects “within” the list object

▪ Aliasing happens everywhere

▪ Know when you need a copy instead

▪ Understand how mutation interacts with for loop 
mechanism

6.1000 LECTURE 6 13


