
Lists, Data, Plotting
6.1000 LECTURE 4

16.1000 LECTURE 3



Announcements

▪ Pset 1 due Wednesday 9/17

▪ Tomorrow is last day to switch to 6.100A

▪ Viruses are spreading – stay healthy!
◦ prioritize sleep and water

◦ eat enough

◦ get fruits and vitamin C

◦ schedule your flu shot

6.1000 LECTURE 3 2



Loose ends: Syntax

▪ Triple-quoted strings

▪ Statements vs expressions
◦ statements are any instruction to Python

◦ expressions are statements that evaluate to an object

◦ non-expression statements

◦ if-elif-else

◦ while, for, continue, break

◦ def ..., return ...

◦ many more

◦ https://docs.python.org/3/reference/simple_stmts.html

◦ https://docs.python.org/3/reference/compound_stmts.html

6.1000 LECTURE 3 3

https://docs.python.org/3/reference/simple_stmts.html
https://docs.python.org/3/reference/compound_stmts.html


Loose ends: Terminology

▪ Generate-and-test / guess-and-check
◦ very broad term for any algorithm that checks candidates 

along the way to a final answer

◦ exhaustive enumeration / brute force

◦ systematically considers every possibility in the solution space

◦ expected to be slow

◦ pruning

◦ discards significant chunks of the solution space through 
inference

◦ bisection search is an example

6.1000 LECTURE 3 4



Loose ends: Terminology

▪ Function names

◦ def weirdo(achoo):
print(achoo + achoo)

◦ weirdo is the function name

◦ evaluates to the function object

◦ weirdo("honk") is a function call

◦ evaluates to the function’s return value, None

◦ often use weirdo() to refer to the function itself

◦ official Python documentation does this

◦ helps clarify that we’re talking about a function

6.1000 LECTURE 3 5



Loose ends: Frames and function scope

▪ Frame is simply a table from variable names to locations of 
objects in memory
◦ global frame, function call local frames

◦ frames live in the stack section of memory

◦ objects live in the heap section

◦ frames do not contain objects, only references to them
(i.e., memory addresses)

▪ What happens when function body references a variable not 
in function’s local frame?
◦ Python automatically looks up the variable in the global 

frame

6.1000 LECTURE 3 6



Lists

▪ Sequence collections of objects

▪ Not strictly necessary for computation
◦ Turing machines have no lists

▪ But awfully convenient for grouping data, e.g.,
◦ get sequence of input values, but don’t know in advance 

how many

◦ return more than one piece of data from a function

6.1000 LECTURE 3 7



Lists: Literals

▪ Square brackets around comma-separated values

◦ [1, 3, 5, 7, 9, 11]

▪ Lists are just sequences of references to other objects
◦ each cell is like a variable

◦ objects do not live inside lists!

◦ nested lists are really list cells pointing to other list objects

6.1000 LECTURE 3 8



Lists: Operations

▪ As a sequence, very similar operations to strs

◦ indexing, slicing

◦ concatenation, repetition

◦ looping, len()

▪ Differences to note

◦ strs contain characters, but no actual data contained in a list

◦ hence indexing and looping do not create new objects, but just 
reference what the list cells already point to

◦ slicing still always creates a new list

▪ Exercise: study the similarities and differences between 
str.find() and list.index()

◦ https://docs.python.org/3/library/stdtypes.html#sequence.index

◦ https://docs.python.org/3/library/stdtypes.html#str.find

6.1000 LECTURE 3 9

https://docs.python.org/3/library/stdtypes.html#sequence.index
https://docs.python.org/3/library/stdtypes.html#str.find


Lists: Comparisons

▪ Also similar to str comparisons
◦ uses == and < on elements

▪ But nesting means checks may involve more structure
◦ comparing two lists means using same comparison operator 

on pairwise elements

◦ listA == listB

◦ listA[0] == listB[0]
and listA[1] == listB[1] 
and listA[2] == listB[2]

◦ can stop at first pair comparison that’s False

6.1000 LECTURE 3 10



Lists: Mutation

▪ All previous object types were immutable
◦ once object is created, its contents won’t change

◦ list objects are designed to be changed

▪ Changing the references of list cells
◦ list cells are just like variables

◦ they can be “re-assigned” to any other object at any time

▪ Changing how many cells there are
◦ append() and extend() put new cells at end

◦ del list_obj[index] removes reference at index

◦ shifts all subsequent cell references one index earlier

▪ Will revisit list mutation next Monday in Lecture 6

6.1000 LECTURE 3 11



Functions operating on lists

▪ list() makes a new list from elements of an iterable into 
◦ a = list(iterable) is equivalent to

a = []
for elt in iterable:

a.append(elt)

◦ iterables we know so far are str, range, list

▪ str.split() and str.join()
◦ https://docs.python.org/3/library/stdtypes.html#str.split

◦ https://docs.python.org/3/library/stdtypes.html#str.join

▪ sorted() take in an iterable, always produces a list
◦ https://docs.python.org/3/library/functions.html#sorted

6.1000 LECTURE 3 12

https://docs.python.org/3/library/stdtypes.html#str.split
https://docs.python.org/3/library/stdtypes.html#str.join
https://docs.python.org/3/library/functions.html#sorted


Reading files

▪ open() returns a file object for reading
◦ actual file lives on disk

◦ files are sequences of bytes (1 byte is a chunk of 8 bits)

◦ open(filename) creates an object that represents access 
to that file
◦ Python takes care of low-level details

▪ getting file contents
◦ file.read() returns all content as a str

◦ typically one byte becomes one character

◦ file.readline() gets all content until next newline "\n"
◦ file.readlines() returns a list of all lines
◦ can iterate over lines in file directly; these are equivalent:

◦ for line in file:
◦ for line in file.readlines():

6.1000 LECTURE 3 13



Closing files

▪ When no longer need file, good practice to call 
file.close()
◦ an open file means Python is still ready to read or write to it

◦ on some operating systems, prevents other programs from
accessing the file

▪ Recommend using with open(filename) as file:
statements
◦ automatically closes files when block ends

◦ uses a Python feature called context managers

6.1000 LECTURE 3 14



Plotting data: Installing matplotlib

▪ matplotlib is a popular third-party library for generating plots
◦ https://matplotlib.org/stable/

▪ Need to add to your Python installation
◦ Windows
> py -m pip install matplotlib

◦ macOS
% python3 -m pip install matplotlib

▪ pip = Package Installer for Python
◦ pip is a built-in module
◦ the install command retrieves matplotlib code and makes it an available 

module as well

▪ modules are collections of names pointing to useful objects
◦ kind of like frames, but they live in the heap where all other objects live
◦ import matplotlib

◦ loads library of functions
◦ makes module object, creates matplotlib variable pointing to it

6.1000 LECTURE 3 15

https://matplotlib.org/stable/


Plotting data: Using matplotlib

▪ import matplotlib.pyplot as plt

◦ pyplot is a submodule supplying matplotlibs’ primary user-interface

◦ plt is a convenient name we put in the global frame referencing it

▪ make a new figure

◦ plt.figure()

▪ draw on the figure

◦ draw data: plt.bar(), plt.plot()

◦ label the graph: plt.title(), plt.xlabel(), plt.grid()

◦ customize colors: plt.plot(x, y, marker=..., color=...)

▪ display the figure

◦ plt.show()

6.1000 LECTURE 3 16

https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.bar.html
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.plot.html
https://matplotlib.org/stable/users/explain/colors/colors.html
https://matplotlib.org/stable/api/markers_api.html

https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.bar.html
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.plot.html
https://matplotlib.org/stable/users/explain/colors/colors.html
https://matplotlib.org/stable/api/markers_api.html

