
TESTING &
DEBUGGING
(download slides and .py files to follow along)

6.1000 LECTURE 5

Tim Kraska, MIT EECS

6.100A LECTURE 5 1

“Debugging: Being the detective in a crime movie where you are also the murderer.”
— Unknown

Announcements

▪Pset 1 is due at 10 pm, checkoffs start tomorrow (Thu)
in office hours and go until next Wed

▪No office hours this Friday

▪No finger exercise today

6.100A LECTURE 6 2

Last Lecture:
Types of Problems with Code

▪ Syntax: program has no meaning, won’t run

▪ Crashes: program has meaning but invalid at some
point

◦ converting string '1' to an integer is valid, but converting string
'abc' to integer is an invalid operation

▪ Returns wrong answer: valid meaning throughout,
not what you meant

◦ we saw a lot of those examples in the mutability lecture

▪ Runs forever: (likely) ditto

6.100A LECTURE 5 3

exceptions & assertions

testing & debugging (today)

testing & debugging (today)

fix syntax error (line number given)

TESTING

6.100A LECTURE 5 4

Black and Glass Box Testing

▪ Black box testing
• Based on the task specification:

(without looking at the code)
~Try to test all possible types of inputs

▪ Glass box testing
• Based on knowledge of the code:

~Try to test all parts of the code

6.100A LECTURE 5 5

Black and Glass Box Testing

▪ Black box testing
• explore paths through specification

(without looking at the code)

▪ Glass box testing
• explore paths through code

6.100A LECTURE 5 6

Black Box Testing

def sqrt(x, eps):

""" Assumes x, eps floats, x >= 0, eps > 0

Returns guess such that x-eps <= guess * guess <= x+eps """

▪ testing based on specification (as described by docstring)

▪ designed without looking at the code

▪ exploring paths through specification
• build test cases that cover different parts of the specification

• think about boundary conditions (empty lists, singleton list,
large numbers, small numbers)

▪ + can be done by someone other than the programmer to avoid
programmer biases

▪ + testing can be reused if implementation changes

6.100A LECTURE 5 7

Black Box Testing: Boundary Cases

6.100A LECTURE 5 8

def sqrt(x, eps):

""" Assumes x, eps floats, x >= 0, eps > 0

Returns guess such that x-eps <= guess * guess <= x+eps """

CASE x eps

perfect square 25 0.0001

less than 1 0.05 0.0001

irrational square

root 2 0.0001

cases from
problem domain

Black Box Testing: Boundary Cases

6.100A LECTURE 5 9

CASE x eps

boundary 0 0.0001

perfect square 25 0.0001

less than 1 0.05 0.0001

irrational square

root 2 0.0001

edge case

cases from
problem domain

def sqrt(x, eps):

""" Assumes x, eps floats, x >= 0, eps > 0

Returns guess such that x-eps <= guess * guess <= x+eps """

Black Box Testing: Boundary Cases

6.100A LECTURE 5 10

CASE x eps

boundary 0 0.0001

perfect square 25 0.0001

less than 1 0.05 0.0001

irrational square

root 2 0.0001

extremes 2 1.0/2.0**64.0

extremes 1.0/2.0**64.0 1.0/2.0**64.0

extremes 2.0**64.0 1.0/2.0**64.0

extremes 1.0/2.0**64.0 2.0**64.0

extremes 2.0**64.0 2.0**64.0

edge case

cases from
problem domain

extreme values
for parameters

def sqrt(x, eps):

""" Assumes x, eps floats, x >= 0, eps > 0

Returns guess such that x-eps <= guess * guess <= x+eps """

Glass Box Testing

▪ Use code directly to guide design of test cases

▪ Path-complete if every potential path through code is tested
at least once
◦ limitations:

• cannot test all paths (loops and recursion)

• doesn't show missing paths that should be included in
your code but are not there

▪ Rules of thumb
• Branches

• For loops

• While loops

• Recursion (next lecture)

6.100A LECTURE 5 11

Glass Box Testing

def abs(x):

""" Assumes x is an int

Returns x if x>=0 and –x otherwise """

if x < -1:

return –x

else:

return x

▪ path-complete test suite according to glass-box testing
requirements:
◦ negative number -2 (for if-branch)

◦ positive number: 2 (for else-branch)

6.100A LECTURE 5 12

Glass Box Testing

def abs(x):

""" Assumes x is an int

Returns x if x>=0 and –x otherwise """

if x < -1:

return –x

else:

return x

▪ path-complete test suite according to glass-box testing
requirements:
◦ negative number -2 (for if-branch)

◦ positive number: 2 (for else-branch)

▪ but testing each code path was not sufficient in this example
since abs(-1) incorrectly returns -1

▪ therefore, combine glass box testing with black box testing

6.100A LECTURE 5 13

In the Unlikely Event Your Code Fails a Test

6.100A LECTURE 5 15

Debugging for Beginners
FRÉDO DURAND, MIT EECS & CSAIL

Who has ever had bugs?

6.100A LECTURE 5 17

Uplifting halftime coach speech

6.100A LECTURE 5 18

But remember that 93% of numbers are made up

Even the best programmers create silly bugs

Everyone can debug

Exciting paradigmatic case of problem solving

Combination of process/tools and
intuition/grit/smarts

But 97% of bugs can be fixed with 4 simple tools:

- Read the error message

- PRINT

- Smart inputs

- Thinking out loud

Most of it is simple, if a bit tedious

Basic debugging

Leverage error messages

- read it, go where it says, google it

Understand your code’s execution using PRINT

- Print info about both values and control flow (code location)

- Run method manually in parallel when possible

- Also for ideas/method: run simple examples w/ pen & paper

Find smart inputs

Think out loud

Why print debugging?

▪Bugs could be due to problems at different levels of abstraction and
understanding
◦ error in understanding the goals, the logic of the solution, in translating

the logic into code, having the high-level logic implemented correctly
but having small details wrong, errors in understanding how a language
or module works, etc.

▪Abstract solution or code are hard to think about, and our mental
models/understanding can be wrong

▪Whereas one sequential execution of the code is concrete
and can be followed step by step.
=> That’s what you should focus on

▪We need a way to make the execution visible to us
◦ Which parts of the code get executed in what order
◦ What values are

▪One simple solution: PRINT

▪It’s so useful that you should do some printing before you are aware of
bugs

6.100A LECTURE 5 20

What to print?

Variable values

Start with “important” ones, after you compute/update them

But you may need to add trivial ones

For mutable types, print even if you think they haven’t changed

Location in code

Iteration number

Branch of “if”

Reading the printouts

Printing is not enough, you need to read!

Not necessarily read everything, especially with loops

Sometimes just the beginning or end suffice

True, sometimes it’s tedious

But tedious is better than daunting

Ideally verify values manually

Actually fixing the bug
Fix it (but keep track of change)

Test that it is actually fixed

Else check if changes were possibly useful

If not, undo them or comment them out

And keep debugging

Did it break something else?

(regression testing)

Are there similar bugs?

Optional: Remove / deactivate debugging code

Advanced: Version control (save current version)

If Lucky, a Helpful Error Message

6.100A LECTURE 5 24

▪ Trying to access beyond the limits of a list
test = [1,2,3] then

test[4] → IndexError

▪ Trying to convert an inappropriate type
int('test') → TypeError

▪ Referencing a non-existent variable
a → NameError

▪ Mixing data types without appropriate coercion
'3'/4 → TypeError

▪ Forgetting to close parenthesis, quotation, etc.
a = len([1,2,3]

print(a) → SyntaxError

Use type of error
to guide search

Python points to
location in code where
error occurred

Print debugging
Square root with binary search

Leverage the error message

Keep testing with more inputs

Print debugging

32

Where we are & control flow

Values

I could also print the square of guess
Maybe print low and high
Deciding what to print is part of the elusive art

Print debugging Aka printf debugging

Are there similar bugs?

Are there similar bugs?

Cleaning up
Remove excessive print (delete, comment, if debug_mode)

You can leave some just in case as long as they don’t overwhelm you

Run more tests
… (not shown here)

Basic simple inputs: 0, 4

Some normal/average/random values

Adversarial edge cases: 0, 0.5, 1, -4

Edge cases can overlap with simple/sanity check

Five-minute break

6.100A LECTURE 5 42

Trying to fix my code

“Only half of programming is coding. The other 90% is debugging.”
anonymous

Another Example

def is_palindrome(x):

temp = x

temp.reverse

if temp == x:

return True

else:

return False

print(is_palindrome(list('abcba')))

print(is_palindrome(list('palinnilap')))

print(is_palindrome(list('ab')))

6.100A LECTURE 5 43

Palindrome: a sequence that
reads the same forward and
backwards.

Should test with examples of
palindromes and non-
palindromes

returns True

returns True

returns True

???

Bisection Search for Bug(s)

def is_palindrome(x):

temp = x

temp.reverse

print(temp, x)

if temp == x:

return True

else:

return False

print(is_palindrome(list('ab')))

6.100A LECTURE 5 44

find location to print intermediate values
after the bug has most likely occurred

test with example that
caused the bug.

Printed output:

Problem: both are the same
and temp is not reversed

Bisection Search, cont.

6.100A LECTURE 5 45

We expect temp and x to
be reverses of each other

Expect temp and x to have
same value

def is_palindrome(x):

temp = x

print('before reverse', temp, x)

temp.reverse

print('after reverse', temp, x)

if temp == x:

return True

else:

return False

print(is_palindrome(list('ab')))

Printed output:

Looks good before reverse
but reverse is not working.

Trying Again

def is_palindrome(x):

temp = x

print('before reverse', temp, x)

temp.reverse()

print('after reverse', temp, x)

if temp == x:

return True

else:

return False

print(is_palindrome(list('ab')))

6.100A LECTURE 5 46

We expect temp and x to
be reverses of each other

Expect temp and x to have
same value

Printed output:

Reversing the list is working
now but both lists are
reversed, which is not what
we wanted.

Two Bugs Down

def is_palindrome(x):

temp = x.copy()

print('before reverse', temp, x)

temp.reverse()

print('after reverse', temp, x)

if temp == x:

return True

else:

return False

print(is_palindrome(list('ab')))

6.100A LECTURE 5 47

Printed output:

This looks correct!

Some Pragmatic Advice
▪ look for (your) usual suspects

◦ e.g., alias versus clone in list

▪ ask why the code is doing what it is, not why it is not doing
what you want

▪ the bug is probably not where you think it is – eliminate
locations – bisection search helps do this

▪For mutations, print values even when you don’t think you
have changed them

▪ explain the problem to someone else

▪ don't believe the documentation

▪ take a break and come back to the bug later

6.100A LECTURE 5 48

Debugging as Search

▪ Want to narrow down space of possible sources of error

▪ Design experiments that expose intermediate stages of
computation (use print statements), and use results to further
narrow search

▪ Bisection search can be a powerful tool for this

6.100A LECTURE 5 49

In short: don’t be a deer in headlights!
1/ Leverage error messages

Read them, go to the location, and google if you don’t understand

2/ Print

Print intermediate values

Here and there print where you are

(entering function XXX ; in else branch of YYY, etc.)

Print mutable types even if you think they haven’t changed

Ideally compute solution in parallel on pen and paper

3/ Think of smart input values

4/ step back, think out loud

Talk to a rubber ducky

Do you have all the tools?
1/ Leverage error messages

Read them, go to the location, and google if you don’t understand

2/ Print

Print intermediate values

Here and there print where you are

(entering function XXX ; in else branch of YYY, etc.)

Print mutable types even if you think they haven’t changed

Ideally compute solution in parallel on pen and paper

3/ Think of smart input values

4/ step back, think out loud

Is there more???

More advanced debugging tools

https://pythontutor.com

Step by step execution

Visualization of variables, environments

But only for small programs

https://pythontutor.com/

Asserts

Declare
invariants which
must hold true

Logging
Setup a logging library

Syntax not
important for
now. We cover
objects later

Using the logging function

Called print substitution.
You can also do it with strings

Basic cheat sheet for debugging
Actionable steps High level advice

Leverage error message when possible,

- read it, go where it says, google it

Understand your code’s execution using print

- Print info about both values and control flow (code location)
- Read what you have printed (tedious but easy)
- Be smart about what to print but err on the side of more info
- Run method manually in parallel when possible
- Think backward: How did we get there/this value?
- Understand built-in & external functions. Test them.
- Alternative: use Online PythonTutor

Find smart inputs

- Simple sanity checks easy to run manually
- Average case
- Adversarial edge cases
- Random
- Keep a systematic list of tests you run systematically

Think out loud

To a friend, to a rubber ducky, write it down

You can do it!

- Avoid deer in headlights syndrome!

Keep it concrete.

- Focus on execution & examples,
not code or ideas

Step back

- Take a break

- Question your focus and
assumptions

Test and debug early & often

Keep track of what you are doing

- take note

- scopy files/code

- make changes removable

Fix/change one thing at a time.

(Slightly) More advanced approaches
Narrow down where errors may be:

- Binary search:
see if value in middle of code is correct to see if bug is
before or after
keep splitting in two

Pattern matching & adaptive focus for common bugs and

behaviors

- E.g. code runs forever -> focus on loops

- Array bound issues, off by one, first last case

- Your bank of patterns and intuition will sharpen as you

learn

Defensive programming and assert

• add asserts so code crashes when a condition is wrong

Modify code

- Start from last version that worked

- Create minimal version of problem

- Call/test parts in isolation

More advanced: Use debugger (I rarely do)

Scientific method perspective:

Exploratory/observational experiments

- Mostly previous slide

Form Hypotheses about causes for bug

Come up with & Run Verification
experiments

- Smart inputs
- smart measurements/print

Take notes about everything

Kuhn’s structure of scientific revolutions

- Ordinary science, verify current
paradigm (testing before bug occurs)

- Crisis: a bug occurs

- New paradigm at first may lead to
worse predictions

- Eventually angles get smoothed and it
all restarts

● https://blog.hartleybrody.com/debugging-code-beginner/

● https://andypi.co.uk/2024/01/26/concise-guide-to-debugging-anything-cheat-
sheet/

● https://jvns.ca/blog/2019/06/23/a-few-debugging-resources/

● https://blog.regehr.org/archives/199

● https://wizardzines.com/zines/debugging-guide/

● https://greenteapress.com/thinkpython2/html/thinkpython2021.html

● https://www.freecodecamp.org/news/what-is-debugging-how-to-debug-code/

● https://blog.stackademic.com/the-ultimate-cheat-sheet-for-debugging-like-a-
pro-a4488f7cacee

● https://medium.com/swlh/a-beginners-guide-to-debugging-for-beginners-
21eb119a8445

Links about debugging

57

https://blog.hartleybrody.com/debugging-code-beginner/
https://andypi.co.uk/2024/01/26/concise-guide-to-debugging-anything-cheat-sheet/
https://jvns.ca/blog/2019/06/23/a-few-debugging-resources/
https://blog.regehr.org/archives/199
https://wizardzines.com/zines/debugging-guide/
https://greenteapress.com/thinkpython2/html/thinkpython2021.html
https://www.freecodecamp.org/news/what-is-debugging-how-to-debug-code/
https://blog.stackademic.com/the-ultimate-cheat-sheet-for-debugging-like-a-pro-a4488f7cacee
https://medium.com/swlh/a-beginners-guide-to-debugging-for-beginners-21eb119a8445

Repeat after me with conviction

I am not a deer in headlights

Extra material

6.100A LECTURE 5 59

Jokes
From https://blog.stackademic.com/the-ultimate-cheat-sheet-for-
debugging-like-a-pro-a4488f7cacee

To lighten the mood, here are some funny debugging quotes:

“The first rule of programming is: If it works, it’s not done yet.” —
Unknown

“I have not failed. I’ve just found 10,000 ways that won’t work.” —
Thomas Edison

From https://thepythoncodingbook.com/errors-and-bugs/

Only half of programming is coding. The other 90% is debugging.

anonymous

Sometimes it pays to stay in bed on Monday rather than spending
the rest of the week debugging Monday’s code.

Dan Solomon/Christopher Thompson

https://medium.com/dare-to-be-better/the-
simplest-debugging-strategy-that-many-
beginners-ignore-ce14e98edb2e

https://blog.stackademic.com/the-ultimate-cheat-sheet-for-debugging-like-a-pro-a4488f7cacee
https://medium.com/dare-to-be-better/the-simplest-debugging-strategy-that-many-beginners-ignore-ce14e98edb2e

Decent links

https://blog.hartleybrody.com/debugging-code-beginner/

https://andypi.co.uk/2024/01/26/concise-guide-to-debugging-anything-cheat-sheet/

https://jvns.ca/blog/2019/06/23/a-few-debugging-resources/

https://blog.regehr.org/archives/199

https://wizardzines.com/zines/debugging-guide/

https://greenteapress.com/thinkpython2/html/thinkpython2021.html

https://www.freecodecamp.org/news/what-is-debugging-how-to-debug-code/

https://blog.stackademic.com/the-ultimate-cheat-sheet-for-debugging-like-a-pro-a4488f7cacee

https://medium.com/swlh/a-beginners-guide-to-debugging-for-beginners-21eb119a8445

https://blog.hartleybrody.com/debugging-code-beginner/
https://andypi.co.uk/2024/01/26/concise-guide-to-debugging-anything-cheat-sheet/
https://jvns.ca/blog/2019/06/23/a-few-debugging-resources/
https://blog.regehr.org/archives/199
https://wizardzines.com/zines/debugging-guide/
https://greenteapress.com/thinkpython2/html/thinkpython2021.html
https://www.freecodecamp.org/news/what-is-debugging-how-to-debug-code/
https://blog.stackademic.com/the-ultimate-cheat-sheet-for-debugging-like-a-pro-a4488f7cacee
https://medium.com/swlh/a-beginners-guide-to-debugging-for-beginners-21eb119a8445

https://www.amazon.com/Debugging-
Indispensable-Software-Hardware-
Problems/dp/0814474578

https://www.amazon.com/Debugging-Indispensable-Software-Hardware-Problems/dp/0814474578

https://wizardzines.com/zines
/debugging-guide/

https://andypi.co.uk/wp-
content/uploads/2024/01/Debugging
Sheet-with-Python-Example.pdf

https://andypi.co.uk/wp-content/uploads/2024/01/Debugging-Cheat-Sheet-with-Python-Example.pdf

https://www.csteachingtips.org/tips-tutors

https://www.csteachingtips.org/tips-tutors

#1. Print things a lot

#2. Start with code that already works

#3. Run your code every time you make a small change

#4. Read the error message

#5. Google the error message

#6. Guess and Check

#7. Comment-out code

#8. If you're not sure where the problem is, do a binary search

#9. Take a break and walk away from the keyboard

#10. How to ask for help

https://blog.hartleybrody.com/debugging-code-
beginner/

https://blog.hartleybrody.com/debugging-code-beginner/

reproduce your bug (but how do you do that?)

reproduce your bug quickly

accept that it’s probably your code’s fault

start doing experiments

change one thing at a time

check your assumptions

weird methods to get information

write your code so it’s easier to debug

https://jvns.ca/blog/2019/06/23/a-few-
debugging-resources/

https://jvns.ca/blog/2019/06/23/a-few-debugging-resources/

A Scientific Approach to Debugging

1. Verify the Bug and Determine Correct Behavior

2. Stabilize, Isolate, and Minimize

3. Estimate a Probability Distribution for the Bug

4. Devise and Run an Experiment

5. Iterate Until the Bug is Found

6. Fix the Bug and Verify the Fix

7. Undo Changes

8. Create a Regression Test

9. Find the Bug’s Friends and Relatives

What If You Get Stuck?

https://blog.regehr.org/archives/199

https://blog.regehr.org/archives/199

From Andrew Adams

Obviously you need to test your code to see if it works or not by running it on some inputs. What's
less obvious is that you shouldn't just do this manually. You should write down those tests in a
separate program so that you can rerun them quickly and easily, so that you don't break something
that was already working without realizing when you make a change. Tests represent the ground you
have gained and held in your war against the problem. Many students will already appreciate this.
However, a second-order effect that I've come to appreciate more and more is that when you write a
test you're often just writing down the cases you already had in mind while writing the code, so once
you get good at coding they're likely to work already. That doesn't mean your code is correct though.
Your code is still probably broken in cases you didn't think to test, and possibly wouldn't ever think to
test. There are unknown unknowns. There is a trick though: maybe you can't think of the right test
cases, but a random number generator can stumble upon them accidentally. So if at all possible, test
your program on millions of random inputs. It will find bugs in code you thought was perfect. You
don't need to use fancy fuzz-testing tools or frameworks. Just use a seeded random number
generator to construct some random input, and make sure to log the seed (or the random input) so
that you can reproduce any failure it finds. Sometimes I leave them running overnight. Highly
recommended.

