TESTING &
DEBUGGING

(download slides and .py files to follow along)

6.1000 LECTURE 5
Tim Kraska, MIT EECS

“Debugging: Being the detective in a crime movie where you are also the murderer.”
— Unknown

6.100A LECTURE 5 1

Announcements

"Pset 1 is due at 10 pm, checkoffs start tomorrow (Thu)
in office hours and go until next Wed

=*No office hours this Friday

=No finger exercise today

6.100A LECTURE 6 2

Last Lecture:
Types of Problems with Code

= Syntax: program has no meaning, won’t run

fix syntax error (line number given)

= Crashes: program has meaning but invalid at some
point

o converting string '1"' to an integer is valid, but converting string
"abc' to integer is an invalid operation

exceptions & assertions

/= Returns wrong answer: valid meaning throughout, N\
not what you meant
° we saw a lot of those examples in the mutability lecture

testing & debugging (today)

" Runs forever: (likely) ditto
k testing & debugging (today) /

6.100A LECTURE 5 3

TESTING

Black and Glass Box Testing

= Black box testing

* Based on the task specification:
(without looking at the code)
~Try to test all possible types of inputs

= Glass box testing

* Based on knowledge of the code:
~Try to test all parts of the code

6.100A LECTURE 5 5

Black and Glass Box Testing

= Black box testing

* explore paths through specification
(without looking at the code)

= Glass box testing
* explore paths through code

6.100A LECTURE 5 6

Black Box Testing

def sqgrt(x, eps):
"N Assumes X, €ps flOatS, X >= O, eps > 0

Returns guess such that x-eps <= guess * guess <= xteps """

= testing based on specification (as described by docstring)
= designed without looking at the code

= exploring paths through specification
* build test cases that cover different parts of the specification

* think about boundary conditions (empty lists, singleton list,
large numbers, small numbers)

= + can be done by someone other than the programmer to avoid
programmer biases

= + testing can be reused if implementation changes

6.100A LECTURE 5 7

Black Box Testing: Boundary Cases

def sqgrt(x, eps):
""" Assumes x, eps floats, x >= 0, eps > 0
Returns guess such that x-eps <= guess * guess <= x+teps """

perfect square 25 0.0001
cases from

less than 1 0.05 0 ULoL " problem domain

irrational square
root 2 0.0001

6.100A LECTURE 5 8

Black Box Testing: Boundary Cases

def sqgrt(x, eps):
""" Assumes x, eps floats, x >= 0, eps > 0
Returns guess such that x-eps <= guess * guess <= x+teps """

boundary 0 0.0001 J‘ edge case
perfect square 25 0.0001

cases from
less than 1 0.05 0.0001

: . problem domain
irrational square

root 2 0.0001 _

6.100A LECTURE 5 9

Black Box Testing: Boundary Cases

def sqgrt(x, eps):
""" Assumes x, eps floats, x >= 0, eps > 0
Returns guess such that x-eps <= guess * guess <= x+teps """

boundary 0 0.0001 ;l' edge case
perfect square 25 0.0001

cases from
}ess Fhan 1 0.05 0.0001 problemdomair1
irrational square
root 2 0.0001 _
extremes 2 1.0/2.0**64.0
extremes 1.0/2.0**64.01.0/2.0**64.0

extreme values
extremes 2.0*%*64 .0 1.0/2.0*%*64.0 -forpmanmﬂem
extremes 1.0/2.0**64.02.0**64.0
extremes 2.0*64 .0 2.0**64 .0 _

6.100A LECTURE 5 10

Glass Box Testing

= Use code directly to guide design of test cases

= Path-complete if every potential path through code is tested
at least once

° limitations:
 cannot test all paths (loops and recursion)

* doesn't show missing paths that should be included in
your code but are not there gion?

" Rulesof thumb _ cse all p2
\(

* Branches_— 1000 MO exec xedmo‘et

* For loops

6.100A LECTURE 5 11

Glass Box Testing

def abs (x):
""" Assumes X 1s an int
Returns x 1f x>=0 and —-x otherwise """
if x < -1
return —x
else:
return x

= path-complete test suite according to glass-box testing
requirements:

° negative number -2 (for if-branch)
o positive number: 2 (for else-branch)

6.100A LECTURE 5 12

Glass Box Testing

def abs (x):
""m o Assumes X 1s an int
Returns x 1f x>=0 and —-x otherwise """
if x < -1
return —x
else:
return x

= path-complete test suite according to glass-box testing
requirements:

° negative number -2 (for if-branch)
o positive number: 2 (for else-branch)

= but testing each code path was not sufficient in this example
since abs(-1) incorrectly returns -1

= therefore, combine glass box testing with black box testing

6.100A LECTURE 5 13

In the Unlikely Event Your Code Fails a Test

15

Debugging for Beginners

FREDO DURAND, MIT EECS & CSAIL

Who has ever had bugs?

6.100A LECTURE 5

17

Uplifting halftime coach speech

Even the best programmers create silly bugs
Everyone can debug
Exciting paradigmatic case of problem solving

Combination of process/tools and
intuition/grit/smarts

But 97% of bugs can be fixed with 4 simple tools:

- Read the error message
- PRINT

- Smart inputs

- Thinking out loud

Most of it is simple, if a bit tedious

6.100A LECTURE 5

MIT 6.100,

[;

Python 6_’.:99 ‘:\ r B
‘t-bke- =r—‘2)\ =

'TO{(:"T@]@_ | (o=

snykcr‘ P (“))
= r IXT)A

gestt bo’ ——S =T P~
Q th-ono‘x Python «"92 = Pl

acys¥s Python (Pyt)//wy-+

abh?
’dk ‘yk "’,._5" (H"

MiT - MIT

But remember that 93% of numbers are made up

18

Basic debugging

Leverage error messages
read it, go where it says, google it
Understand your code’s execution using PRINT

Print info about both values and control flow (code location)
Run method manually in parallel when possible

Also for ideas/method: run simple examples w/ pen & paper
Find smart inputs
Think out loud

Why print debugging?

"Bugs could be due to problems at different levels of abstraction and
understanding

o error in understanding the goals, the logic of the solution, in translating
the logic into code, having the high-level logic implemented correctly
but having small details wrong, errors in understanding how a language
or module works, etc.

*"Abstract solution or code are hard to think about, and our mental
models/understanding can be wrong

*Whereas one sequential execution of the code is concrete
and can be followed step by step.

=> That’s what you should focus on

=\We need a way to make the execution visible to us
> Which parts of the code get executed in what order

o What values are

=0One simple solution: PRINT

IILt’s so useful that you should do some printing before you are aware of
ugs

6.100A LECTURE 5 20

What to print?

Variable values
Start with “important” ones, after you compute/update them
But you may need to add trivial ones
For mutable types, print even if you think they haven’t changed
Location in code
Iteration number

Branch of “if”

Reading the printouts

Printing is not enough, you need to read!
Not necessarily read everything, especially with loops
Sometimes just the beginning or end suffice
True, sometimes it’s tedious
But tedious is better than daunting

Ideally verify values manually

Actually fixing the bug

Fix it (but keep track of change)

Test that it is actually fixed
Else check if changes were possibly useful
If not, undo them or comment them out

And keep debugging

Did it break something else?
(regression testing)
Are there similar bugs?
Optional: Remove / deactivate debugging code

Advanced: Version control (save current version)

If Lucky, a Helpful Error Message

" Trying to access beyond the limits of a list

test = [1,2,3] then
test[4] - IndexError

= Trying to convert an inappropriate type

int ('test') =2 TypeError

= Referencing a non-existent variable
a - NameError

Use type of error
to guide search

Python points to
location in code where
error occurred

" Mixing data types without appropriate coercion

'3'/4 - TypeError

= Forgetting to close parenthesis, quotation, etc.

a = len([1,2,3]
print (a) - SyntaxError

6.100A LECTURE 5

24

Print debugging

Square root with binary search
X =4
epsilon = 0.01
low = 0
high = x
guess = (low + high) / 2

while error >= epsilon:

if guess*xx2 < X:
low = guess
else:
high = guess
guess = (low + high) / 2
error = guesskxx2 — X

print(f"{guess} is close to square root of {x:,}")

Leverage the error message

Traceback (most recent call last):
Flle
while

\ \

>= epsilon:

Namektrror:

X =4
epsilon = 0.01 line ,
low = @

high = x while >= epsilon:
guess = (low + high) / 2
-

while|error|>= epsilon: NameError:

- L] L]] — —

if guess*x2 < X:
low = guess
else:
high = guess
guess = (low + high) / 2
error = guessxk2 — X

print(f"{quess} is close to square root of {x:,}")

X =4

epsilon = 0.01
low =

high = x

guess = (low + high) / 2
error = guesskk2 — X

while error >= epsilon:

if qguessxk2 < Xx:
low = guess
else:
high = guess
guess = (low + high) / 2
error = guessxk2 — X

print(f"{quess} is close to square root of {x:,}")

2.0 is close to square root of 4

Keep testing with more inputs

X = 400

epsilon = 0.01
low = @
high = x

guess = (low + high) / 2
error = guesskxk2 — X

while error >= epsilon:

if guess*x*2 < X:
low = guess
else:
high = guess
guess = (low + high) / 2
error = guessxk2 — X

print(f"{guess} is close to square root of {x:,}")

12.5 is close to square root of 400

Print debugging

X = 400

epsilon = 0.01
low = @
high = x

quess = (low + high) / 2
error = guesskxx2 — X

while error >= epsilon:

if guess*xx2 < X:
low = guess
else:
high = guess
guess = (low + high) / 2
error = guesskxx2 — X

print(f"{guess} is close to square root of {x:,}") 32

Aka printf debugging

Print debugging

X = 400

epsilon = 0.01 | could also print the square of guess
b Maybe print low and high
S Deciding what to print is part of the elusive art

number_of_guesses = @

while error >= epsilon:

Where we are & control flow

if guess¥*2 < x:

low = guess
else: Values
high = guess

guess = (low + high) / 2
error = guesskk2 - X
number of guesse

_—

print(f"iteration : {numbgs”of_guesse

hags guess: {guess} with error {error}”}n

R Foa e ///'
P
1

print(f"Failed on square root of {x}
print(f"The last guess for square root of {x} was {guess} with an error of {erfror:.4f} (acceptable error: {epsilon}) after {number_of_guesses:

print(f"{qguess} is close to square root of {x:,} with an error of {error:.4f} (acceptable error: {epsilon}) after {number_of_guesses:,} guesse

iteration : 1 has guess:
iteration : 2 has guess:
iteration : 3 has guess:

iteration : 4 has guess:

100.0 with error 9600.0

50.0 with error
25.0 with error
12.5 with error

2100.0
225.0

-243.75

12.5 is close to square

an error of -243.7500 (acceptable error: 0.01) after 4 guesses.

X = 400

epsilon = 0.01

low = @

high = x

guess = (low + high) / 2
error = guesskk2 - Xx
number_of_guesses = @

while error >= epsilon:

if guess#kx2 < x:

low = guess
else:
high = guess

quess = (low + high) / 2
error = abs(guess*¥2 - x)
—mrerrrree————

print(f"iteration : {number_of_guesses} has guess: {guess} with error {error}"

if error >= epsilon:
print(f"Failed on square root of {x}")
print(f"The last guess for square root of {x} was {guess} with an error of {error:.4f} (acceptable error: {epsilon}) after {number_of_guesses:

else:

print(f"{guess} is close to square root of {x:,} with an error of {error:.4f} (acceptable error: {epsilon}) after {number_of_guesses:,} guesse

20.000076293945312 is close to square root of 400 with an error of 0.0031 (acceptable error: 0.01) after 19 guesses.

Are there similar bugs?

X = 400

epsilon = 0.01 w,

tow - Actually fixing the bug
high = x

guess = (low + high) / 2 Fix it (but keep track of change)

error = guesskk2 - Xx

number_of_guesses = @
Else check if changes were possibly useful

while error >= epsilon: If not, undo them or comment them out

And keep debugging
if guess#kx2 < x:

Did it break something else?
low = guess

(regression testing)

Are there similar bugs? I

Optional: Remove / deactivate debugging code
Advanced: Version control (save current version)
{guess} with error {error}")
if error >= epsilon:
print(f"F 0 > root of {x}")

print(f"The last g or square root of {x} with an e of {error:.4f} | e error: {epsilo after {number_of_guesses:

print(f"{quess} i to s oot of {x:,} with an error of } > error: {epsilon}) aft {(number_of_guesses:, }

Are there similar bugs?

X = 400
epsilon = 0.01

e Actually fixing the bug

Fix it (but keep track of change)

Else check if changes were possibly useful
while error >= epsilon: If not, undo them or comment them out

And keep debugging
if guess#kx2 < x:

Did it break something else?
low = guess

(regression testing)

Are there similar bugs? I

Optional: Remove / deactivate debugging code
Advanced: Version control (save current version)
h error {error}")
if error >= epsilon:
print(f"F 0 S of {x}")

print(f"The 1 Q s e root of {x} { ith an e o f f} arror: { i after {number_of_guesses:

print(f"{quess} i to oot of {x:,} an error of } > error:) af {(number_of_guesses:,

X = 400

epsilon = 0.01

low = @

high = x

guess = (low + high) / 2
error = abs(guess#x2 - x)
number_of_guesses = @

while error >= epsilon:

if guess*x2 < x:
low = guess
else:
high = guess
guess = (low + high) / 2
error = abs(guess*x2 - x)
number_of_guesses += 1
print(f"iteration : {number_of_guesses} has guess:

if error >= epsilon:
I

print(f"Failed on square root of {x}")

{quess} with error {error

(acceptable error: {epsilon}) after {number_of_guesses:,}

print(f"The last guess for square root of {x} was {guess} with an error c

else:
print(f"{guess} is close to square root of {x:,} with an error of {error:.4f} (acceptable error: {epsilon}) after {number_of_guesses:,

Cleaning up

Remove excessive print (delete, comment, if debug_mode)

You can leave some just in case as long as they don’t overwhelm you

X = 400

epsilon = 0.01 P

et Actually fixing the bug
high = x

guess = (low + high) / 2
error = abs(guess*¥2 - x) Test that it is actually fixed

number_of_guesses = 0 Else check if changes were possibly useful

Fix it (but keep track of change)

while error >= epsilon: If not, undo them or comment them out
And keep debugging

if guess¥k2 < X: Did it break something else?
low = guess : :
(regression testing)

else:
Are there similar bugs?

high = guess
guess = (low + high) / 2 Optional: Remove / deactivate debugging code

error = abs(guessx*2 — X) N
(g) Advanced: Version control (save current version)
number_of guesses += 1

} (acceptable error: {epsilon}) after {number_of_guesses:,}

Run more tests

... (not shown here)

Basic simple inputs: 0, 4

Some normal/average/random values
Adversarial edge cases: 0,0.5, 1, -4

Edge cases can overlap with simple/sanity check

Five-minute break

-ﬁ_-_-
Ry T
e |
hﬁ"
e T e ——— |
] J
I [
#
#
_g

Trying to fix my code

“Only half of programming is coding. The other 90% is debugging.”
anonymous

6.100A LECTURE 5 42

Another Example

Palindrome: a sequence that
def 1is palindrome (x) : reads the same forward and
temp = x backwards.
Cemp.reverse Should test with examples of
if temp == x: palindromes and non-
palindromes
return True

else:

return False

print (1s palindrome (list ('abcba'))) returns True

print (1s palindrome (list ('palinnilap'))) |returnsTrue

print (1s palindrome (list('ab'))) returns True

2?2

6.100A LECTURE 5 43

Bisection Search for Bug(s)

def is palindrome (x) :
temp = X

temp.reverse

1f temp == x:
return True
else:

return False

print (temp, x) | findlocation to print intermediate values
after the bug has most likely occurred

Printed output:
_[I a | ,

Ibl] tlal’ Ibl]

Problem: both are the same

and temp is not reversed

print (i1s palindrome (list('ab')))

6.100A LECTURE 5

test with example that
caused the bug.

44

Bisection Search, cont.

def is_palindrome (x) : Expect temp and x to have

temp = X same value

print ('before reverse', temp, x)|_

temp.reverse

print ('after reverse', temp, Xx)

if temp == x: We expect temp and x to
return True be reverses of each other

else: Printed output:
return False before reverse ['a', 'b'] ['a', 'b']
Efter reverse ['a', 'b'] ['a', 'b']

Looks good before reverse

print (i1s palindrome (list('ab'))) but reverse is not working.

6.100A LECTURE 5 45

Trying Again

def is_palindrome (x) : Expect temp and x to have

temp = X same value
print ('before reverse', temp, x)_

temp.reverse () —

print ('after reverse', temp, X) —

1f temp == x: We expect temp and x to
return True be reverses of each other
else: Printed output:

before reverse ['a', 'b'] ['a', 'b']

return False after reverse ['b', 'a'l ['b', 'a'l

Reversing the list is working

print (i1s palindrome (list('ab'))) now but both lists are
reversed, which is not what
we wanted.

6.100A LECTURE 5 46

Two Bugs Down

def 1is palindrome (x) :

temp = x.copy () —

print ('before reverse', temp, X)

temp.reverse ()

print ('after reverse', temp, Xx)

1f temp == x:
return True Printed output:
) before reverse ['a', 'b'] ['a', 'b']
else: after reverse ['b', 'a'] ['a', 'b']
return False .
This looks correct! J

print (i1s palindrome (list('ab')))

6.100A LECTURE 5 47

Some Pragmatic Advice

" look for (your) usual suspects
° @.g., alias versus clone in list

= ask why the code is doing what it is, not why it is not doing
what you want

= the bug is probably not where you think it is — eliminate
locations — bisection search helps do this

"For mutations, print values even when you dor
have changed them

= explain the problem to someone else

= don't believe the documentation

= take a break and come back to the bug later

6.100A LECTURE 5 48

Debugging as Search

= Want to narrow down space of possible sources of error

= Design experiments that expose intermediate stages of
computation (use print statements), and use results to further

narrow search

= Bisection search can be a powerful tool for this

6.100A LECTURE 5 49

In short: don’t be a deer in headlights!

1/ Leverage error messages

Read them, go to the location, and google if you don’t understand
2/ Print

Print intermediate values

Here and there print where you are

(entering function XXX ; in else branch of YYY, etc.)

Print mutable types even if you think they haven’t changed

Ideally compute solution in parallel on pen and paper
3/ Think of smart input values

4/ step back, think out loud

Talk to a rubber ducky

Do you have all the tools?

1/ Leverage error messages

Read them, go to the location, and go§ =
2/ Print

Print intermediate values

Here and there print where you are

(entering function XXX ; in el =

Print mutable types even if you think

Ideally compute solution in parallel o
3/ Think of smart input values

4/ step back, think out loud

Is there more???

More advanced debugging tools

https://pythontutor.com

Step by step execution
Visualization of variables, environments

But only for small programs

Python 3.11 Print output (drag lower right corner to resize)
known limitations

def is_palindrome(x):

temp = x
temp.reverse() y
if temp == x: Frames Objects
— return True
else: Global frame function

is_palindrome (x)
return False is_palindrome
list

print(is_palindrome(list('abcba'))) 0
a

is_palindrome .
print(is_palindrome(list('palinnilap')))
print(is_palindrome(list('ab'))) X
temp

Edit this code

line that just executed
== next line to execute

<< First < Prev Next > Last >>

Step 7 of 22

https://pythontutor.com/

Asserts

def binary_search_char(text: str, char: str) —-> int:
lower)
upper = len(text) - 1

—_—

while upper - lower > 1:
assert lower <= upper, "Lower bound is greater than upper bound"
assert @ <= lower < len(text), "Lower index out of bounds"
assert @ <= upper < len(text), "Upper index out of bounds" must hold true

Declare
___invariants which

mid = (lower + upper) // 2
if text[mid] <= char:
lower = lower — mid
else:
upper = upper - mid

if text[lower] == char:
return lower

if text[upper] == char:
return upper

return -1

text = "abcdefffg"

char = "f"

index = binary_search_char(text, char)
print(index)

Logging

Setup a logging library

import logging M

logger = logging.getlLogger({__name__)

logging.basicConfig(Syntax not
filename="debug. log", # this is the file where logs will be stored important for
filemode="a", # "a" = append, "w" = overwrite — now We cover
level=1logging.DEBUG, # log level '
format="%(asctime)s - %(levelname)s - %(filename)s:%(lineno)d - %(message)s" ObjectS later

)

—_—

Using the logging function

def is_palindrome(x):
temp = x
logging.debug("before reverse: temp=%s, x=%s'", temp, x)
temp.reverse()

logging.debug("after reverse: temp=%s, x=%s", temp, x) Called print substitution.
if temp == x: You can also do it with strings
return True

print("before reverse: temp=%s, x=%s" % (temp, x))
else:

return False

Basic cheat sheet for debugging

Actionable steps

Leverage error message when possible,
- read it, go where it says, google it
Understand your code’s execution using print

Print info about both values and control flow (code location)
Read what you have printed (tedious but easy)

Be smart about what to print but err on the side of more info
Run method manually in parallel when possible

Think backward: How did we get there/this value?
Understand built-in & external functions. Test them.
Alternative: use Online PythonTutor

Find smart inputs

Simple sanity checks easy to run manually

Average case

Adversarial edge cases

Random

Keep a systematic list of tests you run systematically

Think out loud

To a friend, to a rubber ducky, write it down

High level advice

You can do it!
- Avoid deer in headlights syndrome!
Keep it concrete.

- Focus on execution & examples,
not code or ideas

Step back
- Take a break

- Question your focus and
assumptions

Test and debug early & often
Keep track of what you are doing
- take note

- scopy files/code

- make changes removable

Fix/change one thing at a time.

(Slightly) More advanced approaches

Narrow down where errors may be:
- Binary search: Scientific method perspective:
see if value in middle of code is correct to see if bug is

before or after Exploratory/observational experiments

keep splitting in two - Mostly previous slide
Pattern matching & adaptive focus for common bugs and Form Hypotheses about causes for bug
behaviors Come up with & Run Verification

experiments

E.g. code runs forever -> focus on loops .
Smart inputs

Array bound issues, off by one, first last case :
smart measurements/print

Your bank of patterns and intuition will sharpen as you)
learn Take notes about everything

Kuhn’s structure of scientific revolutions

Defensive programming and assert Ordinary science, verify current

aradigm (testing before bug occurs
* add asserts so code crashes when a condition is wrong P gm & &)

Crisis: a bug occurs
Modify code - New paradigm at first may lead to

worse predictions
Start from last version that worked P

Eventually angles get smoothed and it

Create minimal version of problem
all restarts

Call/test parts in isolation

More advanced: Use debugger (I rarely do)

Links about debugging

e https://blog.hartleybrody.com/debugging-code-beginner/

e https://andypi.co.uk/2024/01/26/concise-guide-to-debugging-anything-cheat-
sheet/

e https://jvhs.ca/blog/2019/06/23/a-few-debugging-resources/

e https://blog.regehr.org/archives/199

e https://wizardzines.com/zines/debugging-guide/

e https://greenteapress.com/thinkpython2/html/thinkpython2021.html

e https://www.freecodecamp.org/news/what-is-debugging-how-to-debug-code/

e https://blog.stackademic.com/the-ultimate-cheat-sheet-for-debugging-like-a-
pro-a4488t/cacee

e https://medium.com/swlh/a-beginners-guide-to-debugging-for-beginners-
21eb119a8445

https://blog.hartleybrody.com/debugging-code-beginner/
https://andypi.co.uk/2024/01/26/concise-guide-to-debugging-anything-cheat-sheet/
https://jvns.ca/blog/2019/06/23/a-few-debugging-resources/
https://blog.regehr.org/archives/199
https://wizardzines.com/zines/debugging-guide/
https://greenteapress.com/thinkpython2/html/thinkpython2021.html
https://www.freecodecamp.org/news/what-is-debugging-how-to-debug-code/
https://blog.stackademic.com/the-ultimate-cheat-sheet-for-debugging-like-a-pro-a4488f7cacee
https://medium.com/swlh/a-beginners-guide-to-debugging-for-beginners-21eb119a8445

Repeat after me with conviction

[am not a deer in headlights

Extra material

Jokes

From https://blog.stackademic.com/the-ultimate-cheat-sheet-fol A e DEBUGGING TACTICS
debugging-like-a-pro-a4488f7cacee - O AWALK @ ReAD THE DOCS
E
To li i : greECTVE O SReaxpoNTS 15T PAGE of
o lig , unny uggi u : 1715 - &aoaiiG
.A RUBBER
The first rule of programming is: If it works, it’s not done yet.” — G e
Unknown . N
(] i ’TMAG
“I have not failed. I've just found 10,000 ways that won’t work.” - RMCiEC e "‘K"m’"’o
: >
Thomas Edison e
From https://thepythoncodingbook.com/errors-and-bugs/

simplest-debugging-strategy-that-many-
Only half of programming is coding. The other 90% is debugging. beginners-ignore-ce14e98edb2e

T LAG TRYING To | TURNS OUT IT WASNT | DEBUGGING 7447 LED | | ANYWIAY, LONG STORY SHORT,
P roceE L | ESLE Wi K | P Pepes oo || R e LARGR
anonymous R LERD. | RERORDDRNER. | B oo one e
L . _ / J Gt
Sometimes it pays to stay in bed on Monday rather than spending
the rest of the week debugging Monday’s code.
. ARGH! o | RS HoURe0F 13 HOUD [T Go?
Dan Solomon/Christopher Thompson | RS A B (s

3 §§ - 5 §§

https://blog.stackademic.com/the-ultimate-cheat-sheet-for-debugging-like-a-pro-a4488f7cacee
https://medium.com/dare-to-be-better/the-simplest-debugging-strategy-that-many-beginners-ignore-ce14e98edb2e

Decent links

https://blog.hartleybrody.com/debugging-code-beginner/

https://andypi.co.uk/2024/01/26/concise-guide-to-debugging-anything-cheat-sheet/

https://jvns.ca/blog/2019/06/23/a-few-debugging-resources/

https://greenteapress.com/thinkpython2/html/thinkpython2021.html

https://www.freecodecamp.org/news/what-is-debugging-how-to-debug-code/

https://blog.stackademic.com/the-ultimate-cheat-sheet-for-debugging-like-a-pro-a4488f7cacee

https://medium.com/swlh/a-beginners-guide-to-debugging-for-beginners-21eb119a8445

https://blog.hartleybrody.com/debugging-code-beginner/
https://andypi.co.uk/2024/01/26/concise-guide-to-debugging-anything-cheat-sheet/
https://jvns.ca/blog/2019/06/23/a-few-debugging-resources/
https://blog.regehr.org/archives/199
https://wizardzines.com/zines/debugging-guide/
https://greenteapress.com/thinkpython2/html/thinkpython2021.html
https://www.freecodecamp.org/news/what-is-debugging-how-to-debug-code/
https://blog.stackademic.com/the-ultimate-cheat-sheet-for-debugging-like-a-pro-a4488f7cacee
https://medium.com/swlh/a-beginners-guide-to-debugging-for-beginners-21eb119a8445

1. Understand the system

2. Make it fail

bTheg‘]ndispensable Rules
for Finding Even the Most '
Elusive Software and Hard- ™

3. QU_it thinking and -LOOI'(ware Problems

4. Divide and conquer

5. Change one thing at a time

https://www.amazon.com/Debugging-

Indispensable-Software-Hardware-
Problems/dp/0814474578

6. Keep an audit trail
7. Check the plug
8. Get a fresh view

9. If you didn't fix it, it ain't fixed.

https://www.amazon.com/Debugging-Indispensable-Software-Hardware-Problems/dp/0814474578

@ first steps S, !

preserve the crime scere............. 9

read the error message

reread the error message...

reproduce the bug.........oocccoiciiirviiinen:

inspect unreproducible bugs...........13
identify one small question............14
retrace the code's steps............ 15
write a failing test....................16

(D qget organized d

brainstorm some suspects........... 18
rule things out....cicriviiies. 19
keep a log book ..o 20
draw Q& diGgrom. e 21

@ investigate ‘(O
add lots of print statements....... 23

use o debugger.....

jump info a REP

find a version that works

look at recent changes.....cc 27
add assertions everywhere.......... 23
comment out code....menrciini 29
analyze the 10gS. ..o, 30

@ research

read the docs.......covvicecccniccennes 32
find the type of bug...

learn one small thing..

read the library's code ... 35

find a new source of info............ 36

®simplify (@~
write a tiny program..........cooeen
one thing af & fime ...
tidy up Your code......oirrniiii
delete the buggy code.

reduce randomness...

® get unstuck @-O

toke @ break. e,
investigate the bug fogether.....
timebox your investigation........
wrife a message asking for help...
explain the bug out lovd ...
maKe sure your code is running.......

do the annoying Jrhing

®improve your toolkit %

try out a new tool.....cccccic.

types of debugging fools..............

add pretty printing......cooveivre

colours, graphs, and sounds.............

(Y
@) after it's fixed &
do o victory lap
fell a friend what you learned..

find reloted bugs

add a comment ...

document your QUEST .

uy
4s

52
.53
shorten your feedback loop..............
55
56

https://wizardzines.com/zines
/debugging-guide/

Concise Guide to

Debugging Anything (1)

Thoroughly read the system's documentation and
consult with experts to understand its
intended functionality.

Carefully step through the code, understanding
what each part is supposed to do. When in
doubt, don't guess — refer back to the
documentation or ask for clarification.

Example: A Python script that

processes user data from a CsV file
and stores results in a database.

%&; 1. Understand the System (Read the code, documentation or ask)
=)

Read your script Line by line, understand how
Python's CSV module woerks, and know how the
script interacts with the database.

If unsure about a function, you look it up in
the Python documentation.

S
ga 2. Replicate the Failure (Observe and record the bug occurring again)

+ Replicate the failure under the exact
conditions it occurred, not just similar ones.

+ For intermittent failures, vary the conditions
until the issue can be can consistently
replicated. Document every detail, including
any seemingly irrelevant ones.

« Engage in a thorough search to identify the
exact cause of the bug. Rely on debug logging
to make the bug and its cause visible.

+ Avoid theorizing about potential causes without
evidence - do a practical search.

+ Remember the debug process might inadvertently
modify the conditions and hide the failure.

Your script foils to process certoin Tows in the
CSVv file. To replicate this, you ensure the
testing environment mirrors production with the
some CSV file, Python version, ond dotobase
setup. You run the script and observe it foiling
on the some rows, confitming that you've
replicated the issue.

3. Search and Identify the Bug (Don't theorize without evidence)

You odd print() statements or use Python's
logging module to log the date processed at each
step. You notice that the script foils when
encountering special characters. By logging the
exact input processed at the failure point, you
identify that the script doesn't handle Unicode
characters correctly.

ﬁv—%‘} 4. Narrow the Search (Divide & Conquer or Successive Approximation)

« Apply the divide & conguer algorithm to narrow
down the search area. Understand the range of
the search and determine if the bug is upstream
or downstream from the current point.

Ideally, start at a known problematic point and
work back up through the system, checking each
branch until finding the source of the bug.

.

Your script is a multi-step process, ond you're
unsure where it's failing. You add checkpoints at
the halfuay point of each major section. If the
script foils before reaching the midpoint of a
particulor section, you know the issue is
upstream. This helps you isolate the problematic
code block quickly.

f&]% 5. Change One Thing at a Time (Control all other variables)
i i

« When attempting to replicate the failure or
identify the bug, change only one variable at
a time, changing back any variables to the
original condition before the next test.

Keep a forensic mindset, analyzing what has
changed since the last time the system worked
correctly.

You suspect the failure might be due to the
Python version or the CSV file format. First,
you change only the Pythen version while keeping
the same file to see if the issue persists.
Then, you revert to the original version and try
a different CSV file format. This controlled

approach helps identify the ezact cause.

Based o Delugging: The 9 Indispeasshle Rules fox Finding Even the Most Elusive Saftwaze and Hardnae Prahless b Baxid Agans: Exinnles snd guids by syl sk

Concise Guide to

Debugging Anything (2)

6. Keep an Audit Trail (Write down details of the debugging process)

* Keep a detailed audit trail of all actions
taken, the order in which they were done, and
the results of each action.

+ This record is invaluable in ensuring that all
areas have been checked, in providing a clear
account of your debugging process to others,
and serving as a reference for future issues

You maintain o detoiled log file using Pythen's
logging module. Each action, such as opening o
file, processing a row, or moking a database
entry, is logged with a timestamp. When the
script fails, you have o comprehensive record of
what happened immediately before the failure.
You explain the bug fix in @ git commit message.

% 7. Check Obvious Assumptions (that are fast to verify)

« Always verify the most basic assumptions first,
such as whether the system is powered on, the
service is running or expired data is cached.

+ Before narrowing your search, confirm that the
entire scope of the system is being checked,
including all tools; dependencies and platforms
vyou're working with.

Before diving deep into debugging, you check the
basics: Is the CSV file present in the expected
folder? Is the network connection to the datobase
dropping? Is the dotabase server running? You add
checks in your script Like os.path.isfile() to
verify the file's existence before proceeding.

‘@7
&'), 8. Ask for Help (from online resources and then experts)

+ When you've hit a wall, a fresh perspective
from others can shed new light on the problem.

« Start with async online resources like
StackOverflow, ChatGPT before asking experts
(e.g. Github issues) which introduces delay

+ Always provide a bug description, logs, errors
and what has been checked so far, etc.

O

« Rigorously test the fix to confirm it addresses
the issue. Then, remove the fix and retest to
ensure that the issue reoccurs, confirming that
your fix is directly resolving the problem.

= For particularly elusive bugs, add logging to
capture details of the failure so it can be
traced if it occurs again in production.

=

« Reflect on the debugging process and identify
any systemic improvements that could prevent
similar issues in the future.

» For example, standardizing error and debug
logs, enhancing test coverage, automating
testing and deployment to minimize human
error, and thoroughly understanding
dependencies during the design phase.

Based o0 Debugging: The @ Rles for Fleding Evén the Hast EL

TF you fail to solve the issue independently, you
write g detailed question on ChatGPT. You include
the Python version, a snippet of your code, the
exact error message, and whaot you've tried so
far. ChatGPT lists a number of possible reasons
for the failure, including one you hoven’t
thought of, which gives you @ new point to test.

#g 9. Confirm the Fix Works (By testing with it applied and removed)

After adjusting your script to handle Unicede
characters, you re-run it with the some
problematic CSV file. It processes all rows
successfully. Then, you remove the fix and
confirm the script fails again, validating that
your fix directly oddresses the issue.

2
g \ 10. Fix the Underlying Process (Find the design or systemic problem)

https://andypi.co.uk/wp-

To prevent similar issues, you decide te add
more logging items and robust error handling to
your script. You alse incorporate a unit test
that runs automatically on every git commit,
testing a range of CSV formats and special cases
to ensure the script is resilient to common data
issues.

content/uploads/2024/01/I

Sheet-with-Python-Example

tusre and Harduaze Probless by Bavid hgons; Exomnles nd fuide by s k

https://andypi.co.uk/wp-content/uploads/2024/01/Debugging-Cheat-Sheet-with-Python-Example.pdf

* If they don’t know how to get started, ask them to describe

the problem in detail:
* What are the goals of the problem?
* What are the inputs?
* What are the outputs? ttps://www.csteachingtips.org/tips-tutors
* What is their relationship?
* Can we solve a small example by hand?
* Is there a part of the problem that they could write code for?

* (and worry about the rest later?)

* Can you describe the algorithm in words?

* If they have a syntax error, ask them:
* What line is the syntax error is on?
* What does the text of the error mean?
* What does the internet suggest about how to fix this error?
* What have they tried to fix this error?

* If their code doesn’t work, ask them:
* What evidence do we have that the code doesn’t work?
* What test case doesn’t work and what incorrect behavior or output results?
* Could we come up with a simpler example that demonstrates the error?
* What lines of code might be producing the bug?
* Why hypotheses do we have for what might be causing the problem?
* How can we test these hypotheses?
* (e.g. writing new test cases, adding print statements, using a debugger)
* Could we walk through an example that doesn’t work: by hand? with a debugger?

https://www.csteachingtips.org/tips-tutors

#1.

#2.

#3.

#4.

#5.

#6.

#7.

#8.

#9

https://blog.hartleybrody.com/debugging-code-

beginner/

Print things a lot

Start with code that already works

Run your code every time you make a small change

Read the error message

Google the error message

Guess and Check

Comment-out code

If you're not sure where the problem is, do a binary search

. Take a break and walk away from the keyboard

#10. How to ask for help

https://blog.hartleybrody.com/debugging-code-beginner/

https://jvns.ca/blog/2019/06/23/a-few-
debugging-resources/

reproduce your bug (but how do you do that?)
reproduce your bug quickly

accept that it’s probably your code’s fault
start doing experiments

change one thing at a time

check your assumptions

weird methods to get information

write your code so it’s easier to debug

https://jvns.ca/blog/2019/06/23/a-few-debugging-resources/

https://blog.regehr.org/archives/199

A Scientific Approach to Debugging

1. Verify the Bug and Determine Correct Behavior
2. Stabilize, Isolate, and Minimize

3. Estimate a Probability Distribution for the Bug
4. Devise and Run an Experiment

5. lterate Until the Bug is Found

6. Fix the Bug and Verify the Fix

7. Undo Changes

8. Create a Regression Test

9. Find the Bug’s Friends and Relatives

What If You Get Stuck?

https://blog.regehr.org/archives/199

From Andrew Adams

Obviously you need to test your code to see if it works or not by running it on some inputs. What's
less obvious is that you shouldn't just do this manually. You should write down those tests in a
separate program so that you can rerun them quickly and easily, so that you don't break something
that was already working without realizing when you make a change. Tests represent the ground you
have gained and held in your war against the problem. Many students will already appreciate this.
However, a second-order effect that I've come to af)preciate more and more is that when you write a
test you're often just writing down the cases you already had in mind while writing the code, so once
you get good at coding they're likely to work already. That doesn't mean your code is correct though.
Your code is still probably broken in cases you didn't think to test, and possibly wouldn't ever think to
test. There are unknown unknowns. There is a trick though: maybe you can't think of the right test
cases, but a random number generator can stumble upon them accidentally. So if at all possible, test
your program on millions of random inputs. It will find bugs in code you thought was perfect. You
don't need to use fancy fuzz-testing tools or frameworks. Just use a seeded random number
generator to construct some random input, and make sure to log the seed (or the random input) so
that you can reproduce any failure it finds. Sometimes | leave them running overnight. Highly
recommended.

